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2.3.2 E�usion

Suppose now that we open a small hole of dimension d � λmfp (the typical distance

travelled by a given particle, as we will see later) in the side of the container. Then, �ux

of particles escaping through the hole or e�using is simply given by

Φ(v) =

∫
dΦ(v)

= n

∫ 2π

0
dφ

∫ π/2

0
dθ sin θ cos θ

∫ ∞
0

dv v3f(v)

=
1

4
n 〈v〉

Using the fact that p = nkBT and assuming that the distribution is Maxwellian, we can

arrive at the expression

Φ =
p√

2πmkBT
(2.10)

Once again, the distribution of e�using particles has the properties outlined in Section

(2.3); faster particles, and those that make small angles with the normal, are more likely

to e�use. We have derived this expression assuming that all incident angles are possible.
Suppose instead that we wanted to �nd the �ux of particles that e�use into a particular

solid angle. Then, instead of integrating θ over the interval [0, π/2], we would integrate up

to the corresponding solid angle.

E�usion can be used experimentally as a way of measuring internal properties of the

distribution without modifying the distribution itself. For example, we can �nd the vapour

pressure of a gas inside a container by measuring the rate of change of mass inside that

container. Suppose that the particles e�use through a hole of area A. Then the rate of

change of mass is

dM

dt
= m ΦA

= p A

√
m

2kBπT

p =

√
2kBπT

m

1

A

dM

dt

A closed vessel is partially �lled with liquid mercury; there is a hole of area A = 107m2

above the liquid level. The vessel is placed in a region of high vacuum at T = 273 K and
after 30 days is found to be lighter by ∆M = 2.4 × 105 kg. Estimate the vapour pressure
of mercury at 273K. (The relative molecular mass of mercury is 200.59)

We have already derived the appropriate expression, it is just a matter of putting the

information together.

∆M

∆t
≈ 9.26× 10−12 kgs−1

m =
Relative Atomic Mass

Na

≈ 3.3× 10−25 kg

→ p ≈ 0.0247 Nm−2

This is the approximate vapour pressure of mercury, assuming that the system is at equi-

librium.
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Conditions for Equilibrium

Suppose that we have two containers joined by a hole of radius a. What are the conditions

for now �ow between the containers? This will actually depend on the size of the hole.

• a� λmfp - In this case, we require that the pressures balance, namely

n1T1 = n2T2 (2.11)

• a � λmfp - This is the e�usive case. Evidently, we require that the e�usive �ux is

the same in both directions, namely

n1

√
T1 = n2

√
T2 (2.12)

Remember that in both cases, total number density n = n1 + n2 must be conserved.

Some results of E�usion

Suppose that we have a container with a small hole of area A. We can use the expression

for particle �ux, under the e�usion condition, to �nd the rate of change of some quantities

inside the container.

• Number Density - The rate of particles escaping from the container is evidently

dN

dt
= −ΦA = −1

4
A 〈v〉n

Dividing through by the volume in the container, we �nd that the di�erential equation

for the number density is given by

dn

dt
= −1

4

A

V
〈v〉n (2.13)

If the temperature of the vessel remains constant, this can simply be solved to �nd

n(t) and consequently p(t).

• Energy - We need to calculate the energy �ux J

dJ = dΦ(v) · 1

2
mv2

J =
1

8
nm

〈
v3
〉

This means that we can write the rate of change of the internal energy as

dU

dt
= −JA (2.14)

Recalling (2.9), we �nd that U = U(n, T ). Assuming that neither n or T remain

constant (such as for an isolated container), we can obtain a set of coupled equations

for these variables from the above equation, which we can then solve for their time

evolution.

