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2.3.2 Effusion

Suppose now that we open a small hole of dimension d < A, (the typical distance
travelled by a given particle, as we will see later) in the side of the container. Then, flux
of particles escaping through the hole or effusing is simply given by

o) = [ da)

2r w/2 0o
:n/ qu/ do sinecose/ dvv3 f (v)
0 0 0

1
= Zn (v)

Using the fact that p = nkpT and assuming that the distribution is Maxwellian, we can
arrive at the expression

p

= o (2.10)
Once again, the distribution of effusing particles has the properties outlined in Section
(2.3); faster particles, and those that make small angles with the normal, are more likely
to effuse. We have derived this expression assuming that all incident angles are possible.
Suppose instead that we wanted to find the flux of particles that effuse into a particular
solid angle. Then, instead of integrating 6 over the interval [0, 7/2], we would integrate up
to the corresponding solid angle.

distribution without modifying the distribution 1tse1f Fo ¢ can find the vapour
pressure of a gas inside a container by mem change of mass inside that

container. Suppose that the partlcl hole 6 A. Then the rate of
change of mass is _‘ O

prev! pa@

A closed vessel is partially filled with liquid mercury; there is a hole of area A = 107m?
above the liquid level. The vessel is placed in a region of high vacuum at T = 273 K and
after 30 days is found to be lighter by AM = 2.4 x 10° kg. Estimate the vapour pressure
of mercury at 273 K. (The relative molecular mass of mercury is 200.59)

Effusion can be used experimentally as a way of measuring gn p@e \Qs of the

We have already derived the appropriate expression, it is just a matter of putting the
information together.

AM
;N 926 10712 kgs*

Relative Atomic Mass
Na
~ 3.3 x107% kg
— p~0.0247 Nm 2

This is the approximate vapour pressure of mercury, assuming that the system is at equi-
librium.
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Conditions for Equilibrium

Suppose that we have two containers joined by a hole of radius a. What are the conditions
for now flow between the containers? This will actually depend on the size of the hole.

® a > M\, pp - In this case, we require that the pressures balance, namely

e

® a < A\pp - This is the effusive case. Evidently, we require that the effusive flux is
the same in both directions, namely

T =na/ 13 (2.12)

Remember that in both cases, total number density n = n; 4+ ng must be conserved.

Some results of Effusion

Suppose that we have a container with a small hole of area A. We can use the expression
for particle flux, under the effusion condition, to find the rate of change of some quantities
inside the container.

e Number Density - The rate of particles escaping from the container is ev1der&ly(
dN

—=—-0A= —fA
dt \ C
Dividing through by the volume in the ﬁ@{@%@a‘c the differential equation

for the number density is give 06
\N "( Om A&AQ;)L l (2.13)

Qf e temperature o aeg remains constant, this can simply be solved to find
) and consequently p(¢

o Energy - We need to calculate the energy flux J

1
dJ = d®(v) - imUQ
1

J = gnm <v3>

This means that we can write the rate of change of the internal energy as

dU
— =-JA 2.14
o (2.14)

Recalling (2.9), we find that U = U(n,T’). Assuming that neither n or 7' remain
constant (such as for an isolated container), we can obtain a set of coupled equations
for these variables from the above equation, which we can then solve for their time
evolution.
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We require that c; = 0 for the solution to be properly bounded. Let ¢; =

T(0,w).
iw = —ak?
o
«

k= (—1+i)\/g: 51(—1“)

Thus, the final solution is of the form

= Z T(0,w) e~/ gilwt=2/00) (2.28)

0., is known a the skin depth, and is a measure of the attenuation of the propa-
gating wave. Calculating the F'T of the initial condition:

T(0,w) =T, +/_ dt et ZT cos(nt)
=To+ 5 ZT / dt e ™" (" + e
=To+ ZT / dt el 4 milwrtn)t \)\(
=Tyt 5 YT w—%ﬁ\@w
Substituting this resuldﬁ\mcwg we MX_@6
e\N @Tﬂ 0 " COS <nt — >
P ' e\l \ é : o

e The interor ofe material is subject to a space-dependant sinusoidal tempera-
ture variation given by

