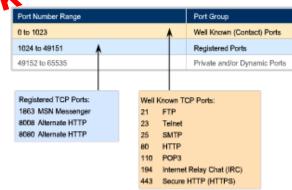
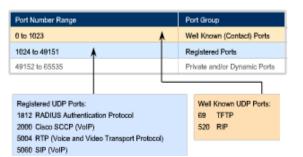
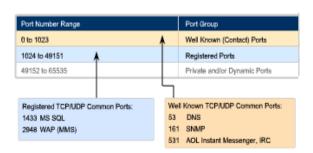

Transport Layer: Separating Multiple Communications

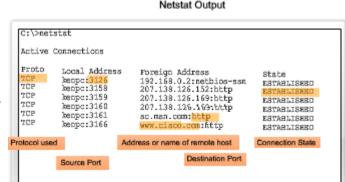

- Consider a computer that is simultaneously receiving a sending e-mail and instant messages, view websites, and conducting a VoIP phone call.
 - -Each of these applications is sending an oreceiving data over the network at the secentime.
 - -However, data from the phone call is not directed to the web browser, and text from an instant message does not appear in an email.
- Users require that an e-mail or web page be completely received for the information to be considered useful.
 - -Slight delays are considered acceptable to ensure that the complete information is received and presented.
- In contrast, occasionally missing small parts of a telephone conversation might be considered acceptable.
 - -This is considered preferable to the delays that would result from asking the network to manage and resend missing segments.
 - -One can either infer the missing audio from the context of the conversation or ask the other person to repeat what they said.



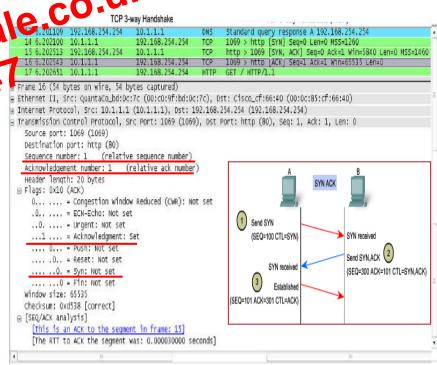

COMPUTER & INTERNETWORKING TECHNOLOGIES

The IANA assigns port numbers

- Well Known Ports (Numbers 0 to 1023) These reserved for services and applications
 - -HTTP (web server) POP3/SVIP (e-mail server) and Telnet.
- Registered Ports (2 Moers 1026 to 49 51) These port numbers are assigned to 2 mocesses or applications.
 - -These processes are primarily individual applications that a user has chosen to install.
 - -When not used for a server resource, these ports may also be used dynamically selected by a client as its source port.
- Dynamic or Private Ports (Numbers 49152 to 65535) Also known as Ephemeral Ports, these are usually assigned dynamically to client applications when initiating a connection.
 - —It is not very common for a client to connect to a service using a Dynamic or Private Port.
- Using both TCP and UDP
 - –Some applications may use both TCP and UDP.
 - •For example, the low overhead of UDP enables DNS to serve many client requests very quickly.
 - •Sometimes, however, sending the requested information may require the reliability of TCP.

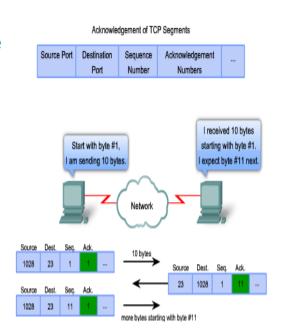


Port Addressing: netstat command Sometimes it is necessary to know to be a command


- Sometimes it is necessary to know which active TCP connections are open and rupning on a networked host.
- Netstat is an important network utility that can be used to verify those connections. Netstat lists:
 - -the protocol in use,
 - -the local address and port number,
 - -the foreign address and port number,
 - -the state of the connection.