40

Preview from Notesale.co.uk

Page 41 of 106



Toby Adkins A1

We require that c2 = 0 for the solution to be properly bounded. Let c1 =
T̃ (0, ω).

iω = −αk2

k2 = − iω
α

k = (−1 + i)

√
ω

2α
=

1

δω
(−1 + i)

Thus, the �nal solution is of the form

T (x, t) =
∑
w

T̃ (0, ω) e−x/δωei(ωt−x/δω) (2.28)

δω is known a the skin depth, and is a measure of the attenuation of the propa-

gating wave. Calculating the FT of the initial condition:

T̃ (0, ω) = To +

∫ ∞
−∞

dt e−iωt
∑
n

Tn cos(nt)

= To +
1

2

∑
n

Tn

∫ ∞
−∞

dt e−iωt
(
eint + e−int

)
= To +

1

2

∑
n

Tn

∫ ∞
−∞

dt e−i(w−n)t + e−i(w+n)t

= To +
1

2

∑
n

Tn · (δ(ω − n) + δ(ω + n))

Substituting this result back into (2.28), we �nd that

T (x, t) = To +
∑
n

Tne
−x/δn cos

(
nt− x

δn

)
• The interor of the material is subject to a space-dependant sinusoidal tempera-
ture variation given by

T (x, 0) = T0 +
∑
n

Tn cos(nx)

Suppose that the solution is of the form

T (x, t) =
∑
k

T̃ (k, t)eikx

Taking the FT of both sides of the heat equation:∫ ∞
−∞

dk e−ikx
∂T

∂t
=

∫ ∞
−∞

dk e−ikx
∂2T

∂x2

∂

∂t

∫ ∞
−∞

dk e−ikx T = α(ik)2T̃

∂T̃

∂t
= −αk2T̃

T̃ (k, t) = T̃ (x, 0)e−αk
2t
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This means that we obtain the Kinetic Equation

∂F

∂t
+ v · ∇F = C[F ] (2.31)

where v is the velocity of the particles, and C[F ] is known as the collision operator. We

know that C[F ] needs to satisfy the following properties:

• The local Maxwellian must be a �xed point

C[FM ] = 0

That is, the collision will not change the local Maxwellian

• Relaxation to the local Maxwellian must happen on a time-scale v τc

• Conservation laws must be satis�ed.

The simplest model that satis�es this is:

C[F ] = −F − FM
τc

= − 1

τc
δF (2.32)

This is known as Krook's Collision Operator.

2.6.2 Conservation Laws

Now that we have an equation for the evolution of the local distributions, we can use it to

derive some local conservation equations for the gas. We assume that there is some mean

�ow u = uxx̂, and de�ne w as the peculiar velocity (the di�erence between the velocity of

the particle and the mean �ow).

• Number Density

∂n

∂t
=

∂

∂t

∫
d3v F

=

∫
d3v

(
−vz

∂F

∂z
+ C[F ]

)
= − ∂

∂z

∫
d3v vzF︸ ︷︷ ︸

no mean velocity
in z direction

+

∫
d3v C[F ]︸ ︷︷ ︸

collisions do not
change particle no.

This means we obtain the expected result of

∂n

∂t
= 0 −→ n = const

• Momentum Density

∂

∂t
(mnux) =

∂

∂t

∫
d3v mvxF

=

∫
d3v mvx

(
−vz

∂F

∂z
+ C[F ]

)
= − ∂

∂z

∫
d3v mvxvzF︸ ︷︷ ︸

= toΠzx
by de�nition

+

∫
d3v mvxC[F ]︸ ︷︷ ︸
momentum
is conserved

Again, we obtain the expected result of

∂

∂t
(mnux) +

∂Πzx

∂z
= 0
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3. Statistical Mechanics

This chapter aims to cover the basics of Statistical Mechanics, including:

• Basic Principles

• The Canonical Ensemble

• The Ideal Gas

• The Grand Canonical Ensemble

• Quantum Gases

• The Photon Gas

Arguably, Statistical Mechanics is one of the most powerful pieces of physics that one learns

as an undergraduate. Evidently, Quantum Mechanics will always give the correct answer,

but it will become increasingly di�cult - and almost impossible - to compute the required

problem. Statistical Mechanics provides an elegant solution to this, allowing one to treat

a large variety of relatively complex systems without much thought actually being given

to the small details of the problem. This author certainly enjoyed this course immensely,

and hopes that this is re�ected in these notes.
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Taking the �rst and second derivatives:

