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Definition  
 

If y= f (x) then the derivative is defined to be 
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Notation 
 

If y= f (x) then all of the following are equivalent notations 
for the derivative. 
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Interpretation of the Derivative 
If y= f (x) then, 
1.)  '( )m f a  is the slope of the tangent line to y= f (x) at x=a and the equation of the tangent line at x=a is 

given by ( ) ( )y f a m x a   .  This formula can also be written as 1 1( )y y m x x   where 1'( )m f x  

2.)  '( )f a is the instantaneous rate of change of ( ) at .f x x a   This is sometimes referred to as 

the slope of the curve  at .f x a   Average rate of change can be found using the formula for the 
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Differentiability 
A function is not differentiable at a point x=a (meaning the derivative does not exist at x=a) if the function  
1.) is not continuous at x=a (vertical asymptotes, POD’s, etc.)  2.) has a sharp point at x=a (change in slope 
(+/-) with no horizontal tangent) 3.) has a vertical tangent has a vertical tangent at x=a (slope of the tangent 
is undefined).  If a function is differentiable then the function is also continuous at x=a.  If the function is 
continuous, it may be differentiable but that is not certain. 
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