T(x,0) =T+ ZTn cos(nz)

Suppose that the solution is of the form
t) = T(kt)e*
k

Taking the FT of both sides of the heat equation:

o g OT ee 0 0*T
—ikz Y- —tkx Y+
/_Oodke 5 /_Oodke 92

8 —ikx _

E%/ dk e T = a(ik)*T
oT ~
—— = —ak’T
at ~ ¢

T(k,t) = T(x,0)e "

50



Toby Adkins Al

This means that we obtain the Kinetic Fquation

F
%—t +v-VF = CI|F) (2.31)

where v is the velocity of the particles, and C[F] is known as the collision operator. We
know that C[F] needs to satisfy the following properties:

e The local Maxwellian must be a fixed point
C[Fym] =0
That is, the collision will not change the local Maxwellian
e Relaxation to the local Maxwellian must happen on a time-scale « 7,

o Conservation laws must be satisfied.

The simplest model that satisfies this is:

ClF|=-——M = __6F (2.32)

This is known as Krook’s Collision Operator.

2.6.2 Conservation Laws

Now that we have an equation for the evolution of the local distributions, we can it to
derive some local conservation equations for the gas. We assume that m nmean
velocity of

flow u = u,Z, and define w as the peculiar velocity (the diffeg r\
the particle and the mean flow). te é,
e Number Density NO IX’OG
prev! a@@ g o)
= 8z/d v, F+ /d%C’[F]

TV
no mean velocity collisions do not
in z direction change particle no.

This means we obtain the expected result of

on
— =0 — n =const
ot

e Momentum Density

0

8t(mnum En /d3v mugF

8F
3
/dvmv < v Z—I—C[ ]>

0
= v mugv, F+ | dv mu,C[F|
0z
=toll ., momentum
by definition is conserved

Again, we obtain the expected result of

8Hzx

0z =0

—(mnuy) +

ot
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3. Statistical Mechanics

This chapter aims to cover the basics of Statistical Mechanics, including;:
e Basic Principles
e The Canonical Ensemble

The Ideal Gas

e The Grand Canonical Ensemble

Quantum Gases
e The Photon Gas

Arguably, Statistical Mechanics is one of the most powerful pieces of physics that on%ns
as an undergraduate. Evidently, Quantum Mechanics will always give the

but it will become increasingly difficult - and almost impossible Q‘" the required
problem. Statistical Mechanics provides an elegant SO, t Xze allowing one to treat

a large variety of relatively complex syste @ tho t actually being given
to the small details of the problem ertainl

) v @ his course immensely,
and hopes that this is reflec 1@1 otes ’S,

preV'* oa0e i
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Taking the first and second derivatives:

of _N
ox T

?f N
022~ 22

This means that the maximum of the integrand will occur at x = N. We can thus Taylor
expand the integrand as

o
N!:/ dz /@)
0
oo
:eNlogN—N/ da e~ an (@—N)*+...
0

o eNlogN—N /27TN

where we have used the fact that we can extend the integral range to [—oo, 0] as the
contribution from the negative part of the integral becomes vanishingly small for large N
(width scales as v/N). Tt follows that

1
log N! leogN—N+§log(27rN)

If N is sufficiently large, we can ignore the last term, as it scales as log IV rather w as
N. We thus arrive the result quoted above.
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As entropy is additive, the entropy of the total system is the sum of the entropy of the
individual systems; that is:
s-Ys
i

Note that S; can only depend on the internal energy of the sub-system, as the total energy
of the total system is conserved. This means that S; = S;(U;, V;), where U; is the internal
energy of the system (the difference between the total and kinetic energy).

We thus want to maximise the total entropy with respect to the following conservation

laws:
0 (Z g — 5) =0

b- (Zmﬂ"ixui—L) =0

a<2w—v):o

We are not going to try and assign any significance to the Langrange mu]@he Kl»
they are completely arbitrary, with § = kpf being the notable t1 n

Equilibria § tes
Maximising the expression fi mmd quiring t, a’ bmdlwdual constraints
i hips b 1e

are zero allows ug to V\%l t s in each of our subsystems.