∂f

∂x
=
N

x
− 1

∂2f

∂x2
= −N

x2

This means that the maximum of the integrand will occur at x = N . We can thus Taylor

expand the integrand as

N ! =

∫ ∞
0

dx ef(x)

= eN logN−N
∫ ∞

0
dx e−

1
2N

(x−N)2+...

v eN logN−N√2πN

where we have used the fact that we can extend the integral range to [−∞,∞] as the

contribution from the negative part of the integral becomes vanishingly small for large N
(width scales as

√
N). It follows that

logN ! v N logN −N +
1

2
log(2πN)

If N is su�ciently large, we can ignore the last term, as it scales as logN rather than as

N . We thus arrive the result quoted above.
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As entropy is additive, the entropy of the total system is the sum of the entropy of the

individual systems; that is:

S =
∑
i

Si

Note that Si can only depend on the internal energy of the sub-system, as the total energy

of the total system is conserved. This means that Si = Si(Ui, Vi), where Ui is the internal
energy of the system (the di�erence between the total and kinetic energy).

We thus want to maximise the total entropy with respect to the following conservation

laws:

δ

(∑
i

εi − ε

)
= 0

a ·

(∑
i

miui − p

)
= 0

b ·

(∑
i

miri × ui − L

)
= 0

σ

(∑
i

Vi − V

)
= 0

We are not going to try and assign any signi�cance to the Langrange multipliers used, as

they are completely arbitrary, with δ = kBβ being the notable exception.

Equilibria

Maximising the expression for entropy and requiring that all of the individual constraints

are zero allows us to obtain relationships between the quantities in each of our subsystems.

• Thermal Equilibrium:

∂Si
∂εi

=
∂Si
∂Ui

=
1

Ti
−→ 1

Ti
= δ =

1

T

This means that the condition for the subsystems to be in thermal equilibrium is if

their temperatures are the same, as anticipated by the Zeroth Law of Thermodynam-

ics

• Mechanical Equilibrium:

∂Si
∂Vi

=
pi
Ti
−→ pi =

σ

δ

This means that the condition for the subsystems to be in mechanical equilibrium is

if the pressures within them are the same, meaning that the pressures are balanced

at the boundaries

• Dynamical Equilibrium:

∂S

∂ui
=

∂S

∂Ui

∂Ui
∂ui

= −miui
1

Ti
−→ miδui = −mi(a+ b× ri)

This means that we can write ui = u+ Ω× ri, where u represents constant transla-

tional motion, while Ω× ri represents rigid rotation.

This means that in equilibrium, we cannot have an gradients of temperature, pressure, or

velocity inside the total system, as we could have anticipated.
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The quantity we are most often interested in with the spin-1
2 paramagnet is its heat capacity

CV . Using (3.9):

U = −NµBB tanh(βµBB) = −1

2
NkBΘB tanh

(
ΘB

2T

)
where we have de�ned ΘB = 2µBB

kB
, which is the excitation temperature for the paramag-

netic e�ects. From the de�nition of heat capacity, we �nd that

CB =

(
∂U

∂T

)
B

= NkB

(
ΘB

T

)2 eΘB/T(
eΘB/T + 1

)2
Let us look at some limits of this expression.

• High Temperature Limit (T � ΘB):

eΘB/T v 1 −→ cB ∝
1

T 2

• High Temperature Limit (T � ΘB):

eΘB/T � 1 −→ cB ∝
1

T 2
e−Θ/T

As CB tends to zero in both limits, this means that there must be some maximum tem-

perature for which the magnetic heat capacity of the system is maximised. This turns out

to be around v 5.6K.

For the magnetisation, we need our expression for the Helmholtz free energy as

F = U − TS −m ·B

where m = MV is the magnetic moment. This means that the magnetisation can be easily

obtained as

M = − 1

V

(
∂F

∂B

)
T

=
NµB
V

tanh

(
µBB

kBT

)
This once again behaves sensibly; we re-obtain Curie's Law in the high temperature limit,

and �nd that the magnetisation is constant in the low temperature limit.

