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1.2 Magnetic Fields in Matter

We are now going to look at what happens when materials are a�ected by external magnetic
�elds. We will adopt the simple Bohr model of the atom, where electrons orbit the nucleus
at some �xed radius ri, and at some �xed speed vi. Each electron will complete vi/2πri
orbits per second, and so the current is given by

I =
evi

2πri

Then, the magnetic moment for each electron is given by

mi = πr2
i I =

eviri
2

The orbital angular momentum of the electron is given by Li = meri× vi, which simpli�es
to Li = merivi in the case of a circular orbit. This means that we can write the magnetic
moment for each electron as

mi = − e

2me
Li

This means that the magnetic moment of the atom is given by

m = − e

2me

∑
i

Li

In general, the orbital angular momenta of all the electrons in an atom will be randomly
orientated, such that

∑
i Li = 0. However, when an external magnetic �eld is applied, these

angular momenta align in a particular direction, that creates a net magnetic moment. In
this case, there are two types of materials:

• Diamagnetic - These acquire a magnetic moment anti-parallel to the �eld. This
means that the magnetic susceptibility χm is negative. We will introduce this more
formally in coming sections.

• Paramagnetic - These acquire a magnetic moment parallel to the �eld. This means
that χm is positive

Note that neither of these have a permanent magnetic moment; it is merely induced as a
result of the external �eld. There are some permanently magnetic materials, which we will
cover in Section (1.2.4).

1.2.1 Magnetic Dipoles

In a similar vein to with electric dipoles, let us recap some of the important results of
magnetic dipoles. Suppose that we have some closed loop bounding an orientated surface
Σ that carries a current I. Then, we de�ne the magnetic dipole moment as

m = IΣ

Then, using the results of Section (1.4.2), it can be shown that the magnetic vector potential
of a magnetic dipole is

A =
µ0

4π

m× r
r3

(1.11)

which is quite similar in form to that of the electric monopole; as is usual with magnetic
�elds, we replace the scalar product by a vector product.
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We know that the magnetic �eld (but not necessarily the auxiliary �eld) must be continuous
in the core. This means that Bc = Bg. Using (1.15),

Bc
µ

(2πR− w) +
Bg
µ0
w = IN

Bg(2πR+ (µr − 1)w) = INµ

Bg =
INµ

2πR+ w(µr − 1)

Evidently, this is a sensible expression; we re-obtain the result for the non-magnetisable
solenoid for µr = 1. For this, we have to use the fact that the magnetic energy density is
given by

uB =
1

2
B ·H (1.17)

Suppose that the cross-section of the core is A. Then we obtain

Wg =
1

2µ0
B2wA

Wc =
1

2µ
B2(2πR− w)A

Wg

Wc
= µr

w

2πR− w

Interestingly, we �nd that for sensible values of mur v 1500, R and w, we �nd that a large
proportion of the magnetic energy is actually stored in the air-gap, rather than in the core
of the solenoid. This is one of the reasons why solenoids sometimes have an air-gap in
them.

1.2.4 Ferromagnetism

Ferromagnetic materials are non-linear magnetic materials that have a permanent mag-
netisation. This is due to domains in the material (regions where the local magnetic
moments are all in the same direction) that become aligned under the application of exter-
nal magnetic �eld. This alignment takes energy, and leaves the system in an energetically
favourable state where many of the adjacent domains are aligned, resulting in a residual
magnetisation. That is, ferromagnetic materials have non-zero magnetisation in the ab-

sence of an external magnetic �eld. The material will become magnetically saturated when
all the domains within the material are aligned. This leads to the concept of a hysteresis

curve. This plots the magnetic �eld B that results from the application of an external �eld
H to the ferromagnetic material. This has a few key features:

• Magnetisation Curve (1) - This shows the response of the material under the applied
�eld when it is initially un-magnetised

• Magnetisation Energy - The shaded area gives the energy required to fully magnetise
the material

• Saturation �eld Bsat - The strength of the magnetic �eld in the material at saturation;
i.e when all the domains are aligned

• Remnant Field Br - The (permanent) �eld that remains when the external �eld has
been reduced to zero

• Coercive Force (2) - This refers to the strength of the external �eld that is required
to demagnetise the material
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Figure 1.2: A typical hysteresis curve

It can be shown that the work per unit volume moving along the hysteresis curve is given
by

W =

∮
H · dB (1.18)

That is, the area enclosed by the curve. Evidently, this can often not be computed ex-
actly, but can easily be approximated through rough estimation of the area in terms of a
rectangle, for example.

