Theorem. If there are strictly positive constants c_1 and c_2 such that

$$c_1 d_1(x, y) \le d_2(x, y) \le c_2 d_1(x, y)$$

for all $x, y \in X$, then d_1 and d_2 are topologically equivalent metrics on X.

Proof.

Let U be open in (X, d_1) .

Then for $a \in X$ there exists $\epsilon > 0$ such that

$$\{x \in X; d_1(x, a) < \epsilon\} \subset U .$$

But then

$$\{x \in X; d_2(x, a) < c_1\epsilon\} \subset \{x \in X; d_1(x, a) < \epsilon\} \subset U$$

and U is open in (X, d_2) .

Similarly, if U is open in (X, d_2) it is open in (X, d_1) , and the metrics are topologically equivalent.

This criterion is sufficient but not necessary.

Let $X = \mathbb{R}$, and consider the metrics

$$d_1(x, y) = |x - y|$$
$$d_2(x, y) = \frac{|x - y|}{1 + |x - y|}$$

Obviously $d_2(x,y) \leq d_1(x,y)$ for all x, y, but since $d_1(x,y) = (1 + |x-y|)d_2(x,y)$ there is no strictly positive constant c such that $d_2(x, y) \ge cd_1(x, y)$.

On the other hand

$$\{d_1(x,a) < \epsilon\} \subset \{d_2(x,a) < \epsilon\}$$

so that if U is open in (\mathbb{R}, d_2) it is open in (\mathbb{R}, d_1) , while if $|x - \epsilon| \in U$ $d_1(x, a) = (1 + |x - \epsilon|) \otimes O$ $\leq (1 + |\delta_2(x, a))$ Let $\epsilon_1 = \epsilon/(1 + \epsilon)$ Then $\{d_1(x, e) \in \epsilon_1\} \subset \{d_1(x, e) \in \epsilon\}$, so that if U is open in (\mathbb{R}, d_1) it is o in (\mathbb{R}, d_1) . so that if U is open in (\mathbb{R}, d_1) it is open in \mathbb{R}, c

For example, in \mathbb{R}^2 ,

$$\max(|x_1 - x_2|, |y_1 - y_2|) \\ \leq |x_1 - x_2| + |y_1 - y_2| \\ \leq 2\max(|x_1 - x_2|, |y_1 - y_2|)$$

so that the taxi-cab and sup metrics are equivalent.

In fact all the metrics generated by the norms $||x||_p$ are topologically equivalent on \mathbb{R}^n for finite n.