The Harmonic Oscillator

We know from Quantum Mechanics that the energy levels of a 1-D harmonic oscillator are

En =

(
n+

1

2

)
~ω

This means that the partition function is given by

Z1(β) =
∑
α

e−βEα =

∞∑
n=0

e−(n+ 1
2)β~ω = e−

1
2
β~ω

∞∑
n=0

e−nβ~ω

We can sum the last term as an in�nite geometric series to obtain

Z1(β) =
e−

1
2
β~ω

1− e−β~ω
(3.14)
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3.4 The Ideal Gas

We will �rst treat the Ideal Gas using the Canonical Ensemble. If we treat the ideal gas

classically, it's energy levels are given by

εk =
~2k2

2m

Theoretically, we could just plug this expression into (3.7) and obtain the partition function.

However, the problem that we encounter is that sums of this type are very di�cult to

calculate; it is much easier to calculate an equivalent integral. Suppose that our system

is a box with side lengths Lx, Ly, Lz. Then, we are restricted to the wavenumbers that

satisfy

k =

(
2π

Lx
ix,

2π

Ly
iy,

2π

Lz
iz

)
for integers ix, iy, iz in order to ful�l appropriate (periodic) boundary conditions at the

extremities of the box. This means that ∆kx,y,z = (2π)/(Lx,y,z) represents the mesh-size

(spacing between discrete grid points) in phase-space. Then, we can approximate the

desired sum by an integral:

Z1 =
∑
k

e−βεk =
∑
k

LxLyLz
(2π)3︸ ︷︷ ︸
V

(2π)3

2π

Lx︸︷︷︸
∆kx

2π

Ly︸︷︷︸
∆ky

2π

Lz︸︷︷︸
∆kz

e−βεk v
V

(2π)3

∫
d3k e−β~

2k2/2m

Assuming that the system is isotropic, we can transform to polar coordinates:

V

(2π)3

∫
d3k e−β~

2k2/2m =
V

(2π)3

∫ ∞
0

dk 4πk2 e−β~
2k2/2m =

∫ ∞
0

dk g(k) e−β~
2k2/2m

The quantity g(k) = (V k2)/(2π2) is known as the density of states, which tells us the num-

ber of microstates α per k or (with appropriate substitution) per ε. From the calculation

above, it is clear that the density of states depends on the dimensionality of the space; this

means that the behaviour of the 3-D Ideal Gas (as described in the following sections) will

be altered if we assume di�erent dimensions for the space.

Evaluating this integral, we obtain the single particle partition function

Z1 =
V

λ3
th

for λth = ~
√

2π

mkBT
(3.25)

It is clear that λth has dimensions of length in order to allow Z1 to remain dimensionless.

This means that this expression must hold in the relativistic case, except with a di�erent

de�nition of λth (it is left as an exercise to the reader to �nd out exactly the de�nition is

modi�ed).

3.4.1 Distinguishability

If we were to assume that the particles were distinguishable, we could use (3.12) to cal-

culate the partition function for the entire system. However, if we were to calculate the

entropy, we would �nd that it is not additive, even though it has to be additive by de�ni-

tion. This is a result of the fact that we have determinate momenta for the particles, but

indeterminate position; this essentially means that every particle is everywhere, and so we
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Classical Limit

The Correspondence Principle tells us that any results we derive in a quantum mechanical

system must hold in the classical limit. We now ask the question what is the classical limit
for quantum gases? In general, the classical limit will occur where the gas is hot (T →∞)

and dilute (n→ 0). In this limit, e−βµ � 1. Then:

f(β, µ) =
2√
π

∫ ∞
0

dx

√
x

ex−βµ ± 1
v

2√
π

∫ ∞
0

dx
√
x e−xeβµ = eβµ

Using the de�nition of f(β, µ), this means that the condition for the classical limit of a

quantum gas is
n

nQ
� 1 (3.42)

again for appropriate de�nitions of nQ. This is in fact the same condition that we found

in Section (3.4.1). This result can be used to show that the mean occupation numbers n̄i
for Fermi-Dirac and Bose-Einstein statistics reduce to a Maxwellian concentration in the

classical limit.