Generally, materials that have a narrow hysteresis curve are called soft, while those with
a wide curve are called hard ; it takes less energy to go around a soft curve, than a hard
one. This is why soft iron is advantageous when it is used as a core in transformers,
for example. Iron has a very narrow hysteresis curve, meaning that the energy loss is
minimised on application of an external magnetic �ux. However, when this is used with
alternating currents, there is a frequency limit to how quickly the domains can re-align
with one another, limiting the e�ectiveness of the core.
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where we have chosen the solution that is appropriately bounded for r →∞. The quantity

δ =

√
2

µσω
(1.52)

is known as the skin depth of the conductor, and is a measure of the distance over it
which it takes the amplitude of the signal to fall to 1/e of it's original value. Evidently,
in the limit of high conductivity, δ → 0, and so for a perfect conductor, no �elds actually
penetrate into the material.

1.7.2 Energy Transport

Given that the amplitude of the wave is decaying, it would be interesting to look at how
the energy is transported with the wave. Through the careful treatment of the real parts
of the quantities involved, it can be shown that

〈S〉 = ẑ
E2

0

2µ0
e−2k′′z k

′

ω

Similarly, it can be shown that

〈u〉 =
E2

0

4
e−2k′′z

(σ
ω

+ ε0

)
v

E2
0

2µ0
e−2k′′z

(
k′

ω

)2

The terms in the brackets are the magnetic and electric contributions to the energy respec-
tively. Imposing σ � εω0, we �nd the interesting result that the magnetic contribution
always dominates; the energy is mostly carried by the magnetic �eld in good conductors.

The velocity at which the energy is transported is given by

vε =
〈S〉
〈u〉

Comparing the two expressions above, we �nd that vε = δω, instead of the group velocity
of the wave as is the usual result. This is because if λ = 2π/k′ = 2πδ v δ, then the envelope
through which we de�ne group velocity becomes unde�ned; it becomes meaningless to talk
about group velocity!

1.7.3 Wave Impedance

If we substitute the solutions for E and B into (1.21), then we �nd that(
−ik − 1

δ

)
Ẽph = µH̃ph(−iω)

Re-arranging, and using the de�nition of Z, we �nd that

Z =
1

δσ
(1− i) (1.53)

In the limit of a perfect conductor, δ → 0, meaning that Z → ∞. This is in accordance
with the �nding that the wave does not actually penetrate into the conductor.
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This means that the radiated power is given by

Prad =

(
1

2
ε0cE

2
0

)
︸ ︷︷ ︸
average of S

(
8πr2

0

3

)
ω4

(ω2
0 − ω2)2︸ ︷︷ ︸

scattering cross section

where r0 = (α2~2)/(c2). Writing it in this form is useful, as it allows us to see that the
radiated power is proportional to the incident power, and the scattering cross section. In
the Rayleigh scattering limit, ω � ω0, and so we �nd that Prad ∝ ω4.

This limit is interesting to us as it allows us to explain a commonly mis-understood ques-
tion; why is the sky blue? The light from the sun that is incident on atoms in the upper
atmosphere causes said atoms to radiate energy, as we have demonstrated. However, as
Prad ∝ ω4, the higher frequency end of the spectrum is favoured, and as such blue light is
radiated with v 4.5 times the power of red light, making the sky appear blue. Note that
this is not the case if you are looking at areas of the sky near the sun, as the electrons
are only able to radiate energy perpendicular to their oscillation, and this at angles to the
incoming rays from the sun.

