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1.2 Magnetic Fields in Matter

We are now going to look at what happens when materials are affected by external magnetic
fields. We will adopt the simple Bohr model of the atom, where electrons orbit the nucleus
at some fixed radius r;, and at some fixed speed v;. Each electron will complete v;/27r;
orbits per second, and so the current is given by

€ev;
I =

27T7“Z'

Then, the magnetic moment for each electron is given by

ev;Ty
2

mi = mril =

The orbital angular momentum of the electron is given by L, = m.r; X v;, which simplifies
to L; = mer;v; in the case of a circular orbit. This means that we can write the magnetic
moment for each electron as

(&

m‘ = — .
- 2me "

This means that the magnetic moment of the atom is given by

m= _2516 ZL

(2

In general, the orbital angular momenta of all the electrons in an ato b‘e\Aw omly
orientated, such that ) 3, L; = 0. However, when an external rﬁe fiNld 15applied, these
magn

angular momenta align in a particular dlrectlon, t etic moment. In
this case, there are two types of materials

e Diamagnetic - These W@ gnetic momag pjrallel to the field. This
etdc su 1

Sceptzbzlzt ve. We will introduce this more

means thatt W .
ﬁrf@y‘d\\ang Sectlonége

Paramagnetic - Theseequlre a magnetic moment parallel to the field. This means
that x,, is positive

Note that neither of these have a permanent magnetic moment; it is merely induced as a
result of the external field. There are some permanently magnetic materials, which we will
cover in Section (1.2.4).

1.2.1 Magnetic Dipoles

In a similar vein to with electric dipoles, let us recap some of the important results of
magnetic dipoles. Suppose that we have some closed loop bounding an orientated surface
2 that carries a current I. Then, we define the magnetic dipole moment as

m=1%

Then, using the results of Section (1.4.2), it can be shown that the magnetic vector potential
of a magnetic dipole is

Ho M X1
4 3

(1.11)

which is quite similar in form to that of the electric monopole; as is usual with magnetic
fields, we replace the scalar product by a vector product.
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We know that the magnetic field (but not necessarily the auxiliary field) must be continuous
in the core. This means that B. = B,. Using (1.15),

B.
—“@2rR—-w)+ “Zw=IN
H Ho

By(2rR + (pr — )w) = INp

B _ INpu
Y 2n R+ w(p, — 1)

Evidently, this is a sensible expression; we re-obtain the result for the non-magnetisable
solenoid for p, = 1. For this, we have to use the fact that the magnetic energy density is
given by

25 H (1.17)

Suppose that the cross-section of the core is A. Then we obtain
L
Wy = —B"wA
240
1
W, = ZBQ(%R —w)A
Wy w
= )LLT —_—
W. 2TR —w

Interestingly, we find that for sensible values of mu, «~ 1500, R and w, we ﬁ tha “ﬁrge
proportion of the magnetic energy is actually stored in the air- g& at er n*in the core

of the solenoid. This is one of the reasons why solenm ¢ have an air-gap in
them.

o\C
124 Ferromagneti m‘( Om N “ 77

Ferromagnetw re non-li 1c materlals that have a permanent mag-
net 1s due to gﬁhe material (regions where the local magnetic

ts are all in the same 1rec ionn) that become aligned under the application of exter-
nal magnetic field. This alignment takes energy, and leaves the system in an energetically
favourable state where many of the adjacent domains are aligned, resulting in a residual
magnetisation. That is, ferromagnetic materials have non-zero magnetisation in the ab-
sence of an external magnetic field. The material will become magnetically saturated when
all the domains within the material are aligned. This leads to the concept of a hysteresis
curve. This plots the magnetic field B that results from the application of an external field
H to the ferromagnetic material. This has a few key features:

e Magnetisation Curve (1) - This shows the response of the material under the applied
field when it is initially un-magnetised

e Magnetisation Energy - The shaded area gives the energy required to fully magnetise
the material

e Saturation field Bgyt - The strength of the magnetic field in the material at saturation;
i.e when all the domains are aligned

e Remnant Field B, - The (permanent) field that remains when the external field has
been reduced to zero

e Coercive Force (2) - This refers to the strength of the external field that is required
to demagnetise the material
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Figure 1.2: A typical hysteresis curve