Degeneration

In this context, degeneration occurs when the number of quantum states available to a

single particle becomes comparable to the number of particles in the system. Physically,

we can interpret our quantum concentration nQ as 'concentration' of quantum states for the

system, coming from the density of states. This means that we would expect degeneration

appear when n is on the order of nQ, namely that

n

nQ
& 1

By writing nQ explicitly and n in terms of the pressure p, we can show that air at STP is

safely non-degenerate (n/nQ v 10−6), where as electrons in metals are very much degen-

erate (n/nQ v 104) under everyday conditions. This means that we cannot describe the

properties of electrons in metals via classical models; we require Fermi-Dirac statistics in

the degenerate limit. The following two sections will examine how Fermi and Bose gases

behave when they become degenerate.

3.5.4 Degenerate Fermi Gas

Consider a Fermi gas for which T → 0 so β → 0. Then, considering carefully the behaviour
of the exponential factor, the mean occupation numbers will behave according to

n̄i =
1

eβ(ε−µ) + 1
→

{
1 for ε < µ(T = 0)

0 for ε > µ(T = 0)

This is shown in Figure (3.2). The consequence of this is that when Fermi gases become

degenerate, the electrons will begin to 'stack up' and occupy all the available single-particle

states from the lowest-energy one to maximum energy equal to the value of the chemical

potential at T = 0

εF = µ(T = 0)

This quantity εF is known as the Fermi energy, and tells us what the maximum energy

per particle is at T = 0. Let us �nd an expression for the Fermi energy, remembering that

in this state the occupation number has become a step-function.
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3.6 The Photon Gas

Thermal radiation can be modelled as a gas of photons with energy per particle ~ω, with
chemical potential µ = 0, and which has an energy density pro�le that is only dependent

on temperature (black body radiation). It follows that for a gas of N particles that the

energy density is given by

u = u(T ) = n~ω

From Kinetic Theory, we know that the particle �ux is Φ = nc/4, meaning that the energy

�ux is given by P = uc/4. Lastly, by analogy to (2.8), we can write the pressure of the

photon as as p = u/3. With this set-up, let us derive some further properties of the gas

from both Thermodynamics, and the theory of Quantum Gases.

3.6.1 Thermodynamically

Starting from (3.17), it quickly follows that for a gas with the above properties

dU = TdS − u

3
dV −→

(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− u

3

However, we know that(
∂U

∂V

)
T

=
∂

∂V
(uV )T = u+ V

(
∂u

∂V

)
T

= u

as u cannot depend on the size of the system by the de�nition of energy density. Recalling

(1.31): (
∂S

∂V

)
T

=

(
∂p

∂T

)
V

=
1

3

du

dT

We thus obtain the di�erential equation

u =
1

3
T
du

dT
− u

3
−→ 4u = T

du

dT

that we can solve to obtain u ∝ T 4. This means that incident power per unit area is given

by

P =
1

4
uc = σT 4 (3.53)

for some constant of proportionality σ that is known as the Stefan-Boltzmann constant.
However, to �nd the actual value of the constant, we have to treat the photon gas using

the theory of Section (3.5).

3.6.2 As a Quantum Gas

Photons are bosons, where their spin can take the values s = ±1. We want to calculate

the number density of photons with frequencies in the range [ω, ω + dω]. The density of

states for such a system is given by

g(k) dk = 2︸︷︷︸
polarisation states

V

(2π)3
4πk2 dk =

V k2

π2
dk

94

Preview from Notesale.co.uk

Page 95 of 106



Toby Adkins A1

4.1 Real Gases

For most of the Thermodynamics that we have been doing with gases, we have merely

dealt with the Ideal Gas, as this is the simplest way to model gases. However, evidently

most gases are non-ideal, and so it would be useful to develop other ways of describing the

behaviour of gases, as we will do so in the following sections. Before we do so, let us derive

a useful result for the energy of a gas. Consider U = U(T, V ):

dU =

(
∂U

∂T

)
V

dT +

(
∂U

∂V

)
T

dV

From (3.17), assuming a closed system (dN = 0):(
∂U

∂V

)
T

= T

(
∂S

∂V

)
T

− p = T

(
∂p

∂T

)
V

− p

where we have made us of (1.31). Putting these together, this gives

dU = CV dT +

[
T

(
∂p

∂T

)
V

− p
]
dV (4.1)

