
 x

Properties and Methods of the Thread Class ... 319

Creating Threads .. 323

Managing Threads ... 324

Destroying Threads .. 326

Preview from Notesale.co.uk

Page 11 of 339

 1

C# is a modern, general-purpose, object-oriented programming language developed

by Microsoft and approved by European Computer Manufacturers Association (ECMA)

and International Standards Organization (ISO).

C# was developed by Anders Hejlsberg and his team during the development of .Net

Framework.

C# is designed for Common Language Infrastructure (CLI), which consists of the

executable code and runtime environment that allows use of various high-level

languages on different computer platforms and architectures.

The following reasons make C# a widely used professional language:

 It is a modern, general-purpose programming language

 It is object oriented.

 It is component oriented.

 It is easy to learn.

 It is a tructured language.

 It produces efficient programs.

 It can be compiled on a variety of computer platforms.

 It is a part of .Net Framework.

Strong Programming Features of C#

Although C# constructs closely follow traditional high-level languages, C and C++

and being an object-oriented programming language. It has strong resemblance with

Java, it has numerous strong programming features that make it endearing to a

number of programmers worldwide.

Following is the list of few important features of C#:

 Boolean Conditions

 Automatic Garbage Collection

 Standard Library

 Assembly Versioning

 Properties and Events

 Delegates and Events Management

 Easy-to-use Generics

 Indexers

1. OVERVIEW

Preview from Notesale.co.uk

Page 12 of 339

 8

 width = 3.5;

 }

 public double GetArea()

 {

 return length * width;

 }

 public void Display()

 {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }

 class ExecuteRectangle

 {

 static void Main(string[] args)

 {

 Rectangle r = new Rectangle();

 r.Acceptdetails();

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Preview from Notesale.co.uk

Page 19 of 339

 9

Width: 3.5

Area: 15.75

The using Keyword

The first statement in any C# program is

using System;

The using keyword is used for including the namespaces in the program. A program

can include multiple using statements.

The class Keyword
The class keyword is used for declaring a class.

Comments in C#
Comments are used for explaining code. Compilers ignore the comment entries. The

multiline comments in C# programs start with /* and terminates with the characters

*/ as shown below:

/* This program demonstrates

The basic syntax of C# programming

Language */

Single-line comments are indicated by the '//' symbol. For example,

}//end class Rectangle

Member Variables

Variables are attributes or data members of a class, used for storing data. In the

preceding program, the Rectangle class has two member variables

named length and width.

Member Functions
Functions are set of statements that perform a specific task. The member functions

of a class are declared within the class. Our sample class Rectangle contains three

member functions: AcceptDetails, GetArea and Display.

Instantiating a Class

In the preceding program, the class ExecuteRectangle contains the Main() method

and instantiates the Rectangle class.

Identifiers

Preview from Notesale.co.uk

Page 20 of 339

 14

The using keyword is used for including the namespaces in the program. A program

can include multiple using statements.

The class Keyword

The class keyword is used for declaring a class.

Comments in C#

Comments are used for explaining code. Compiler ignores the comment entries. The

multiline comments in C# programs start with /* and terminates with the characters

*/ as shown below:

/* This program demonstrates

The basic syntax of C# programming

Language */

Single-line comments are indicated by the '//' symbol. For example,

}//end class Rectangle

Member Variables

Variables are attributes or data members of a class. They are used for storing data.

In the preceding program, the Rectangle class has two member variables

named length and width.

Member Functions

Functions are set of statements that perform a specific task. The member functions

of a class are declared within the class. Our sample class Rectangle contains three

member functions: AcceptDetails, GetArea, and Display.

Instantiating a Class

In the preceding program, the class ExecuteRectangle is used as a class, which

contains the Main() method and instantiates the Rectangle class.

Preview from Notesale.co.uk

Page 25 of 339

 18

short 16-bit signed integer type -32,768 to 32,767 0

uint
32-bit unsigned integer
type

0 to 4,294,967,295 0

ulong
64-bit unsigned integer
type

0 to 18,446,744,073,709,551,615 0

ushort
16-bit unsigned integer
type

0 to 65,535 0

To get the exact size of a type or a variable on a particular platform, you can use

the sizeof method. The expression sizeof(type) yields the storage size of the object

or type in bytes. Following is an example to get the size of int type on any machine:

namespace DataTypeApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Size of int: {0}", sizeof(int));

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Size of int: 4

Reference Type

The reference types do not contain the actual data stored in a variable, but they

contain a reference to the variables.

In other words, they refer to a memory location. Using multiple variables, the

reference types can refer to a memory location. If the data in the memory location

is changed by one of the variables, the other variable automatically reflects this

Preview from Notesale.co.uk

Page 29 of 339

 21

Type conversion is converting one type of data to another type. It is also known as

Type Casting. In C#, type casting has two forms:

 Implicit type conversion - These conversions are performed by C# in a type-

safe manner. For example, conversions from smaller to larger integral types
and conversions from derived classes to base classes.

 Explicit type conversion - These conversions are done explicitly by users

using the pre-defined functions. Explicit conversions require a cast operator.