It can be shown that the work per unit volume moving along the hysteresis curve 'ﬂiiven

by u
W:fﬂ-dB \eco‘ (1.18

That is, the area enclosed by the curve. ' can often not be computed ex-
actly, but can easily be app x1m6mou h ough es mﬂon of the area in terms of a
rectangle, for exampl '{

{ \Jr\ahat h @‘ ysfé;esm curve are called soft, while those with
a W(Q rve are called har 1t ess energy to go around a soft curve, than a hard
one. This is why soft iron is advantageous when it is used as a core in transformers,
for example. Iron has a very narrow hysteresis curve, meaning that the energy loss is
minimised on application of an external magnetic flux. However, when this is used with
alternating currents, there is a frequency limit to how quickly the domains can re-align
with one another, limiting the effectiveness of the core.
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where we have chosen the solution that is appropriately bounded for r — co. The quantity

5= \/z (1.52)

is known as the skin depth of the conductor, and is a measure of the distance over it
which it takes the amplitude of the signal to fall to 1/e of it’s original value. Evidently,
in the limit of high conductivity, § — 0, and so for a perfect conductor, no fields actually
penetrate into the material.

1.7.2 Enmnergy Transport

Given that the amplitude of the wave is decaying, it would be interesting to look at how
the energy is transported with the wave. Through the careful treatment of the real parts
of the quantities involved, it can be shown that

E? n k'
Sy =73 0 2"z 2
(9) o "

Similarly, it can be shown that

EO 72](?” ( > Eg _ok! 5 ]{Z, 2
{u) = 4 w+60 2,uoe w

The terms in the brackets are the magnetic and electric contrlbutlons t ¥pec—
tively. Imposing o > ewg, we find the interesting result th Ic contrlbutlon
always dominates; the energy is mostly carried b m@a d in good conductors.
The velocity at which the energy is transp

JieW frO" ?ﬁ O‘

\'? ‘.@1 two express? &gwe find that v. = dw, instead of the group velocity
of tht wave as is the usual result. This is because if A = 27r/k:’ = 27§ « §, then the envelope

through which we define group velocity becomes undefined; it becomes meaningless to talk
about group velocity!

1.7.3 Wave Impedance
If we substitute the solutions for £ and B into (1.21), then we find that

I = .
(—zk - 6) Eppn = pHpp(—iw)

Re-arranging, and using the definition of Z, we find that

z-La—q (1.53)

oo

In the limit of a perfect conductor, § — 0, meaning that Z — oco. This is in accordance
with the finding that the wave does not actually penetrate into the conductor.
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This means that the radiated power is given by

1 5\ [ 8mrd w?
o= (0e8) (05") g~

average of S scattering cross section

where rg = (a?h?)/(c?). Writing it in this form is useful, as it allows us to see that the
radiated power is proportional to the incident power, and the scattering cross section. In

the Rayleigh scattering limit, w < wp, and so we find that P,,q o w?.

This limit is interesting to us as it allows us to explain a commonly mis-understood ques-
tion; why is the sky blue? The light from the sun that is incident on atoms in the upper
atmosphere causes said atoms to radiate energy, as we have demonstrated. However, as
Prad o< w?, the higher frequency end of the spectrum is favoured, and as such blue light is
radiated with «~ 4.5 times the power of red light, making the sky appear blue. Note that
this is not the case if you are looking at areas of the sky near the sun, as the electrons
are only able to radiate energy perpendicular to their oscillation, and this at angles to the
incoming rays from the sun.