. %num
prev™inage P

8&' 8Ui TZ TZ T

This means that the condition for the subsystems to be in thermal equilibrium is if
their temperatures are the same, as anticipated by the Zeroth Law of Thermodynam-
ics

e Mechanical Equilibrium:
0S;  pi o
= — — L=
o, 1, PTS
This means that the condition for the subsystems to be in mechanical equilibrium is

if the pressures within them are the same, meaning that the pressures are balanced
at the boundaries

e Dynamical Equilibrium:
oS oS 6U I 1
8u 8U Ou, =T

This means that we can write u; = u + X r;, where u represents constant transla-
tional motion, while Q x r; represents rigid rotation.

— mou; = —m;(a+b x 1)

This means that in equilibrium, we cannot have an gradients of temperature, pressure, or
velocity inside the total system, as we could have anticipated.
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The quantity we are most often interested in with the spin—% paramagnet is its heat capacity
Cy. Using (3.9):

Op
U=—-NupB tanh(,@,uBB) = _*Nk’B@B tanh ( 5T )
where we have defined ©p = 2‘]2123, which is the excitation temperature for the paramag-

netic effects. From the definition of heat capacity, we find that
U 0p\> o8/T
Cp=|—==| =Nk B —
7 <0T> 7 ( T > (e®8/T +1)°
Let us look at some limits of this expression.

e High Temperature Limit (7' > Op):

1
OB/T 1 — €B X
e High Temperature Limit (T' < ©p):
8/ > 1 — cB X ﬁe_Q/T
As Cp tends to zero in both limits, this means that there must be some maxim tem-
perature for which the magnetic heat capacity of the system is maxnm@ rhs out
to be around « 5.6 K.

For the magnetisation, we need our exprest@xgaﬁholtzeee energy as
-‘( @CQ TS~ Ib&
Wh?r@m é% \%\Ngnetzc @@ ’@"neans that the magnetisation can be easily

Npp upB
M =—=| == tanh
v (63) v ( kgT
This once again behaves sensibly; we re-obtain Curie’s Law in the high temperature limit,
and find that the magnetisation is constant in the low temperature limit.

The Harmonic Oscillator

We know from Quantum Mechanics that the energy levels of a 1-D harmonic oscillator are

1

This means that the partition function is given by

OO oo
=Y P = 37 e (nha)Bhe — 3B N b
o n=0 n=0

We can sum the last term as an infinite geometric series to obtain

efém"”
1 — e Bhw

Z1(B) = (3.14)
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3.4 The Ideal Gas

We will first treat the Ideal Gas using the Canonical Ensemble. If we treat the ideal gas
classically, it’s energy levels are given by
h2k?
€= ——
F 2m
Theoretically, we could just plug this expression into (3.7) and obtain the partition function.
However, the problem that we encounter is that sums of this type are very difficult to
calculate; it is much easier to calculate an equivalent integral. Suppose that our system
is a box with side lengths L, Ly, L,. Then, we are restricted to the wavenumbers that

satisfy
2w . 2w . 2w,
k= fwlxv fyzy, lez

for integers iy, iy,4, in order to fulfil appropriate (periodic) boundary conditions at the
extremities of the box. This means that Ak, . = (27)/(Ly,y,.) represents the mesh-size
(spacing between discrete grid points) in phase-space. Then, we can approximate the
desired sum by an integral:

A Ze*ﬂsk = ZM 2£ 2l 2£ e Per 4 /d3k66h2k2/2m

2n) L, L, L 2m)3
\% Aky Ak, Aks
@3 v CO .

Assuming that the system is isotropic, we can tranf@ﬁ@a\ coordlnates

Gy “@

tg \Q}g s the denszty of states, which tells us the num-
?ﬂf tates a per pproprlate substitution) per . From the calculation
above, it is clear that the d 81ty of states depends on the dimensionality of the space; this

means that the behaviour of the 3-D Ideal Gas (as described in the following sections) will
be altered if we assume different dimensions for the space.