The following example shows an explicit type conversion:

using System;

namespace TypeConversionApplication

{

 class ExplicitConversion

 {

 static void Main(string[] args)

 {

 double d = 5673.74;

 int i;

 // cast double to int.

 i = (int)d;

 Console.WriteLine(i);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

6. TYPE CONVERSION

Preview from Notesale.co.uk

Page 32 of 339

 28

The constants refer to fixed values that the program may not alter during its

execution. These fixed values are also called literals. Constants can be of any of the

basic data types like an integer constant, a floating constant, a character constant,

or a string literal. There are also enumeration constants as well.

The constants are treated just like regular variables except that their values cannot

be modified after their definition.

Integer Literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies

the base or radix: 0x or 0X for hexadecimal, 0 for octal, and no prefix id for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned

and long, respectively. The suffix can be uppercase or lowercase and can be in any

order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various types of Integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

8. CONSTANTS AND LITERALS

Preview from Notesale.co.uk

Page 39 of 339

 30

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show few escape sequence characters:

using System;

namespace EscapeChar

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Hello\tWorld\n\n");

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Hello World

String Literals

String literals or constants are enclosed in double quotes "" or with @"". A string

contains characters that are similar to character literals: plain characters, escape

sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating the

parts using whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

Preview from Notesale.co.uk

Page 41 of 339

 37

 else

 {

 Console.WriteLine("Line 2 - a is not less than b");

 }

 if (a > b)

 {

 Console.WriteLine("Line 3 - a is greater than b");

 }

 else

 {

 Console.WriteLine("Line 3 - a is not greater than b");

 }

 /* Lets change value of a and b */

 a = 5;

 b = 20;

 if (a <= b)

 {

 Console.WriteLine("Line 4 - a is either less than or equal to b");

 }

 if (b >= a)

 {

 Console.WriteLine("Line 5-b is either greater than or equal to b");

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not less than b

Preview from Notesale.co.uk

Page 48 of 339

 38

Line 3 - a is greater than b

Line 4 - a is either less than or equal to b

Line 5 - b is either greater than or equal to b

Logical Operators

Following table shows all the logical operators supported by C#. Assume

variable A holds Boolean value true and variable B holds Boolean value false, then:

Operator Description Example

&& Called Logical AND operator. If both the operands

are non zero then condition becomes true.

(A && B) is false.

|| Called Logical OR Operator. If any of the two

operands is non zero then condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to reverses the

logical state of its operand. If a condition is true

then Logical NOT operator will make false.

!(A && B) is true.

Example
The following example demonstrates all the logical operators available in C#:

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 bool a = true;

 bool b = true;

Preview from Notesale.co.uk

Page 49 of 339

 41

& Binary AND Operator copies a bit to the result if it

exists in both operands.

(A & B) = 12,

which is 0000

1100

| Binary OR Operator copies a bit if it exists in either

operand.

(A | B) = 61, which

is 0011 1101

^ Binary XOR Operator copies the bit if it is set in one

operand but not both.

(A ^ B) = 49,

which is 0011

0001

~ Binary Ones Complement Operator is unary and has

the effect of 'flipping' bits.

(~A) = 61, which

is 1100 0011 in

2's complement

due to a signed

binary number.

<< Binary Left Shift Operator. The left operands value is

moved left by the number of bits specified by the

right operand.

A << 2 = 240,

which is 1111

0000

>> Binary Right Shift Operator. The left operands value

is moved right by the number of bits specified by the

right operand.

A >> 2 = 15,

which is 0000

1111

Example
The following example demonstrates all the bitwise operators available in C#:

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 int a = 60; /* 60 = 0011 1100 */

 int b = 13; /* 13 = 0000 1101 */

 int c = 0;

Preview from Notesale.co.uk

Page 52 of 339

 42

 c = a & b; /* 12 = 0000 1100 */

 Console.WriteLine("Line 1 - Value of c is {0}", c);

 c = a | b; /* 61 = 0011 1101 */

 Console.WriteLine("Line 2 - Value of c is {0}", c);

 c = a ^ b; /* 49 = 0011 0001 */

 Console.WriteLine("Line 3 - Value of c is {0}", c);

 c = ~a; /*-61 = 1100 0011 */

 Console.WriteLine("Line 4 - Value of c is {0}", c);

 c = a << 2; /* 240 = 1111 0000 */

 Console.WriteLine("Line 5 - Value of c is {0}", c);

 c = a >> 2; /* 15 = 0000 1111 */

 Console.WriteLine("Line 6 - Value of c is {0}", c);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Line 1 - Value of c is 12

Line 2 - Value of c is 61

Line 3 - Value of c is 49

Line 4 - Value of c is -61

Line 5 - Value of c is 240

Preview from Notesale.co.uk

Page 53 of 339

 47

as Cast without raising an exception if the

cast fails.