Conversely, for a sunset, the light from the sun has to travel through a much greater amount
of atmosphere to reach the observer, as the path of the light rays are almost tangential
to the surface of the Earth. This means that the majority of the blue light is already
radiated /scattered before it reaches the observer, and so the sky appears red. ‘(

o
p(e\"e\N pagd®
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2.3 Transmission Lines

Thus far in our consideration of AC circuits, we have considered voltage and current to be
constant along the wires connecting the active components; any capacitance, inductance,
resistance, voltage gain etc. is all lumped’ together in the components. This assumption,
while not immediately obvious, does seem un-physical, as there will evidently be changes
in the voltage and the current along the wires as they are not perfect conductors.

A transmission line consists an active wire that carries the (time-varying) voltage/current
from the input circuit to the load, and another conductor that acts as a return path and
is usually earthed. Suppose that a semi-infinite transmission line has capacitance per unit
length C’ and inductance per unit length L’. Now consider the voltage and current at z
and z + dz as below. Note that the arrows show the direction of current flow.

|
|
7 I+drl
v V+dV

g ooV

Figure 2.2: A sche a-
Applying the normal fora:w% f@mors aiﬂ or’l ‘;Q changes in voltage and
+

current over t dz] are

P(e dv?@&é and dI = —C'dz ov

ot

due to inductance due to capacitance

Note that we are assuming that there are no parasitic losses due to resistance within the
line. We can re-arrange the above two expressions to obtain

oV Y
i (2.8)
oI OV

2. =05 (2.9)

These equations are known as the telegraph equations that define the behaviour of the
voltage and current. Taking the spatial derivative of the first equation, and the time
derivative of the second:

0%V B 0?1 0?1 B 0%V

- = / — -
0z~ LTaa: ™ g o2

Using the fact that derivatives commute, we can put these two equations together to obtain

9V o*V
L !
022 o o2
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The Reflection Grating

Another type of optical grating is that of the reflection grating, consisting of a series
of reflective mirrors in the place of the slits. This system can add a phase difference
depending on the incident angle. Consider the figure below. Evidently, for each individual
mirror surface, ¢ = 6. In the same perpendicular distance ¢ from the surface, the incoming
light ray has horizontal optical path length ksin ¢, while the outgoing ray has ksin . This
introduces a phase difference of

‘5 = kd(sinf — sin ¢) ‘ (3.5)

grating surface

Figure 3.2: Phase difference for a reflection grating

This is known as the grating equation. Note that if § = —¢, the light will return thgh

the source slit.

O-
We obtain the same intensity pattern as the dlff i e§cept with this new
phase term. In zeroth order, § = ¢ (corr ectlon off individual mirrors),

meaning that we cannot use it as n t mxsf(order Furthermore, the

intensity is 51gn1ﬁcant1y T d esu t of th alf of the grating surface

is reﬂectlve Thj \‘ xed by blaz rors are tiled by an angle v to the
]ao shi

hlg

fﬁm a away from the zeroth order to areas of
sion.

3.1.2 Abbe’s Theory of Imaging

Abbe’s Theory of Imaging characterises the action of an optical system as a Fourier trans-
form of the initial object, part of which is sampled and inverse Fourier transformed by
the imaging system, such as the lens. This helps to explain why diffraction patterns are
limited by the the resolution of the imaging system, as we will see in the next section.

Let us now go about demonstrating this. Consider an ’object’ f(z) (such as a diffraction
aperture) that is illuminated by plane, monochromatic light of wavelength A. The diffracted
rays ass through a lens of focal length f placed at a distance u from the object, as shown
in Figure (3.3).