Evaluating this integral, we obtain the single particle partition function

2
Zi =2 for g = fiy 2T

3.25
/\?h kaT ( )

It is clear that Ay, has dimensions of length in order to allow Z; to remain dimensionless.
This means that this expression must hold in the relativistic case, except with a different
definition of Ay, (it is left as an exercise to the reader to find out exactly the definition is
modified).

3.4.1 Distinguishability

If we were to assume that the particles were distinguishable, we could use (3.12) to cal-
culate the partition function for the entire system. However, if we were to calculate the
entropy, we would find that it is not additive, even though it has to be additive by defini-
tion. This is a result of the fact that we have determinate momenta for the particles, but
indeterminate position; this essentially means that every particle is everywhere, and so we
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Classical Limit

The Correspondence Principle tells us that any results we derive in a quantum mechanical
system must hold in the classical limit. We now ask the question what is the classical limnit
for quantum gases? In general, the classical limit will occur where the gas is hot (T" — o)
and dilute (n — 0). In this limit, e =* > 1. Then:

9 [ e
_ dr d —x B — Bu
F6:#) \/77/0 e ALl f = VEe ‘

Using the definition of f(f, 1), this means that the condition for the classical limit of a
quantum gas is

2« (3.42)
nQ

again for appropriate definitions of ng. This is in fact the same condition that we found
in Section (3.4.1). This result can be used to show that the mean occupation numbers 7;
for Fermi-Dirac and Bose-Einstein statistics reduce to a Maxwellian concentration in the
classical limit.

Degeneration

In this context, degeneration occurs when the number of quantum states available to a
single particle becomes comparable to the number of particles in the system. Physically,
we can interpret our quantum concentration ng as 'concentration’ of quantum st the
system, coming from the density of states. This means that we ‘0 1d @ }ieratlon

appear when n is on the order of ng, namely that Sa
By writing nQ exp nc&x Qrms o sp,}e' can show that air at STP is
safely non— x nQ A 1 electrons in metals are very much degen-
era unde dltlons This means that we cannot describe the
prop rtles of electrons 1n 1 classical models; we require Fermi-Dirac statistics in

the degenerate limit. The followmg two sections will examine how Fermi and Bose gases
behave when they become degenerate.

3.5.4 Degenerate Fermi Gas

Consider a Fermi gas for which 7' — 0 so 8 — 0. Then, considering carefully the behaviour
of the exponential factor, the mean occupation numbers will behave according to

_ 1 1 for e < u(T'=0)
ni=-———"=
efle=m) 41 0 for e > pu(T =0)

This is shown in Figure (3.2). The consequence of this is that when Fermi gases become
degenerate, the electrons will begin to 'stack up’ and occupy all the available single-particle
states from the lowest-energy one to maximum energy equal to the value of the chemical
potential at T'= 0

ep =T =0)

This quantity er is known as the Fermi energy, and tells us what the maximum energy
per particle is at T'= 0. Let us find an expression for the Fermi energy, remembering that
in this state the occupation number has become a step-function.
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3.6 The Photon Gas

Thermal radiation can be modelled as a gas of photons with energy per particle iw, with
chemical potential p = 0, and which has an energy density profile that is only dependent
on temperature (black body radiation). It follows that for a gas of N particles that the
energy density is given by

u=u(T) = nhw

From Kinetic Theory, we know that the particle flux is ® = ne/4, meaning that the energy
flux is given by P = uc/4. Lastly, by analogy to (2.8), we can write the pressure of the
photon as as p = u/3. With this set-up, let us derive some further properties of the gas
from both Thermodynamics, and the theory of Quantum Gases.