Object obj = new

StringReader("Hello");

StringReader r = obj as

StringReader;

Example

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 /* example of sizeof operator */

 Console.WriteLine("The size of int is {0}", sizeof(int));

 Console.WriteLine("The size of short is {0}", sizeof(short));

 Console.WriteLine("The size of double is {0}", sizeof(double));

 /* example of ternary operator */

 int a, b;

 a = 10;

 b = (a == 1) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

 b = (a == 10) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

Preview from Notesale.co.uk

Page 58 of 339

 54

if...else Statement

An if statement can be followed by an optional else statement, which executes when

the boolean expression is false.

Syntax
The syntax of an if...else statement in C# is:

if(boolean_expression)

{

 /* statement(s) will execute if the boolean expression is true */

}

else

{

 /* statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true, then the if block of code is executed,

otherwise else block of code is executed.

Flow Diagram

Preview from Notesale.co.uk

Page 65 of 339

 75

Nested Loops

C# allows to use one loop inside another loop. Following section shows few examples

to illustrate the concept.

Syntax
The syntax for a nested for loop statement in C# is as follows:

for (init; condition; increment)

{

 for (init; condition; increment)

 {

 statement(s);

 }

 statement(s);

}

The syntax for a nested while loop statement in C# is as follows:

while(condition)

{

 while(condition)

 {

 statement(s);

 }

 statement(s);

}

The syntax for a nested do...while loop statement in C# is as follows:

do

{

 statement(s);

 do

 {

Preview from Notesale.co.uk

Page 86 of 339

 76

 statement(s);

 }while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside of any other

type of loop. For example a for loop can be inside a while loop or vice versa.

Example

The following program uses a nested for loop to find the prime numbers from 2 to

100:

using System;

namespace Loops

{

 class Program

 {

 static void Main(string[] args)

 {

 /* local variable definition */

 int i, j;

 for (i = 2; i < 100; i++)

 {

 for (j = 2; j <= (i / j); j++)

 if ((i % j) == 0) break; // if factor found, not prime

 if (j > (i / j))

 Console.WriteLine("{0} is prime", i);

 }

Preview from Notesale.co.uk

Page 87 of 339

 82

 do

 {

 if (a == 15)

 {

 /* skip the iteration */

 a = a + 1;

 continue;

 }

 Console.WriteLine("value of a: {0}", a);

 a++;

 } while (a < 20);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Preview from Notesale.co.uk

Page 93 of 339

 86

In the preceding example, the member variables length and width are

declared public, so they can be accessed from the function Main() using an instance

of the Rectangle class, named r.

The member function Display() and GetArea() can also access these variables directly

without using any instance of the class.

The member functions Display() is also declared public, so it can also be accessed

fromMain() using an instance of the Rectangle class, named r.

Private Access Specifier

Private access specifier allows a class to hide its member variables and member

functions from other functions and objects. Only functions of the same class can

access its private members. Even an instance of a class cannot access its private

members.

The following example illustrates this:

using System;

namespace RectangleApplication

{

 class Rectangle

 {

 //member variables

 private double length;

 private double width;

 public void Acceptdetails()

 {

 Console.WriteLine("Enter Length: ");

 length = Convert.ToDouble(Console.ReadLine());

 Console.WriteLine("Enter Width: ");

 width = Convert.ToDouble(Console.ReadLine());

 }

Preview from Notesale.co.uk

Page 97 of 339

 89

 return length * width;

 }

 public void Display()

 {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle

 {

 static void Main(string[] args)

 {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

In the preceding example, notice that the member function GetArea() is not declared

with any access specifier. Then what would be the default access specifier of a class

member if we don't mention any? It is private.

Preview from Notesale.co.uk

Page 100 of 339

 99

Passing Parameters by Reference

A reference parameter is a reference to a memory location of a variable. When

you pass parameters by reference, unlike value parameters, a new storage location

is not created for these parameters. The reference parameters represent the same

memory location as the actual parameters that are supplied to the method.

You can declare the reference parameters using the ref keyword. The following

example demonstrates this:

using System;

namespace CalculatorApplication

{

 class NumberManipulator

 {

 public void swap(ref int x, ref int y)

 {

 int temp;

 temp = x; /* save the value of x */

 x = y; /* put y into x */

 y = temp; /* put temp into y */

 }

 static void Main(string[] args)

 {

 NumberManipulator n = new NumberManipulator();

 /* local variable definition */

 int a = 100;

 int b = 200;

 Console.WriteLine("Before swap, value of a : {0}", a);

 Console.WriteLine("Before swap, value of b : {0}", b);

Preview from Notesale.co.uk

Page 110 of 339

 101

namespace CalculatorApplication

{

 class NumberManipulator

 {

 public void getValue(out int x)

 {

 int temp = 5;

 x = temp;

 }

 static void Main(string[] args)

 {

 NumberManipulator n = new NumberManipulator();

 /* local variable definition */

 int a = 100;

 Console.WriteLine("Before method call, value of a : {0}", a);

 /* calling a function to get the value */

 n.getValue(out a);

 Console.WriteLine("After method call, value of a : {0}", a);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Preview from Notesale.co.uk