Let 71 be the optical path from the object plane (z) to the image plane (z’). This means
that we can write r; = 22’ = o2’ — xsinf. We will now make use of the Fresnel-Kirchoff
diffraction integral as given by Equation (3.3), except including the In the focal plane of
the lens:

- ikox’

f(.’L'/) — ;\/dx eikrl f(%) _ 716A /d.’E e—ikmsin9 f(x)

Fourier transform F'(ksin 0)
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3.2 Spectroscopic Instruments

We are now going to delve into the realm of spectroscopy (loosely, the measurement of the
intensity as a function of wavelength), and take a look at some spectroscopic instruments.
As such, we will be using notation that is more familiar in this domain; we will usually
refer to wave-number, instead of wavelength, defined as

1
Y

U=

3.2.1 Fringe Formation

Thus far, we have just been assuming that the light we have been considering is coherent,
and monochromatic. As such, we are able to add wave amplitudes, as the single wavelength
can interfere with itself to produce the fringe pattern. However, for incoherent waves, or
waves of different wavelengths, we add the intensity patterns, as each wavelength does
not effect the others. In all cases, fringes will occur where the sum (over all sources and
wavelengths) of intensity is constructive.

Fringes are said to be localised if they can only be seen at some subset of places where
the beams cross. They are then non-localised if they can be seen everywhere the beams
cross. Generally, point sources tend to produce non-localised fringes, as the rays leaving
a point source interfere constructively each time that they cross. Eztended sourcesscan be

modelled as a series of incoherent point sources. These produce non-localised ¢fr for
every point within the source, but there is only some finite regi n in w, l@e. of the
intensity patterns is constructive, and will glve good frl -0 ashing out to a
constant. This means that extended sources, e localised fringes.

Fringes of equal inclination wmy omblnl lrs that arrive at infinity.
As a result, these wi &te at mﬁnl curcular rings. This is because
the fringe 1 xt W pend on entral axis, meaning that we can make
arb@r é ns associat @glﬂﬂ symmetry.

3.2.2 Some Important Definitions

There are some important definitions that we need to cover before investigating two com-
mon interferometers in the coming sections. These are as follows

e Free Spectral Range (Av pgr) - This is the largest wave-number difference at which
adjacent diffraction orders do not overlap. To calculate the free spectral range, find
the change in U that increases the phase difference § by 2.

e Instrumental Width (Av ngr) - This measures the width of the wave-number peaks
as the phase difference is changed. To calculate the instrumental width, equate the
full-width-half-maximum (FWHM) for the peaks to the change in phase difference
AJ.

e Resolving Power (RP) - This measures the smallest wave-number or wavelength
difference that the instrument can resolve. For order p, it is defined by

A v
RP = = 3.14
AXNsT  AVINST (314)

We shall put more of these definitions into practise as we have a look at both the Michelson
and Fabry-Perot interferometers.
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Fourier Transform Spectroscopy

The Michelson Interferometer can be used for Fourier transform spectroscopy to find the
power spectrum p(#) of the source. The intensity pattern observed at the detector is simply
the cosine Fourier transform of p(7), which can then be found by computing a subsequent
inverse Fourier transform.

I(x) = const. + /d17 p(7) cos(2kx) (3.22)
p(v) = /dx (I(x) — Ip) cos(2kx) (3.23)

We define the wvisibility of the fringe pattern as

Imax - Imin
V=—“— 3.24
Imax + Imin ( )

where Iyax — Imin is the difference in intensity between the intensities at the light and dark
fringes; that is, the difference between the cosine term of the interference pattern taking
values +1. Essentially, it is a measure of the width of the envelope of the intensity pattern.
For a monochromatic source, this is simply unity.