Conversely, for a sunset, the light from the sun has to travel through a much greater amount
of atmosphere to reach the observer, as the path of the light rays are almost tangential
to the surface of the Earth. This means that the majority of the blue light is already
radiated/scattered before it reaches the observer, and so the sky appears red.
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2.3 Transmission Lines

Thus far in our consideration of AC circuits, we have considered voltage and current to be
constant along the wires connecting the active components; any capacitance, inductance,
resistance, voltage gain etc. is all 'lumped' together in the components. This assumption,
while not immediately obvious, does seem un-physical, as there will evidently be changes
in the voltage and the current along the wires as they are not perfect conductors.

A transmission line consists an active wire that carries the (time-varying) voltage/current
from the input circuit to the load, and another conductor that acts as a return path and
is usually earthed. Suppose that a semi-in�nite transmission line has capacitance per unit
length C ′ and inductance per unit length L′. Now consider the voltage and current at z
and z + dz as below. Note that the arrows show the direction of current �ow.

Figure 2.2: A schematic transmission line

Applying the normal formulae for inductors and capacitors, the changes in voltage and
current over the interval [z, z + dz] are given by

dV = −L′dz ∂I
∂t︸ ︷︷ ︸

due to inductance

and dI = −C ′dz ∂V
∂t︸ ︷︷ ︸

due to capacitance

Note that we are assuming that there are no parasitic losses due to resistance within the
line. We can re-arrange the above two expressions to obtain

∂V

∂z
= −L′∂I

∂t
∂I

∂z
= −C ′∂V

∂t

(2.8)

(2.9)

These equations are known as the telegraph equations that de�ne the behaviour of the
voltage and current. Taking the spatial derivative of the �rst equation, and the time
derivative of the second:

∂2V

∂z2
= −L′ ∂

2I

∂t∂z
and

∂2I

∂z∂t
= −C ′∂

2V

∂t2

Using the fact that derivatives commute, we can put these two equations together to obtain

∂2V

∂z2
= L′C ′

∂2V

∂t2
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The Re�ection Grating

Another type of optical grating is that of the re�ection grating, consisting of a series
of re�ective mirrors in the place of the slits. This system can add a phase di�erence
depending on the incident angle. Consider the �gure below. Evidently, for each individual
mirror surface, φ = θ. In the same perpendicular distance ` from the surface, the incoming
light ray has horizontal optical path length k sinφ, while the outgoing ray has k sin θ. This
introduces a phase di�erence of

δ = kd(sin θ − sinφ) (3.5)

Figure 3.2: Phase di�erence for a re�ection grating

This is known as the grating equation. Note that if θ = −φ, the light will return through
the source slit.

We obtain the same intensity pattern as the di�raction grating, except with this new
phase term. In zeroth order, θ = φ (corresponding to re�ection o� individual mirrors),
meaning that we cannot use it as a spectrometer in the lowest order. Furthermore, the
intensity is signi�cantly reduced as a result of the fact that only half of the grating surface
is re�ective. This issue can be �xed by blazing ; the mirrors are tiled by an angle γ to the
surface, allowing us to shift the central maxima away from the zeroth order to areas of
higher dispersion.

3.1.2 Abbe's Theory of Imaging

Abbe's Theory of Imaging characterises the action of an optical system as a Fourier trans-
form of the initial object, part of which is sampled and inverse Fourier transformed by
the imaging system, such as the lens. This helps to explain why di�raction patterns are
limited by the the resolution of the imaging system, as we will see in the next section.

Let us now go about demonstrating this. Consider an 'object' f(x) (such as a di�raction
aperture) that is illuminated by plane, monochromatic light of wavelength λ. The di�racted
rays ass through a lens of focal length f placed at a distance u from the object, as shown
in Figure (3.3).