Page 112 of 339

 102

Before method call, value of a : 100

After method call, value of a : 5

The variable supplied for the output parameter need not be assigned a value. Output

parameters are particularly useful when you need to return values from a method

through the parameters without assigning an initial value to the parameter. Go

through the following example, to understand this:

using System;

namespace CalculatorApplication

{

 class NumberManipulator

 {

 public void getValues(out int x, out int y)

 {

 Console.WriteLine("Enter the first value: ");

 x = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("Enter the second value: ");

 y = Convert.ToInt32(Console.ReadLine());

 }

 static void Main(string[] args)

 {

 NumberManipulator n = new NumberManipulator();

 /* local variable definition */

 int a , b;

 /* calling a function to get the values */

 n.getValues(out a, out b);

 Console.WriteLine("After method call, value of a : {0}", a);

Preview from Notesale.co.uk

Page 113 of 339

 109

using System;

namespace ArrayApplication

{

 class MyArray

 {

 static void Main(string[] args)

 {

 int [] n = new int[10]; /* n is an array of 10 integers */

 int i,j;

 /* initialize elements of array n */

 for (i = 0; i < 10; i++)

 {

 n[i] = i + 100;

 }

 /* output each array element's value */

 for (j = 0; j < 10; j++)

 {

 Console.WriteLine("Element[{0}] = {1}", j, n[j]);

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Element[0] = 100

Preview from Notesale.co.uk

Page 120 of 339

 110

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Using the foreach Loop

In the previous example, we used a for loop for accessing each array element. You

can also use a foreach statement to iterate through an array.

using System;

namespace ArrayApplication

{

 class MyArray

 {

 static void Main(string[] args)

 {

 int [] n = new int[10]; /* n is an array of 10 integers */

 /* initialize elements of array n */

 for (int i = 0; i < 10; i++)

 {

 n[i] = i + 100;

 }

Preview from Notesale.co.uk

Page 121 of 339

 117

Passing Arrays as Function Arguments

You can pass an array as a function argument in C#. The following example

demonstrates this:

using System;

namespace ArrayApplication

{

 class MyArray

 {

 double getAverage(int[] arr, int size)

 {

 int i;

 double avg;

 int sum = 0;

 for (i = 0; i < size; ++i)

 {

 sum += arr[i];

 }

 avg = (double)sum / size;

 return avg;

 }

 static void Main(string[] args)

 {

 MyArray app = new MyArray();

 /* an int array with 5 elements */

 int [] balance = new int[]{1000, 2, 3, 17, 50};

 double avg;

Preview from Notesale.co.uk

Page 128 of 339

 119

 sum += i;

 }

 return sum;

 }

 }

 class TestClass

 {

 static void Main(string[] args)

 {

 ParamArray app = new ParamArray();

 int sum = app.AddElements(512, 720, 250, 567, 889);

 Console.WriteLine("The sum is: {0}", sum);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

The sum is: 2938

Array Class

The Array class is the base class for all the arrays in C#. It is defined in the System

namespace. The Array class provides various properties and methods to work with

arrays.

Properties of the Array Class

The following table describes some of the most commonly used properties of the

Array class:

Preview from Notesale.co.uk

Page 130 of 339

 127

Concatenates four string objects.

6 public bool Contains(string value)

Returns a value indicating whether the specified String object occurs

within this string.

7 public static string Copy(string str)

Creates a new String object with the same value as the specified

string.

8 public void CopyTo(int sourceIndex, char[] destination, int

destinationIndex, int count)

Copies a specified number of characters from a specified position of

the String object to a specified position in an array of Unicode

characters.

9 public bool EndsWith(string value)

Determines whether the end of the string object matches the specified

string.

10 public bool Equals(string value)

Determines whether the current String object and the specified String

object have the same value.

11 public static bool Equals(string a, string b)

Determines whether two specified String objects have the same value.

12 public static string Format(string format, Object arg0)

Replaces one or more format items in a specified string with the string

representation of a specified object.

13 public int IndexOf(char value)

Returns the zero-based index of the first occurrence of the specified

Unicode character in the current string.

14 public int IndexOf(string value)

Preview from Notesale.co.uk

Page 138 of 339

 133

San Pedro

Joining Strings:

using System;

namespace StringApplication

{

 class StringProg

 {

 static void Main(string[] args)

 {

 string[] starray = new string[]{"Down the way nights are dark",

 "And the sun shines daily on the mountain top",

 "I took a trip on a sailing ship",

 "And when I reached Jamaica",

 "I made a stop"};

 string str = String.Join("\n", starray);

 Console.WriteLine(str);

 }

 Console.ReadKey() ;

 }

}

When the above code is compiled and executed, it produces the following result:

Down the way nights are dark

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

Preview from Notesale.co.uk

Page 144 of 339

 134

Preview from Notesale.co.uk

Page 145 of 339

 144

 {

 // method body

 }

}

Note:

 Access specifiers specify the access rules for the members as well as the class

itself. If not mentioned, then the default access specifier for a class type
is internal. Default access for the members is private.

 Data type specifies the type of variable, and return type specifies the data type

of the data the method returns, if any.

 To access the class members, you use the dot (.) operator.

