


Pure Substance

- A substance that has a fixed chemical composition throughout is called a pure-substance, e.g.: H_2O , N_2 , Coeview page
- A pure substance does not have to be of a single chemical element or compound
- A mixture of chemical elements/compounds also qualifies as a pure substance as long as the mixture is homogeneous, e.g. Air
- However, a mixture of oil and water is not a pure substance - oil is not homogeneous/soluble in water, forming two chemically dissimilar regions

- Phases Of Pure Substances
 A phase is identified as having a distinct molecular arrangement that is chemogeneous throughout and separated from the others by easily identifiable boundary surfaces. Eg: Two phases of water in iced water
- Three principal phases: solid, liquid and gas
- A substance may have several phases within a principal phase, each with a different molecular structure. For eq:
 - □ Helium has two liquid phases;
 - \Box Iron has three solid phases.

- Above critical temperature and pressure
 <u>no significant</u>
 <u>process of phase change occurs</u>.
- The volume continues to increase and only one phase that similar to vapour phase exists.

Quality and saturated region
 During vaporization, a substance exists in two phases (liquid and vapour) that consists of a bixture of saturated liquid and saturated vapour. The ratio of vapor to the total mass of mixture is quality.

$$\chi = \frac{m_{\text{vapour}}}{m_{\text{total}}} = \frac{m_{\text{vapour}}}{m_{\text{liquid}} + m_{\text{vapour}}} = \frac{m_g}{m_f + m_g}$$

- x=0 (or 0%) for saturated liquid and x=1 (or 100%) for saturated vapour, so the range for quality is $0 \le x \le 1$.
- Quality has significance for <u>saturated mixtures only</u>. It has no meaning in the compressed liquid or superheated vapor regions.
- The properties of the saturated liquid are the same whether it exists alone or in a mixture with saturated vapor. During the vaporization process, only the amount of saturated liquid changes, not its properties. Similarly to a saturated vapor.

Example of compressed liquid table

TABLE A-7

The format of Table 1-7 is similar to the superheated vapor tables, except the saturated data represent the saturated liquid properties