COMPUTER & INTERNETWORKING TECHNOLOGIES

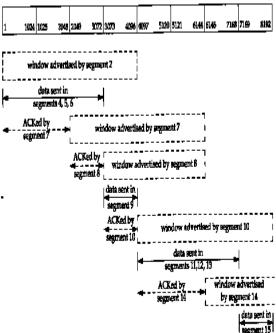
TCP three-Way Handshake - Step 3


- Finally, the TCP client responds with a segment containing an ACK that is the test life 5.02100 101.1.1 15 6.02210 101.1.1 15 6.02213 102.108 response to the TCP SYN sent by the server.
 - -There is no user data in this segment
 - -The with En the acknowledge of the number field contains one more than the initial sequence number received from the server.
- Once both sessions are established between client and server, all additional segments exchanged in this communication will have the ACK flag set.
- Security can be added to the network by:
 - Denying the establishment of TCP sessions
 - Only allowing sessions to be established for specific services
 - Only allowing traffic as a part of already established sessions

Protocol Analyzer shows client response to session in frame 16 The TCP segment in this frame shows: ACK flag set to indicate a valid Acknowledgement number Acknowledgement number response to initial sequence number as relative value of 1 Source port number of 1069 to corresponding Destination port number of 80 (HTTP) indicating the web server service (httpd)

TCP Acknowledgement with Windowing In the example, the host on the left is send to Pata containing 10

- - bytes of data and at Quence gundler equal to 1 in the header.
 - -The on the right receives the segment and determines that the sequence number is 1 and that it has 10 bytes of data.
 - •The host then sends a segment back to the host on the left to acknowledge the receipt of this data.
 - •the host sets the acknowledgement number to 11 to indicate that the next byte of data it expects to receive is byte number 11.
 - –When the sending host on the left receives this acknowledgement, it can now send the next segment starting with byte number 11.


COMPUTER & INTERNETWORKING TECHNOLOGIES

TCP Acknowledgement: Sliding Window

- Looking at this example, if the sending host can to wait for acknowledgement of the receipt potential bytes, the network would have a lot of the read \$ A
 - -To reduce the Verhead of these acknowledgements, multiple segments of a can be sent before and acknowledged with a single TCP message.
 - -This acknowledgement contains an acknowledgement number based on the total number of bytes received.
- For example, starting with a sequence number of 2000, if 10 segments of 1000 bytes each were received, an acknowledgement number of 12001 would be returned to the source.
- The amount of data that a source can transmit before an acknowledgement must be received is called window size.
- [Tony]: What this slide is trying to describe is called: Sliding Window
- See:

http://www.rhyshaden.com/tcp.htm

TCP Acknowledgement with Windowing

```
Length = 1460
```

No 1: SYN

No 5: SEQ = 566

No 6: ACT = 566 (for No. 5)

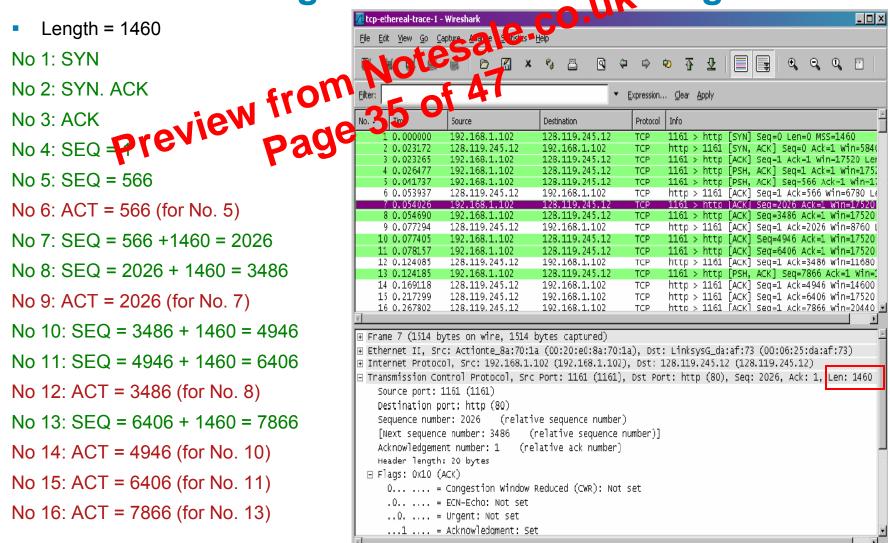
No 7: SEQ = 566 +1460 = 2026

No 8: SEQ = 2026 + 1460 = 3486

No 9: ACT = 2026 (for No. 7)

No 10: SEQ = 3486 + 1460 = 4946

No 11: SEQ = 4946 + 1460 = 6406


No 12: ACT = 3486 (for No. 8)

No 13: SEQ = 6406 + 1460 = 7866

No 14: ACT = 4946 (for No. 10)

No 15: ACT = 6406 (for No. 11)

No 16: ACT = 7866 (for No. 13)

zoo.cs.yale.edu/classes/cs433/assignments/assign2/TCP.pdf