3.6.1 Thermodynamically
Starting from (3.17), it quickly follows that for a gas with the above properties

u oU oS U

However, we know that

(), -srene-eov(3), - K

as u cannot depend on the size of the system by the deﬁnga ag‘y density. Recalling

’((?)ﬂg@ Voﬁ”lOG

1 du u du
_-pft_ Ay = T2
YERtar T3 T M T ar

We ?9( @\m%ﬁer

that we can solve to obtain u oc 74. This means that incident power per unit area is given

by

1
P = uc= oT? (3.53)

for some constant of proportionality o that is known as the Stefan-Boltzmann constant.
However, to find the actual value of the constant, we have to treat the photon gas using
the theory of Section (3.5).

3.6.2 As a Quantum Gas

Photons are bosons, where their spin can take the values s = £1. We want to calculate
the number density of photons with frequencies in the range [w,w + dw]. The density of
states for such a system is given by

Vk?

V 2
g(k) dk = 2 oy A7k dh = - dk

polarisation states
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4.1 Real Gases

For most of the Thermodynamics that we have been doing with gases, we have merely
dealt with the Ideal Gas, as this is the simplest way to model gases. However, evidently
most gases are non-ideal, and so it would be useful to develop other ways of describing the
behaviour of gases, as we will do so in the following sections. Before we do so, let us derive
a useful result for the energy of a gas. Consider U = U(T,V):

ou ou
dU = <6T>VdT+ (av)TdV

From (3.17), assuming a closed system (dN = 0):
Ip
—7(Z£) —
<8T>V g

(30), ().

where we have made us of (1.31). Putting these together, this gives

or

dU = Cy dT + [T <8p>v—p} av (4.1)

This can be used to show, for example, that U is only a function of temperature for certain
gases (the second term is zero for an ideal gas, and certain other equations of stgt
is also a relation that one is commonly asked to derive, so it is well wor é)haﬁ the

memory bank. C
e

Let us also recap some important notation. vﬁ N 4 to refer to the number
@ Ak

of moles of a substance. Recall the gag ¢qns B s@eans that we can write
the simple relation m l
“0 42)

M\@vert 5 Statistical Mechanics and Kinetic Theory
exp1{ssi

s (involving kp modynamlc expressions (involving R), though they
are of course equivalent.

4.1.1 Virial Expansion

The equations describing real gases include some corrections for the fact that intermolecular
forces, that we have neglected with the Ideal Gas, exist. This often means that they will
reduce to the case of the Ideal Gas in some limit, and so we can write them as a wvirial
ezpansion in their density:

pV npB  n,C
o RT % V2 + ... (4.3)

where B and C are the (possibly) temperature dependent coefficients, and n,, is the num-
ber of moles of the gas.

The Boyle temperature is defined as the temperature that satisfies B(T) = 0; that is, the

temperature that means that the gas behaves like an ideal gas to first order in n,,. It is
so called because it will thus obey Boyle’s empirical law.
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4.1.2 Van-der-Waals Gas

This is the one of the most common real gas approximations. The equation of state can be
derived through a Statistical Mechanics approach by making a mean-field approximation,
but it is much easier to quote the equation and explain the origin of the various terms.
The Van-der- Waals equation of state is as follows:

2
<p + a‘%) (V = brim) = nmRT (4.4)

where a and b are coefficients that depend on the nature of the gas being examined. This
has been written in molar form as this allows easier comparison with (4.3), but it can also
be written in terms of particle number N. There are some key features to note:

e The number of nearest neighbours to a particular particle is proportional to n,,/V
, and so attractive intermolecular interactions lower the total potential energy by
an amount proportional the number of atoms multiplied by the number of nearest
neighbours. This means that we can write the potential change as (any,,)/V which
gives rise to an energy change —(an2,dV)/V2. This can be thought of as an effective
pressure causing the energy change, giving rise to the extra term shown

e The term bn,, comes from considering the particles to have a finite size (instead of
point particles), meaning that we must exclude this volume in the equation of state

It is evident that this equation reduces to the Ideal Gas equation in the 1 dﬂ
nm/V < 1. Tt is also under this limit that we can write this equ\e aga, Pexpanswn

pvV 1_% -1 _anp bnm
nmRT V ﬁ‘(
This means that_the W t ure fogg .ﬁv gas is T, = a/(bR).
4. 1@ @%ﬁguﬂ Gas P ge