Let r1 be the optical path from the object plane (x) to the image plane (x′). This means
that we can write r1 = xx′ = ox′ − x sin θ. We will now make use of the Fresnel-Kircho�
di�raction integral as given by Equation (3.3), except including the In the focal plane of
the lens:

f̃(x′) =
i

λ

∫
dx eikr1 f(x) =

ieikox
′

λ

∫
dx e−ikx sin θ f(x)︸ ︷︷ ︸

Fourier transform F (k sin θ)
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3.2 Spectroscopic Instruments

We are now going to delve into the realm of spectroscopy (loosely, the measurement of the
intensity as a function of wavelength), and take a look at some spectroscopic instruments.
As such, we will be using notation that is more familiar in this domain; we will usually
refer to wave-number, instead of wavelength, de�ned as

ν̄ =
1

λ

3.2.1 Fringe Formation

Thus far, we have just been assuming that the light we have been considering is coherent,
and monochromatic. As such, we are able to add wave amplitudes, as the single wavelength
can interfere with itself to produce the fringe pattern. However, for incoherent waves, or
waves of di�erent wavelengths, we add the intensity patterns, as each wavelength does
not e�ect the others. In all cases, fringes will occur where the sum (over all sources and
wavelengths) of intensity is constructive.

Fringes are said to be localised if they can only be seen at some subset of places where
the beams cross. They are then non-localised if they can be seen everywhere the beams
cross. Generally, point sources tend to produce non-localised fringes, as the rays leaving
a point source interfere constructively each time that they cross. Extended sources can be
modelled as a series of incoherent point sources. These produce non-localised fringes for
every point within the source, but there is only some �nite region in which the sum of the
intensity patterns is constructive, and will give good fringes, instead of washing out to a
constant. This means that extended sources, in general, produce localised fringes.

Fringes of equal inclination are formed by combining parallel rays that arrive at in�nity.
As a result, these will be localised at in�nity, and will be circular rings. This is because
the fringe locations only depend on angle from the central axis, meaning that we can make
arbitrary rotations associated with cylindrical symmetry.

3.2.2 Some Important De�nitions

There are some important de�nitions that we need to cover before investigating two com-
mon interferometers in the coming sections. These are as follows

• Free Spectral Range (∆ν̄ FSR) - This is the largest wave-number di�erence at which
adjacent di�raction orders do not overlap. To calculate the free spectral range, �nd
the change in ν̄ that increases the phase di�erence δ by 2π.

• Instrumental Width (∆ν̄ INST) - This measures the width of the wave-number peaks
as the phase di�erence is changed. To calculate the instrumental width, equate the
full-width-half-maximum (FWHM) for the peaks to the change in phase di�erence
∆δ.

• Resolving Power (RP ) - This measures the smallest wave-number or wavelength
di�erence that the instrument can resolve. For order p, it is de�ned by

RP =
λ

∆λ INST
=

ν̄

∆ν̄ INST
(3.14)

We shall put more of these de�nitions into practise as we have a look at both the Michelson
and Fabry-Perot interferometers.
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Fourier Transform Spectroscopy

The Michelson Interferometer can be used for Fourier transform spectroscopy to �nd the
power spectrum p(ν̄) of the source. The intensity pattern observed at the detector is simply
the cosine Fourier transform of p(ν̄), which can then be found by computing a subsequent
inverse Fourier transform.

I(x) = const. +

∫
dν̄ p(ν̄) cos(2kx) (3.22)

p(ν̄) =

∫
dx (I(x)− I0) cos(2kx) (3.23)

We de�ne the visibility of the fringe pattern as

V =
Imax − Imin
Imax + Imin

(3.24)

where Imax−Imin is the di�erence in intensity between the intensities at the light and dark
fringes; that is, the di�erence between the cosine term of the interference pattern taking
values ±1. Essentially, it is a measure of the width of the envelope of the intensity pattern.
For a monochromatic source, this is simply unity.

Suppose that we have a monochromatic source that is Doppler broadened. What is the
visibility of the pattern observed? Using Equation (3.22)

I(x) = const. +

∫
dν̄ e

− c2

v2
th

(
ν̄−ν̄0
ν̄0

)2

cos(4πν̄x)

= const. +

∫
du e

− c2

v2
th

(
u
ν̄0

)2

cos(4π(u+ ν̄0)x)

Note that we have ignored the normalisation constant from p(ν̄) as this will cancel in our
calculation of V . We make use of the result that∫ ∞

−∞
dx e−a

2x2
cos(bx+ c) =

√
π

a
e−b

2/4a2
cos(c)

to �nd that the intensity pattern is given by

I(x) = const. +

√
π

2a
e−(2πx)2( vthc ν̄0)