Compressed liquid water												
T	V	u	h	s h Maria K	V	e.(s	V	U L VII-	h	S
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg ∙ K		h, "kg	kJ/kg	kJ/kg ∙ K	m³/kg	kJ/kg	kJ/kg	kJ/kg ∙ K
	P =	= 5 MPa	(265.94.0	Olt	P =	10 MPa	(311.00°C))	P =	15 MPa	(342.16)	C)
Sat.	0.0012862	1145.1	1155	2.9207	0.00 452	393.3	1407.9	3.3603	0.0016572	1585.5	1610.3	3,6848
0	0.0 0007	D. 4	5.03	0.0001	0.00099.52	0.12	10.07	0.0003	0.0009928	0.18	15.07	
20	0.0009996	83.61		0.29 4	0009973	83.31	93.28	0.2943	0.0009951	83.01	97.93	· · ·
	0.0010057	166.92		0 5705	0.0010035	166.33	176.37	0.5685	0.0010013	165.75	180.77	
- 30	0.0010149	6.	201.00	0.8287	0.0010127	249.43	259.55	0.8260	0.0010105	248.58	263.74	
80	0. 10 2.5			1.0723	0.0010244	332.69	342.94	1.0691	0.0010221	331.59	346.92	
100	0.0010415		422.85	1.3034	0.0010385	416.23	426.62	1.2996	0.0010361	414.85	430.39	
120 140	0.0010578	501.91 586.80	507.19 592.18	1.5236 1.7344	0.0010549 0.0010738	500.18 584.72	510.73 595.45	1.5191 1.7293	0.0010522 0.0010708	498.50 582.69	514.28 598.75	
140	0.0010789	672.55		1.9374	0.0010738	670.06	681.01	1.9316	0.0010920	667.63	684.01	
180	0.0010988			2.1338	0.0011200	756.48	767.68	2.1271	0.0011160	753.58	770.32	
200	0.0011240	847.92		2.3251	0.0011200	844.32	855.80	2.3174	0.0011435	840.84	858.00	
220	0.0011868			2.5127	0.0011809	934.01	945.82	2.5037	0.0011752	929.81	947.43	
240	0.0012268		1037.7	2.6983	0.0012192		1038.3	2.6876	0.0012121		1039.2	2.6774
260	0.0012755		1134.9	2.8841	0.0012653		1134.3	2.8710	0.0012560		1134.0	2.8586
280					0.0013226		1235.0	3.0565	0.0013096		1233.0	3.0410
300					0.0013980	1329.4	1343.3	3.2488	0.0013783	1317.6	1338.3	3.2279
320									0.0014733	1431.9	1454.0	3.4263
340									0.0016311	1567.9	1592.4	3.6555
	P = 20 MPa (365.75℃)			<i>P</i> = 30 MPa				P = 50 MPa				
Sat.	0.0020378	1785.8	1826.6	4.0146								
0	0.0009904	0.23	20.03	0.0005	0.0009857	0.29	29.86	0.0003	0.0009767	0.29	49.13	-0.0010
20	0.0009929	82.71	102.57	0.2921	0.0009886	82.11	111.77	0.2897	0.0009805	80.93	129.95	0.2845
40	0.0009992	165.17	185.16	0.5646	0.0009951	164.05	193.90	0.5607	0.0009872	161.90	211.25	0.5528
60	0.0010084	247.75	267.92	0.8208	0.0010042	246.14	276.26	0.8156	0.0009962	243.08	292.88	0.8055
80	0.0010199			1.0627	0.0010155	328.40	358.86	1.0564	0.0010072	324.42	374.78	
100	0.0010337			1.2920	0.0010290	410.87	441.74	1.2847	0.0010201	405.94	456.94	
120	0.0010496	496.85		1.5105	0.0010445	493.66	525.00	1.5020	0.0010349	487.69	539.43	
140	0.0010679	580.71	602.07	1.7194	0.0010623	576.90	608.76	1.7098	0.0010517	569.77	622.36	
160	0.0010886			1.9203	0.0010823	660.74	693.21	1.9094	0.0010704	652.33	705.85	
180	0.0011122			2.1143	0.0011049	745.40	778.55	2.1020	0.0010914	735.49	790.06	
200 220	0.0011390 0.0011697			2.3027 2.4867	0.0011304	831.11 918.15	865.02 952.93	2.2888 2.4707	0.0011149 0.0011412	819.45 904.39	875.19 961.45	
240	0.0011097		949.16 1040.2	2.6676	0.0011595		952.95 1042.7	2.6491	0.0011412		1049.1	2.6156
240	0.0012055		1134.0	2.8676	0.0011927		1134.7	2.8491	0.0012044		1138.4	2.8158
280	0.0012472		1231.5	3.0265	0.0012314		1229.8	3.0001	0.0012044		1229.9	2.9547
300	0.0012978		1334.4	3.2091	0.0012770		1328.9	3.1761	0.0012430		1324.0	3.1218
320	0.0014450		1445.5	3.3996	0.0014014		1433.7	3.3558	0.0013409		1421.4	3.2888
340	0.0015693		1571.6	3.6086	0.0014932		1547.1	3.5438	0.0014049		1523.1	3.4575
360	0.0018248		1740.1	3.8787	0.0016276		1675.6	3.7499	0.0014848		1630.7	3.6301
380					0.0018729		1838.2	4.0026	0.0015884		1746.5	3.8102

11

sat

Exc	mple 2	2.1	ale.co.uk						
Example 2.1 Using Property Tables, complete this table for H_2O : $ \begin{array}{c c} P(MPa) & V(m^3/kg) & T(\circ C) & Phase and Quality \\ \hline (a) & 1.725 & 100 & \\ \end{array} $									
	P (MPa)	v (m³/kg)	T (°C)	Phase and Quality					
(0	ı)	1.725	100						
(t		0.227							
(0) 15		400						
(0	I)	0.001124	180						
(e	.) 0.75	0.221							
(f)	0.3879	150						
(9) 0.25	0.095							

The Compressibility Factor, Z
 From the Generalized Compressibility Chart, the following observation can be made :

 At very low pressures (P_R << 1), gases behave as an Ideal Gas regardless of Temperature.

2.) At **high** temperatures ($T_R > 2$), Ideal Gas behaviour can be assumed with good accuracy regardless of Pressure except when $P_R >>1$. 3.) The deviation of a gas from Ideal Gas behaviour is **greatest** in the vicinity of the Critical Point.

INTERNAL ENERGY, ENTHALPY AND SPECIFIC HEATS OF SOLIDS AND DOUDS

- A substance whose opecific volume (or density) is constant
 incompressible substance the specific volumes of solids and liquids essentially remain constant during a process.
- The constant-volume and constant-pressure specific heats are identical for incompressible substances:

$$C_V = C_P = C$$
 (kJ/kg.K)

- Specific heat values for several common liquids and solids are given in Table A–3.
- The specific heats of incompressible substances depend on *T* only. Thus, internal energy of the incompressible substances:

$$du = CdT \xrightarrow{\text{integratio } n} \Delta u = C_{ave}(T_2 - T_1) \xrightarrow{\text{Enthalpy??}} ??$$