 The dot operator links the name of an object with the name of a member.

The following example illustrates the concepts discussed so far:

using System;

namespace BoxApplication

{

 class Box

 {

 public double length; // Length of a box

 public double breadth; // Breadth of a box

 public double height; // Height of a box

 }

 class Boxtester

 {

 static void Main(string[] args)

 {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

Preview from Notesale.co.uk

Page 155 of 339

 145

 Box1.height = 5.0;

 Box1.length = 6.0;

 Box1.breadth = 7.0;

 // box 2 specification

 Box2.height = 10.0;

 Box2.length = 12.0;

 Box2.breadth = 13.0;

 // volume of box 1

 volume = Box1.height * Box1.length * Box1.breadth;

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.height * Box2.length * Box2.breadth;

 Console.WriteLine("Volume of Box2 : {0}", volume);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Volume of Box1 : 210

Volume of Box2 : 1560

Member Functions and Encapsulation

A member function of a class is a function that has its definition or its prototype within

the class definition similar to any other variable. It operates on any object of the

class of which it is a member, and has access to all the members of a class for that

object.

Preview from Notesale.co.uk

Page 156 of 339

 156

One of the most important concepts in object-oriented programming is inheritance.

Inheritance allows us to define a class in terms of another class, which makes it easier

to create and maintain an application. This also provides an opportunity to reuse the

code functionality and speeds up implementation time.

When creating a class, instead of writing completely new data members and member

functions, the programmer can designate that the new class should inherit the

members of an existing class. This existing class is called the base class, and the new

class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS

Aanimal, dog IS-A mammal hence dog IS-A animal as well, and so on.

Base and Derived Classes

A class can be derived from more than one class or interface, which means that it

can inherit data and functions from multiple base classes or interfaces.

The syntax used in C# for creating derived classes is as follows:

<acess-specifier> class <base_class>

{

 ...

}

class <derived_class> : <base_class>

{

 ...

}

Consider a base class Shape and its derived class Rectangle:

using System;

namespace InheritanceApplication

{

 class Shape

 {

20. INHERITANCE

Preview from Notesale.co.uk

Page 167 of 339

 159

 {

 return length * width;

 }

 public void Display()

 {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class Tabletop : Rectangle

 {

 private double cost;

 public Tabletop(double l, double w) : base(l, w)

 { }

 public double GetCost()

 {

 double cost;

 cost = GetArea() * 70;

 return cost;

 }

 public void Display()

 {

 base.Display();

 Console.WriteLine("Cost: {0}", GetCost());

 }

 }

 class ExecuteRectangle

 {

Preview from Notesale.co.uk

Page 170 of 339

 165

Dynamic Polymorphism

C# allows you to create abstract classes that are used to provide partial class

implementation of an interface. Implementation is completed when a derived class

inherits from it. Abstract classes contain abstract methods, which are implemented

by the derived class. The derived classes have more specialized functionality.

Here are the rules about abstract classes:

 You cannot create an instance of an abstract class

 You cannot declare an abstract method outside an abstract class

 When a class is declared sealed, it cannot be inherited, abstract classes cannot

be declared sealed.

The following program demonstrates an abstract class:

using System;

namespace PolymorphismApplication

{

 abstract class Shape

 {

 public abstract int area();

 }

 class Rectangle: Shape

 {

 private int length;

 private int width;

 public Rectangle(int a=0, int b=0)

 {

 length = a;

 width = b;

 }

 public override int area ()

 {

 Console.WriteLine("Rectangle class area :");

 return (width * length);

Preview from Notesale.co.uk

Page 176 of 339

 172

 }

 class Tester

 {

 static void Main(string[] args)

 {

 Box Box1 = new Box(); // Declare Box1 of type Box

 Box Box2 = new Box(); // Declare Box2 of type Box

 Box Box3 = new Box(); // Declare Box3 of type Box

 double volume = 0.0; // Store the volume of a box here

 // box 1 specification

 Box1.setLength(6.0);

 Box1.setBreadth(7.0);

 Box1.setHeight(5.0);

 // box 2 specification

 Box2.setLength(12.0);

 Box2.setBreadth(13.0);

 Box2.setHeight(10.0);

 // volume of box 1

 volume = Box1.getVolume();

 Console.WriteLine("Volume of Box1 : {0}", volume);

 // volume of box 2

 volume = Box2.getVolume();

 Console.WriteLine("Volume of Box2 : {0}", volume);

Preview from Notesale.co.uk

Page 183 of 339

 175

 }

 public void setHeight(double hei)

 {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 public static Box operator+ (Box b, Box c)

 {

 Box box = new Box();

 box.length = b.length + c.length;

 box.breadth = b.breadth + c.breadth;

 box.height = b.height + c.height;

 return box;

 }

 public static bool operator == (Box lhs, Box rhs)

 {

 bool status = false;

 if (lhs.length == rhs.length && lhs.height == rhs.height

 && lhs.breadth == rhs.breadth)

 {

 status = true;

 }

 return status;

 }

 public static bool operator !=(Box lhs, Box rhs)

 {

 bool status = false;

Preview from Notesale.co.uk

Page 186 of 339

 200

{ n } Matches the previous element

exactly n times.