Suppose that we have a monochromatic source that is Doppler broadened. What is the
visibility of the pattern observed? Using Equation (3.22) u\(

I(z) :COnst.+/dVe A (“%2) %@;\ C
= const m COS‘%WWT

Note that we \j“,@] the normah an from p(7) as this will cancel in our
make

calc@t?@ t at

/ daze a’e? cos(berc) — _b2/4“ cos(c)
oo a

to find that the intensity pattern is given by

VT

Vi~ \2
I(x) = const. + 2—6_(2”)2( o) cos(4dmipx)
a

This is the normal cosine interference pattern that we associated with a single wave-
number, except modulated by the exponential factor that defines the coherence length of
the pattern. This means that the visibility is given by

2 =2
2 8n°kpTo,

th - _ 0 42 2702

c VO) = e mc2 =€ x/a

V = 6—(2%1})2(1)

Evidently, V' — 0 for  — oo as the spacing will exceed the characteristic coherence length
«, and we expect that there is simply the mean average value left in the interference
pattern. Suppose that the monochromatic source corresponds to a spectral emission line
from a distant star. If given data for the intensity as a function of the separation x, this
means that we can estimate «, and thus the temperature of the star.
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e Instrumental Width - We can use the previous result to equate the FWHM to the
change in §:

2
— = 4mnApD dcosf
F TNAV INSTA COS

resulting in

1
AV NsT = fﬁﬂ FSR (3.29)

e Resolving Power - Using the definition given by Equation (3.14), it is clear that

330

for some order p. We have used the fact that fringes are located at 2d cos§ = pA = L.

Analysing a Spectrum

In order to be able to interpret a spectrum consisting of two wave-numbers separated by
Ar, we must satisfy the condition that

‘AD INsT < AU < AU psgr (3.31)

If this is satisfied, then the ¢*"* order peak from one wave-number will be between the pt”
and the (p 4 1) orders of the other. However, there is a certain ambiguity; the ¢** order
of 7 + AU is either near the p'* or (p + 1)"* order of 7, as shown in the following re.

1(5) A Otesa\e .

P

27p ‘ 2r(p+ 1) ‘
2mq 2w(qg+ 1)

Figure 3.14: Resolving two wave-numbers

This means that we have either

Av X1 X2
— = or
JANZZ TS T + X2 T1 + X2

We can convert these to angular measurements by

Av cos 0, — cos ), o cos 0, 1) — cos b,

ADUpsg  COS O(p+1) — cos by cos 0,41y — cos by,
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We can then convert to radial measurements by observing that 62 o r2. Of course, this

does not solve out ambiguity, but merely gives us two possible values. The way to resolve
the ambiguity would be to take another set of measurements at a different value for d,
which should give another two values, only one of which will be the same as that in the
original data.

There are also other considerations that have to be taken into account when analysing a
spectrum, including:

e Etalon Design - The parameters that we have to tune are the optical thickness (nd)
and the reflectivity (R) that will affect the Finesse, in order to satisfy the condition
given by Equation (3.31). Ideally, one would choose the spacing such that the fringes
corresponding to the second wave-number lie in the middle of an order. Otherwise,
if the peaks lie close together, a large Finesse, and thus reflectivity, is required to
distinguish the peaks.

e Illumination Type - We should also deal with the case where the light passing through
the etalon is not a continuous beam, as we have thus far assumed, but a single laser
pulse that satisfies TAw «~ 1, where Aw is the frequency width of the pulse.

2me A2
Aw = 3 Adsource > Adsource =
A 2mwer

From the resolving power, u\(

ANnsT {és
Evidently, it is useless to have W Sources &Ie the etalon will be at-
tempting to analyse s ﬁgﬁ rhation that is ’?Ch This places an upper
th

limit on thg us us reﬂ( n by
mer

preN'\© pa@e

e Parallelism - If the reflecting plates are not quite parallel, deviating at maximum by
h, then this introduces on average an error of 2h every time this mirror is visited.
We can estimate the effect of this by arguing that

1 1
ndF ~ maximum optical path

AV INST =

This means that the ray makes roughly F trips through the etalon. For coherence
to hold, we require that A > 2hF. In other words, an upper bound on the practical
Finesse is set by

1
F < e (3.32)

The optimum set-up for the FPI will thus evidently depend on the spectrum being analysed,
and so the above points always need to be considered when configuring the apparatus.
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