This can be used to show, for example, that U is only a function of temperature for certain

gases (the second term is zero for an ideal gas, and certain other equations of state). It

is also a relation that one is commonly asked to derive, so it is well worth having in the

memory bank.

Let us also recap some important notation. We will use nm = N/NA to refer to the number

of moles of a substance. Recall the gas constant R = NAkB. This means that we can write

the simple relation

NkB = nmR (4.2)

that allows us to convert between (typically) Statistical Mechanics and Kinetic Theory

expressions (involving kB), and Thermodynamic expressions (involving R), though they

are of course equivalent.

4.1.1 Virial Expansion

The equations describing real gases include some corrections for the fact that intermolecular

forces, that we have neglected with the Ideal Gas, exist. This often means that they will

reduce to the case of the Ideal Gas in some limit, and so we can write them as a virial
expansion in their density:

pV

nmRT
= 1 +

nmB

V
+
n2
mC

V 2
+ . . . (4.3)

where B and C are the (possibly) temperature dependent coe�cients, and nm is the num-

ber of moles of the gas.

The Boyle temperature is de�ned as the temperature that satis�es B(Tb) = 0; that is, the
temperature that means that the gas behaves like an ideal gas to �rst order in nm. It is

so called because it will thus obey Boyle's empirical law.
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4.1.2 Van-der-Waals Gas

This is the one of the most common real gas approximations. The equation of state can be

derived through a Statistical Mechanics approach by making a mean-�eld approximation,

but it is much easier to quote the equation and explain the origin of the various terms.

The Van-der-Waals equation of state is as follows:(
p+

a n2
m

V 2

)
(V − bnm) = nmRT (4.4)

where a and b are coe�cients that depend on the nature of the gas being examined. This

has been written in molar form as this allows easier comparison with (4.3), but it can also

be written in terms of particle number N . There are some key features to note:

• The number of nearest neighbours to a particular particle is proportional to nm/V
, and so attractive intermolecular interactions lower the total potential energy by

an amount proportional the number of atoms multiplied by the number of nearest

neighbours. This means that we can write the potential change as (anm)/V which

gives rise to an energy change −(an2
m dV )/V 2. This can be thought of as an e�ective

pressure causing the energy change, giving rise to the extra term shown

• The term bnm comes from considering the particles to have a �nite size (instead of

point particles), meaning that we must exclude this volume in the equation of state

It is evident that this equation reduces to the Ideal Gas equation in the low density limit

nm/V � 1. It is also under this limit that we can write this equation as a virial expansion:

pV

nmRT
=

(
1− bnm

V

)−1

− anm
RTV

v 1 +
(
b− a

RT

) nm
V

+

(
bnm
V

)2

+ . . .

This means that the Boyle temperature for a Van der Waals gas is Tb = a/(bR).

4.1.3 Dieterici Gas

An alternative equation of state is that of the Dieterici gas, which is as follows:

p(V − bnm) = nmRT exp
(
− anm
RTV

)
(4.5)

Once again, the bnm comes from the requirement of excluding the �nite volume of the

particles from the calculation, and the exponential term regulates the strength of the

inter-particle interaction. This description of real gases can prove more accurate than that

of the Van der Waals model, but not by a signi�cant margin. Once again, this can also be

written as a virial expansion in the low density limit:

pV

nmRT
=
e−(anm)/(RTV )

1− (bnm)/V
v 1 +

(
b− a

RT

) nm
V

+

(
b2 +

a2

2R2T 2
− ab

RT

)(nm
V

)2
+ . . .

This means that the Boyle temperature for a Dieterici gas is actually the same as that of

the Van der Waals gas.