",\d{3}" ",043" in "1,043.6",

",876", ",543", and

",210" in

"9,876,543,210"

{ n ,} Matches the previous element at

least n times.

"\d{2,}" "166", "29", "1930"

{ n , m } Matches the previous element at

least n times, but no more than m

times.

"\d{3,5}" "166", "17668"

"19302" in "193024"

*? Matches the previous element zero

or more times, but as few times as

possible.

\d*?\.\d ".0", "19.9", "219.9"

+? Matches the previous element one

or more times, but as few times as

possible.

"be+?" "be" in "been", "be"

in "bent"

?? Matches the previous element zero

or one time, but as few times as

possible.

"rai??n" "ran", "rain"

{ n }? Matches the preceding element

exactly n times.

",\d{3}?" ",043" in "1,043.6",

",876", ",543", and

",210" in

"9,876,543,210"

{ n ,}? Matches the previous element at

least n times, but as few times as

possible.

"\d{2,}?" "166", "29", "1930"

{ n , m }? Matches the previous element

between n and m times, but as few

times as possible.

"\d{3,5}?" "166", "17668"

"193", "024" in

"193024"

Backreference Constructs

Backreference constructs allow a previously matched sub-expression to be identified

subsequently in the same regular expression.

The following table lists these constructs:

Preview from Notesale.co.uk

Page 211 of 339

 201

Backreference

construct

Description Pattern Matches

\ number Backreference. Matches the value of

a numbered subexpression.

(\w)\1 "ee" in

"seek"

\k< name > Named backreference. Matches the

value of a named expression.

(?<

char>\w)\k<

char>

"ee" in

"seek"

Alternation Constructs

Alternation constructs modify a regular expression to enable either/or matching. The

following table lists the alternation constructs:

Alternation

construct

Description Pattern Matches

| Matches any one

element separated by

the vertical bar (|)

character.

th(e|is|at) "the", "this"

in "this is the

day. "

(?(

expression

)yes | no)

Matches yes if

expression matches;

otherwise, matches

the optional no part.

Expression is

interpreted as a zero-

width assertion.

(?(A)A\d{2}\b|\b\d{3}\b) "A10", "910"

in "A10 C103

910"

(?(name

)yes | no)

Matches yes if the

named capture name

has a match;

otherwise, matches

the optional no.

(?<

quoted>")?(?(quoted).+?"

|\S+\s)

Dogs.jpg,

"Yiska

playing.jpg"

in "Dogs.jpg

"Yiska

playing.jpg"

"

Preview from Notesale.co.uk

Page 212 of 339

 206

 string str = "make maze and manage to measure it";

 Console.WriteLine("Matching words start with 'm' and ends with 'e':");

 showMatch(str, @"\bm\S*e\b");

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Matching words start with 'm' and ends with 'e':

The Expression: \bm\S*e\b

make

maze

manage

measure

Example 3
This example replaces extra white space:

using System;

using System.Text.RegularExpressions;

namespace RegExApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 string input = "Hello World ";

 string pattern = "\\s+";

Preview from Notesale.co.uk

Page 217 of 339

 218

Manipulating the Windows file system

It gives a C# programamer the ability to browse and locate Windows files and

directories.

Reading from and Writing to Text Files

The StreamReader and StreamWriter classes are used for reading from and writing

data to text files. These classes inherit from the abstract base class Stream, which

supports reading and writing bytes into a file stream.

The StreamReader Class

The StreamReader class also inherits from the abstract base class TextReader that

represents a reader for reading series of characters. The following table describes

some of the commonly used methods of the StreamReader class:

Sr. No. Methods

1 public override void Close()

It closes the StreamReader object and the underlying stream, and

releases any system resources associated with the reader.

2 public override int Peek()

Returns the next available character but does not consume it.

3 public override int Read()

Reads the next character from the input stream and advances the

character position by one.

Example

The following example demonstrates reading a text file named Jamaica.txt. The file

reads:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

Preview from Notesale.co.uk

Page 229 of 339

 220

 Console.WriteLine(e.Message);

 }

 Console.ReadKey();

 }

 }

}

Guess what it displays when you compile and run the program!

The StreamWriter Class

The StreamWriter class inherits from the abstract class TextWriter that represents

a writer, which can write a series of character.

The following table describes the most commonly used methods of this class:

Sr.

No.

Methods

1 public override void Close()

Closes the current StreamWriter object and the underlying stream.

2 public override void Flush()

Clears all buffers for the current writer and causes any buffered data

to be written to the underlying stream.

3 public virtual void Write(bool value)

Writes the text representation of a Boolean value to the text string or

stream. (Inherited from TextWriter.)

4 public override void Write(char value)

Writes a character to the stream.

5 public virtual void Write(decimal value)

Writes the text representation of a decimal value to the text string or

stream.

