Investigations and Tests

- The ideal test is **sensitive** it detects all those with the disease.
- The ideal test is **specific** it detects only one condition/disease.
- There are no ideal tests.
 - True +ve indicates the test has worked correctly.
 - Positive Predictive Value = PPV
 - Negative Predictive Value = NPV

Interpret with Care:

- Sensitivity does not tell you the chance of a positive result indicating disease:
 - $\circ \quad A \ 90\% \ sensitivity \ does \ not$

Sensitivity and specificity

	Disease present	No disease	
Test positive	True +ve	False +ve	Positive predictive value = proportion of all positives that are true positives
Test negative	False -ve	True -ve	Negative predictive value = proportion of all negatives that are true negatives
	Sensitivity	Specificity	
	= proportion of diseased population detected by test	= proportion of healthy population testing negative	

- mean that a positive result carries a 90% chance of indicating disease.
- Sensitivity and specificity just reflect how good the test is in the lab.

PPV (Positive Predictive Value) and NPV (Negative Predictive Value) Depend on Disease Prevalence

- Prevalence = proportion of population with the condition/disease.
- Positive Predictive Value rises when a disease is present (and the negative PV falls).
- Tests work really well when the disease is common.

Value of the Test depends on how it is used

- A test MUST answer a specific question framed by the clinician in the light of historian examination.
- In the right circumstances, many tests have PPV >98%.
- Conversely, wrong used tests don't work you cannot obtaine drark osis by throwing every test at a
 patient.

There are no ideal tests - they must less (creat (by you) for equip 0 e.

- Screening tests, useful trans are
 - Cheap say diac eptable test that tills whether a person is likely to have a condition or not.

Useful for diagnosis – only tell you whether a person is likely to have a disease or not. 1st test to decide whether someone should go on for more deeper investigations. May have a low PPB \rightarrow e.g. BPE \rightarrow 6PPC.

- **Diagnostic tests**, whose usefulness depends on:
 - Need for test why is it done?
 - Situation in which used:
 - Incidence of disease.
 - Significance of a wrong result a low PPV may be acceptable.
 - Ability to define a "cut off" level.

Never Confuse Numerical Precision with Biologically Relevant Accuracy

• The INR is reported to 1 place of decimals but is useful and reproducible to only to about 0.5 or even 1 unit.

Histopathology

- The gold standard for much diagnosis in medicine 70-80% of patients' treatment depends on a histological diagnosis.
- Is not a TEST, it is a medical opinion.
- Can also be of no great value you need to know which diseases in this course are diagnosed by biopsy and this value if not diagnostic.
- Dysplasia pre-cancer state
- Lichen plasia keratosis of buccal mucosa