An alternative equation of state is that of the Dieterici gas, which is as follows:

p(V — bny,) = npm RT exp (—%) (4.5)

Once again, the bn,, comes from the requirement of excluding the finite volume of the
particles from the calculation, and the exponential term regulates the strength of the
inter-particle interaction. This description of real gases can prove more accurate than that
of the Van der Waals model, but not by a significant margin. Once again, this can also be

written as a virial expansion in the low density limit:
pV 6_(anm)/(RTV) 2

W RT 1= (bu) [V “1+<b_$)v+(bz+£m_$> (7)2+

This means that the Boyle temperature for a Dieterici gas is actually the same as that of
the Van der Waals gas.

4.1.4 Critical Points

In Thermodynamics, phases are regions of a system throughout which all physical properties
of a material are essentially uniform; this is often used to refer to different states of a
particular substance that exist within the one system, such as a ’liquid phase’ and ’gas
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The Joule Expansion

We have already met this expansion in Section (1.4.5). To recap,this involves two chambers
with adiathermal walls, so no heat is exchanged with the surroundings - the gas is allowed
to expand freely when the piston is drawn back, so no work is done. The change in
internal energy is therefore zero. We are thus interested in whether this results in a change
in temperature, and so we define the Joule coefficient vy as

- (), (8,69, b ),

Making use of (1.31), this becomes

@)

We can find the change in temperature by the simple integration of this coefficient over
the change in volume. As we have seen, py = 0 for an Ideal Gas, meaning that we
observe no change in temperature. However, for a Van der Waals gas, we find that puj; =
—(an2,)/(CyV?), meaning that there is in fact cooling of the gas upon expansion. This
we would expect, as for real gases the potential energy is raised by forcing the molecules
apart against intermolecular forces upon expansion, which lowers the kinetic energy, and

thus temperature. \(
cO- )

The Joule-Kelvin Expansion
The Joule-Kelvin expansion involves the steady ﬂm akugh a porous plug that
imposes the condition of quasi-stasis. The een t hambers as well as

the rate of flow, are kept congta Q &s The ch 1n have adiathermal
walls, and so there 1s %£ e W1t¥6m21r@l in

D1 4 % Vs P2

(high) (low)

porous
plug

Figure 4.2: A schematic of the Joule-Kelvin Expansion

Suppose that after some time, the gas occupies a volume V) in the higher pressure chamber,
and a volume V5 in the lower pressure. This means that we can write the energy change
as

Uo-Ui= pW - p2Ve — U1 +p1Vi=Us+p2la
\'\f'/ \'\/ ~~ "~
work done by p1 work against pa Hy Ho
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It is clear that the the enthalpy H is conserved in the process. This means that we are
interested in temperature changes at constant H. We thus define (you guessed it), the

Joule-Kelvin coefficient
_(ory __(ory (on
= \op )y~ " \or ) \ap ),

Recalling that dH = T'dS + Vdp, we have that

8H> (85) <8H) (85)
— | =T (=) = and — =T —=— +V
(8T v orj, b op )p op )

Putting this together, we can write the Joule-Kelvin coefficient as

ov
T<8T>p—v

We can thus find the change in temperature by integrating ujx over the change in pressure.
This is evidently again zero for the ideal gas. However, for real gases, ujx can either be
positive (cooling) or negative (heating), meaning that we have a cross-over inversion curve
that is defined by the equation pjx = 0, or rather

or), T
8 CO \)
Using the reciprocity relation (1.22), this can be written 5‘08_\1@ tonvenient form

_‘YTS@'V\JF )ﬂ\io ’L06 (4.10)

\d a \ O fag

From_thi ,@'&@)\&!ﬁne the muRy » 322'071 temperature below which the Joule-
Kel@&o s results ir%de

1

- 4.
HIK Cp (9)
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4.2 Phase Transitions and Equilibria

We are now going to look at the details of phase transitions; that is, the Thermodynamic
processes where-by a substance changes from one phase to another. A very typical example
is that of the boiling of water; the phase transition is quite rapid, as it is only when the
boiling point is reached that the liquid phase becomes thermodynamically unstable, and
the gas phase thermodynamically stable.