Preview from Notesale.co.uk

Page 231 of 339

 228

 Console.WriteLine(e.Message + "\n Cannot read from file.");

 return;

 }

 br.Close();

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Integer data: 25

Double data: 3.14157

Boolean data: True

String data: I am happy

Windows File System

C# allows you to work with the directories and files using various directory and file

related classes such as the DirectoryInfo class and the FileInfo class.

The DirectoryInfo Class

The DirectoryInfo class is derived from the FileSystemInfo class. It has various

methods for creating, moving, and browsing through directories and subdirectories.

This class cannot be inherited.

Following are some commonly used properties of the DirectoryInfo class:

Sr.

No.

Properties

1 Attributes

Gets the attributes for the current file or directory.

2 CreationTime

Gets the creation time of the current file or directory.

Preview from Notesale.co.uk

Page 239 of 339

 254

 name = value;

 }

 }

 // Declare a Age property of type int:

 public int Age

 {

 get

 {

 return age;

 }

 set

 {

 age = value;

 }

 }

 public override string ToString()

 {

 return "Code = " + Code +", Name = " + Name + ", Age = " + Age;

 }

 }

 class ExampleDemo

 {

 public static void Main()

 {

 // Create a new Student object:

 Student s = new Student();

 // Setting code, name and the age of the student

Preview from Notesale.co.uk

Page 265 of 339

 265

 Console.WriteLine(names[i]);

 }

 //using the second indexer with the string parameter

 Console.WriteLine(names["Nuha"]);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Zara

Riz

Nuha

Asif

Davinder

Sunil

Rubic

N. A.

N. A.

N. A.

2

Preview from Notesale.co.uk

Page 276 of 339

 269

 {

 num += p;

 return num;

 }

 public static int MultNum(int q)

 {

 num *= q;

 return num;

 }

 public static int getNum()

 {

 return num;

 }

 static void Main(string[] args)

 {

 //create delegate instances

 NumberChanger nc;

 NumberChanger nc1 = new NumberChanger(AddNum);

 NumberChanger nc2 = new NumberChanger(MultNum);

 nc = nc1;

 nc += nc2;

 //calling multicast

 nc(5);

 Console.WriteLine("Value of Num: {0}", getNum());

 Console.ReadKey();

 }

 }

Preview from Notesale.co.uk

Page 280 of 339

 283

 Console.WriteLine("Adding some numbers:");

 al.Add(45);

 al.Add(78);

 al.Add(33);

 al.Add(56);

 al.Add(12);

 al.Add(23);

 al.Add(9);

 Console.WriteLine("Capacity: {0} ", al.Capacity);

 Console.WriteLine("Count: {0}", al.Count);

 Console.Write("Content: ");

 foreach (int i in al)

 {

 Console.Write(i + " ");

 }

 Console.WriteLine();

 Console.Write("Sorted Content: ");

 al.Sort();

 foreach (int i in al)

 {

 Console.Write(i + " ");

 }

 Console.WriteLine();

 Console.ReadKey();

 }

 }

Preview from Notesale.co.uk

Page 294 of 339

 284

}

When the above code is compiled and executed, it produces the following result:

Adding some numbers:

Capacity: 8

Count: 7

Content: 45 78 33 56 12 23 9

Content: 9 12 23 33 45 56 78

Hashtable Class

36.

Preview from Notesale.co.uk

Page 295 of 339

 294

 Console.WriteLine("The next poppable value in stack: {0}",

 st.Peek());

 Console.WriteLine("Current stack: ");

 foreach (char c in st)

 {

 Console.Write(c + " ");

 }

 Console.WriteLine();

 Console.WriteLine("Removing values ");

 st.Pop();

 st.Pop();

 st.Pop();

 Console.WriteLine("Current stack: ");

 foreach (char c in st)

 {

 Console.Write(c + " ");

 }

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Current stack:

W G M A

The next poppable value in stack: H

Current stack:

H V W G M A

Preview from Notesale.co.uk

Page 305 of 339

 300

 }

 Console.WriteLine();

 //content of ba2

 Console.WriteLine("Bit array ba2: 13");

 for (int i = 0; i < ba2.Count; i++)

 {

 Console.Write("{0, -6} ", ba2[i]);

 }

 Console.WriteLine();

 BitArray ba3 = new BitArray(8);

 ba3 = ba1.And(ba2);

 //content of ba3

 Console.WriteLine("Bit array ba3 after AND operation: 12");

 for (int i = 0; i < ba3.Count; i++)

 {

 Console.Write("{0, -6} ", ba3[i]);

 }

 Console.WriteLine();

 ba3 = ba1.Or(ba2);

 //content of ba3

 Console.WriteLine("Bit array ba3 after OR operation: 61");

 for (int i = 0; i < ba3.Count; i++)

 {

 Console.Write("{0, -6} ", ba3[i]);

Preview from Notesale.co.uk

Page 311 of 339

 302

Generics allow you to delay the specification of the data type of programming

elements in a class or a method, until it is actually used in the program. In other

words, generics allow you to write a class or method that can work with any data

type.