2

cos(4πν̄0x)

This is the normal cosine interference pattern that we associated with a single wave-
number, except modulated by the exponential factor that de�nes the coherence length of
the pattern. This means that the visibility is given by

V = e−(2πx)2( vthc ν̄0)
2

= e−
8π2kBT ν̄

2
0

mc2
x2

= e−x
2/α2

Evidently, V → 0 for x→∞ as the spacing will exceed the characteristic coherence length
α, and we expect that there is simply the mean average value left in the interference
pattern. Suppose that the monochromatic source corresponds to a spectral emission line
from a distant star. If given data for the intensity as a function of the separation x, this
means that we can estimate α, and thus the temperature of the star.
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• Instrumental Width - We can use the previous result to equate the FWHM to the
change in δ:

2π

F
= 4πn∆ν̄ INSTd cos θ

resulting in

∆ν̄ INST =
1

F
∆ν̄ FSR (3.29)

• Resolving Power - Using the de�nition given by Equation (3.14), it is clear that

RP = pF (3.30)

for some order p. We have used the fact that fringes are located at 2d cos θ = pλ = p
ν̄ .

Analysing a Spectrum

In order to be able to interpret a spectrum consisting of two wave-numbers separated by
∆ν̄, we must satisfy the condition that

∆ν̄ INST < ∆ν̄ < ∆ν̄ FSR (3.31)

If this is satis�ed, then the qth order peak from one wave-number will be between the pth

and the (p+ 1)th orders of the other. However, there is a certain ambiguity; the qth order
of ν̄ + ∆ν̄ is either near the pth or (p+ 1)th order of ν̄, as shown in the following �gure.

Figure 3.14: Resolving two wave-numbers

This means that we have either

∆ν̄

∆ν̄ FSR
=

x1

x1 + x2
or

x2

x1 + x2

We can convert these to angular measurements by

∆ν̄

∆ν̄ FSR
=

cos θq − cos θp
cos θ(p+1) − cos θp

or
cos θ(p+1) − cos θq

cos θ(p+1) − cos θp
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We can then convert to radial measurements by observing that θ2 ∝ r2. Of course, this
does not solve out ambiguity, but merely gives us two possible values. The way to resolve
the ambiguity would be to take another set of measurements at a di�erent value for d,
which should give another two values, only one of which will be the same as that in the
original data.

There are also other considerations that have to be taken into account when analysing a
spectrum, including:

• Etalon Design - The parameters that we have to tune are the optical thickness (nd)
and the re�ectivity (R) that will a�ect the Finesse, in order to satisfy the condition
given by Equation (3.31). Ideally, one would choose the spacing such that the fringes
corresponding to the second wave-number lie in the middle of an order. Otherwise,
if the peaks lie close together, a large Finesse, and thus re�ectivity, is required to
distinguish the peaks.

• Illumination Type - We should also deal with the case where the light passing through
the etalon is not a continuous beam, as we have thus far assumed, but a single laser
pulse that satis�es τ∆ω v 1, where ∆ω is the frequency width of the pulse.

∆ω =
2πc

λ2
∆λsource −→ ∆λsource =

λ2

2πcτ

From the resolving power,

λ

∆λINST
= pF =

2d

λ
F

Evidently, it is useless to have ∆λINST > ∆λsource, because the etalon will be at-
tempting to analyse spectral information that is not there. This places an upper
limit on the useful �nesse, and thus re�ectivity, given by

F ≤ πcτ

d

• Parallelism - If the re�ecting plates are not quite parallel, deviating at maximum by
h, then this introduces on average an error of 2h every time this mirror is visited.
We can estimate the e�ect of this by arguing that

∆ν̄ INST =
1

2ndF
v

1

maximum optical path

This means that the ray makes roughly F trips through the etalon. For coherence
to hold, we require that λ > 2hF . In other words, an upper bound on the practical
Finesse is set by

F <
1

2hν̄
(3.32)

The optimum set-up for the FPI will thus evidently depend on the spectrum being analysed,
and so the above points always need to be considered when con�guring the apparatus.
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