4.2.1 Latent Heat

Usually to change from one phase, at entropy Si, to another phase at entropy Sz, we
require some additional heat supply. This is known as the latent heat (of evaporation,
melting, etc.) given by

|L=AQrey =T(S2— 1) (4.11)

where T is used to refer to the temperature at which the phase transition occurs; the
change in entropy occurs instantaneously at this temperature. As we are interested in
changes at constant temperature, we will be making use of the Gibbs Free Energy.

Ehrenfest’s method of classifying phase transitions is that the order of a phase transition
is the order of the derivative of G or p that is discontinuous. First-order phase transitions
have discontinuous entropy and volume, and so they exhibit a latent heat. Second-order
phase transitions have no latent heat but may have discontinuous heat capacities gr gom-
pressibility (2" derivatives of G). When no latent heat is exhibited (contiggou pr),
we have a continuous phase change. In Van der Waals gas, we é recontinuous
or discontinuous phase changes depending on Whether \ tty across’ the phase

boundary or around the critical pomt as o tl 6

4.2.2 The Clausms C uat1 n
Recall from ( m@ = puN. This @A’ we obtain the two differential forms for
“pre g

d? a‘ SdT' and dG = udN + Ndu

Assuming that total particle number is conserved, we find that the differential form of p
can be written as

S v
du = _NdT + Ndp = —sdT + vdp

where s and v are the entropy per particle and volume per particle respectively. From
Section (3.3.1), we know that p; = ug for the phases to coexist in equilibrium, and so we
know that along the p-T boundary for the two phases

dpy = dps
—s1t+v b = —S2+v dp
1 T 2+ V2o
dp 51— s2
dT v] — v9
Substituting in our expression for latent heat, we obtain the Clausius-Clapeyron equation
dp L

T =TV (4.12)

Depending on the type of transition, we can use this to derive different p-T' curves for the
phase boundaries.
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Solid-Liquid Boundary
The Clausius-Clapeyron equation can be simply re-arranged to give

LdTr
TAV

where AV = V5 — Vi. Assuming that both AV and L are temperature independent, then
this equation can be integrated to yield

p= po+AiV (T) (4.13)

dp =

The constants pg and Ty are chosen such that p = py and T' = Tj on the boundary. The
volume change AV on melting is relatively small, so that the gradient of the phase bound-
ary in the p-T plane is very steep.
When lead is melted at atmospheric pressure the melting point is 327.0°C, the density de-
creases from 11.01 x 10% to 10.65 x 10° kgm? and the latent heat is 24.5 kJkg~' . Estimate
the melting point of lead at a pressure of 100 atm.
We can use the above equation to write that
L T ApAV
Ap=—1 s Ty=Tie T \(
P =Ry 0g < T1> 2 1e u

We are already given that Ap = 99 atm. Suppose that QJ of lead. Then

the change in the specific volume (volume Iﬁ @ }?)6
@7’}‘9

= Vliquid -ﬁ?le ot
W iqui
Mk@spemﬁc g Qantlty, we can then simply plug everything
mto r 8xpTession for T ]éf\g 7.75°C, which is a very small change in temperature.

Liquid-Gas Boundary

Let us initially treat this boundary assuming that Vgas = V > Vijguiq, the resultant

gas is ideal, and L is temperature independent. The former of these assumptions is not

particularly assumptive, as most incompressible fluids undergo a large expansion when

moving to their gaseous phase. Then, according to the Clausius-Clapeyron equation:
dp L pL

ar ~ TV " n,RT?

where we have used the ideal gas equation in the second equality. This equation can be
integrated to give

L
P = poexp (—nmRT> (4.14)

As R = Nakp, the exponential factor is roughly Boltzmann. This equation can be used to
solve that annoyingly typical example about boiling a cup of tea on the top of a mountain;
it is evident that the British simply cannot get away from their tea.
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