You write the specifications for the class or the method, with substitute parameters

for data types. When the compiler encounters a constructor for the class or a function

call for the method, it generates code to handle the specific data type. A simple

example would help understanding the concept:

using System;

using System.Collections.Generic;

namespace GenericApplication

{

 public class MyGenericArray<T>

 {

 private T[] array;

 public MyGenericArray(int size)

 {

 array = new T[size + 1];

 }

 public T getItem(int index)

 {

 return array[index];

 }

 public void setItem(int index, T value)

 {

 array[index] = value;

 }

37. GENERICS

Preview from Notesale.co.uk

Page 313 of 339

 306

 Console.WriteLine("Int values after calling swap:");

 Console.WriteLine("a = {0}, b = {1}", a, b);

 Console.WriteLine("Char values after calling swap:");

 Console.WriteLine("c = {0}, d = {1}", c, d);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Int values before calling swap:

a = 10, b = 20

Char values before calling swap:

c = I, d = V

Int values after calling swap:

a = 20, b = 10

Char values after calling swap:

c = V, d = I

Generic Delegates

You can define a generic delegate with type parameters. For example:

delegate T NumberChanger<T>(T n);

The following example shows use of this delegate:

using System;

using System.Collections.Generic;

delegate T NumberChanger<T>(T n);

namespace GenericDelegateAppl

{

Preview from Notesale.co.uk

Page 317 of 339

 310

namespace DelegateAppl

{

 class TestDelegate

 {

 static int num = 10;

 public static void AddNum(int p)

 {

 num += p;

 Console.WriteLine("Named Method: {0}", num);

 }

 public static void MultNum(int q)

 {

 num *= q;

 Console.WriteLine("Named Method: {0}", num);

 }

 public static int getNum()

 {

 return num;

 }

 static void Main(string[] args)

 {

 //create delegate instances using anonymous method

 NumberChanger nc = delegate(int x)

 {

 Console.WriteLine("Anonymous Method: {0}", x);

 };

Preview from Notesale.co.uk

Page 321 of 339

 312

C# allows using pointer variables in a function of code block when it is marked by

the unsafe modifier. The unsafe code or the unmanaged code is a code block that

uses a pointer variable.

Pointers

A pointer is a variable whose value is the address of another variable i.e., the direct

address of the memory location. Similar to any variable or constant, you must declare

a pointer before you can use it to store any variable address.

The general form of a pointer declaration is:

type *var-name;

Following are valid pointer declarations:

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The following example illustrates use of pointers in C#, using the unsafe modifier:

using System;

namespace UnsafeCodeApplication

{

 class Program

 {

 static unsafe void Main(string[] args)

 {

 int var = 20;

 int* p = &var;

 Console.WriteLine("Data is: {0} ", var);

39. UNSAFE CODES

Preview from Notesale.co.uk

Page 323 of 339

 321

2 public static LocalDataStoreSlot AllocateDataSlot()

Allocates an unnamed data slot on all the threads. For better performance,

use fields that are marked with the ThreadStaticAttribute attribute instead.

3 public static LocalDataStoreSlot AllocateNamedDataSlot(string

name)

Allocates a named data slot on all threads. For better performance, use

fields that are marked with the ThreadStaticAttribute attribute instead.

4 public static void BeginCriticalRegion()

Notifies a host that execution is about to enter a region of code in which

the effects of a thread abort or unhandled exception might jeopardize other

tasks in the application domain.

5 public static void BeginThreadAffinity()

Notifies a host that managed code is about to execute instructions that

depend on the identity of the current physical operating system thread.

6 public static void EndCriticalRegion()

Notifies a host that execution is about to enter a region of code in which

the effects of a thread abort or unhandled exception are limited to the

current task.

7 public static void EndThreadAffinity()

Notifies a host that managed code has finished executing instructions that

depend on the identity of the current physical operating system thread.

8 public static void FreeNamedDataSlot(string name)

Eliminates the association between a name and a slot, for all threads in the

process. For better performance, use fields that are marked with the

ThreadStaticAttribute attribute instead.

9 public static Object GetData(LocalDataStoreSlot slot)

Retrieves the value from the specified slot on the current thread, within

the current thread's current domain. For better performance, use fields

that are marked with the ThreadStaticAttribute attribute instead.

10 public static AppDomain GetDomain()

Preview from Notesale.co.uk

Page 332 of 339

 325

 class ThreadCreationProgram

 {

 public static void CallToChildThread()

 {

 Console.WriteLine("Child thread starts");

 // the thread is paused for 5000 milliseconds

 int sleepfor = 5000;

 Console.WriteLine("Child Thread Paused for {0} seconds",

 sleepfor / 1000);

 Thread.Sleep(sleepfor);

 Console.WriteLine("Child thread resumes");

 }

 static void Main(string[] args)

 {

 ThreadStart childref = new ThreadStart(CallToChildThread);

 Console.WriteLine("In Main: Creating the Child thread");

 Thread childThread = new Thread(childref);

 childThread.Start();

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

In Main: Creating the Child thread

Child thread starts

Child Thread Paused for 5 seconds

Child thread resumes

Preview from Notesale.co.uk

Page 336 of 339