4.1.4 Critical Points

In Thermodynamics, phases are regions of a system throughout which all physical properties
of a material are essentially uniform; this is often used to refer to di�erent states of a

particular substance that exist within the one system, such as a 'liquid phase' and 'gas
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The Joule Expansion

We have already met this expansion in Section (1.4.5). To recap,this involves two chambers

with adiathermal walls, so no heat is exchanged with the surroundings - the gas is allowed

to expand freely when the piston is drawn back, so no work is done. The change in

internal energy is therefore zero. We are thus interested in whether this results in a change

in temperature, and so we de�ne the Joule coe�cient µJ as

µJ =

(
∂T

∂V

)
U

= −
(
∂T

∂U

)
V

(
∂U

∂V

)
T

= − 1

CV

[
T

(
∂S

∂V

)
T

− p
]

Making use of (1.31), this becomes

µJ = − 1

CV

[
T

(
∂p

∂T

)
V

− p
]

(4.8)

We can �nd the change in temperature by the simple integration of this coe�cient over

the change in volume. As we have seen, µJ = 0 for an Ideal Gas, meaning that we

observe no change in temperature. However, for a Van der Waals gas, we �nd that µJ =
−(an2

m)/(CV V
2), meaning that there is in fact cooling of the gas upon expansion. This

we would expect, as for real gases the potential energy is raised by forcing the molecules

apart against intermolecular forces upon expansion, which lowers the kinetic energy, and

thus temperature.

The Joule-Kelvin Expansion

The Joule-Kelvin expansion involves the steady �ow of gas through a porous plug that

imposes the condition of quasi-stasis. The gradient between the two chambers, as well as

the rate of �ow, are kept constant using pistons. The chambers one again have adiathermal

walls, and so there is no heat exchange with the surroundings.

Figure 4.2: A schematic of the Joule-Kelvin Expansion

Suppose that after some time, the gas occupies a volume V1 in the higher pressure chamber,

and a volume V2 in the lower pressure. This means that we can write the energy change

as

U2 − U1 = p1V1︸︷︷︸
work done by p1

− p2V2︸︷︷︸
work against p2

−→ U1 + p1V1︸ ︷︷ ︸
H1

= U2 + p2V2︸ ︷︷ ︸
H2
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It is clear that the the enthalpy H is conserved in the process. This means that we are

interested in temperature changes at constant H. We thus de�ne (you guessed it), the

Joule-Kelvin coe�cient

µJK =

(
∂T

∂p

)
H

= −
(
∂T

∂H

)
p

(
∂H

∂p

)
T

Recalling that dH = TdS + V dp, we have that(
∂H

∂T

)
p

= T

(
∂S

∂T

)
p

= Cp and

(
∂H

∂p

)
T

= T

(
∂S

∂p

)
T

+ V

Putting this together, we can write the Joule-Kelvin coe�cient as

µJK =
1

Cp

[
T

(
∂V

∂T

)
p

− V

]
(4.9)

We can thus �nd the change in temperature by integrating µJK over the change in pressure.

This is evidently again zero for the ideal gas. However, for real gases, µJK can either be

positive (cooling) or negative (heating), meaning that we have a cross-over inversion curve
that is de�ned by the equation µJK = 0, or rather(

∂V

∂T

)
p

=
V

T

Using the reciprocity relation (1.22), this can be written in the more convenient form

T

(
∂p

∂T

)
V

+ V

(
∂p

∂V

)
T

= 0 (4.10)

From this, we can also de�ne the maximum inversion temperature below which the Joule-

Kelvin process results in cooling.
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4.2 Phase Transitions and Equilibria

We are now going to look at the details of phase transitions; that is, the Thermodynamic

processes where-by a substance changes from one phase to another. A very typical example

is that of the boiling of water; the phase transition is quite rapid, as it is only when the

boiling point is reached that the liquid phase becomes thermodynamically unstable, and

the gas phase thermodynamically stable.

4.2.1 Latent Heat

Usually to change from one phase, at entropy S1, to another phase at entropy S2, we

require some additional heat supply. This is known as the latent heat (of evaporation,

melting, etc.) given by

L = ∆Qrev = T (S2 − S1) (4.11)

where T is used to refer to the temperature at which the phase transition occurs; the

change in entropy occurs instantaneously at this temperature. As we are interested in

changes at constant temperature, we will be making use of the Gibbs Free Energy.

Ehrenfest's method of classifying phase transitions is that the order of a phase transition

is the order of the derivative of G or µ that is discontinuous. First-order phase transitions

have discontinuous entropy and volume, and so they exhibit a latent heat. Second-order

phase transitions have no latent heat but may have discontinuous heat capacities or com-

pressibility (2nd derivatives of G). When no latent heat is exhibited (continuous entropy),

we have a continuous phase change. In Van der Waals gas, we can have either continuous

or discontinuous phase changes depending on whether we go 'directly across' the phase

boundary or around the critical point, as outlined in Section (4.1.4).

4.2.2 The Clausius-Clapeyron Equation

Recall from (3.18) that G = µN . This means that we obtain the two di�erential forms for

G:

dG = V dp− SdT and dG = µdN +Ndµ

Assuming that total particle number is conserved, we �nd that the di�erential form of µ
can be written as

dµ = − S
N
dT +

V

N
dp = −sdT + vdp

where s and v are the entropy per particle and volume per particle respectively. From

Section (3.3.1), we know that µ1 = µ2 for the phases to coexist in equilibrium, and so we

know that along the p-T boundary for the two phases

dµ1 = dµ2

−s1 + v1
dp

dT
= −s2 + v2

dp

dT
dp

dT
=
s1 − s2

v1 − v2

Substituting in our expression for latent heat, we obtain the Clausius-Clapeyron equation

dp

dT
=

L

T (V2 − V1)
(4.12)

Depending on the type of transition, we can use this to derive di�erent p-T curves for the

phase boundaries.
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Solid-Liquid Boundary

The Clausius-Clapeyron equation can be simply re-arranged to give

dp =
LdT

T∆V

where ∆V = V2 − V1. Assuming that both ∆V and L are temperature independent, then

this equation can be integrated to yield

p = p0 +
L

∆V
log

(
T

T0

)
(4.13)

The constants p0 and T0 are chosen such that p = p0 and T = T0 on the boundary. The

volume change ∆V on melting is relatively small, so that the gradient of the phase bound-

ary in the p-T plane is very steep.

When lead is melted at atmospheric pressure the melting point is 327.0 ◦C, the density de-
creases from 11.01×103 to 10.65×103 kgm3 and the latent heat is 24.5 kJkg−1 . Estimate
the melting point of lead at a pressure of 100 atm.

We can use the above equation to write that

∆p =
L

∆V
log

(
T2

T1

)
−→ T2 = T1 e

∆p∆V
L

We are already given that ∆p = 99 atm. Suppose that there is a mass M of lead. Then

the change in the speci�c volume (volume per unit mass) is given by

∆V = v liquid − v solid =
1

ρ liquid
− 1

ρ solid
v 3.07× 10−6 m3 kg−1

Recalling that L is a speci�c, per unit mass quantity, we can then simply plug everything

into our expression for T2 yieldingv 327.75◦C, which is a very small change in temperature.

Liquid-Gas Boundary

Let us initially treat this boundary assuming that V gas = V � Vliquid, the resultant

gas is ideal, and L is temperature independent. The former of these assumptions is not

particularly assumptive, as most incompressible �uids undergo a large expansion when

moving to their gaseous phase. Then, according to the Clausius-Clapeyron equation:

dp

dT
=

L

TV
=

pL

nmRT 2

where we have used the ideal gas equation in the second equality. This equation can be

integrated to give

p = p0 exp

(
− L

nmRT

)
(4.14)

As R = NAkB, the exponential factor is roughly Boltzmann. This equation can be used to

solve that annoyingly typical example about boiling a cup of tea on the top of a mountain;

it is evident that the British simply cannot get away from their tea.
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