
Mary Scott 842 Vine Ave. Losantiville Ohio
Sam Jones 33 Elm St. Paris New York
Sarah Ackerman 440 U.S. 110 Upton Michigan

To explain what you just did, you asked for the all of data in the EmployeeAddressTable, and specifically,
you asked for the columns called FirstName, LastName, Address, City, and State. Note that column names
and table names do not have spaces...they must be typed as one word; and that the statement ends with a
semicolon (;). The general form for a SELECT statement, retrieving all of the rows in the table is:

SELECT ColumnName, ColumnName, ...
FROM TableName;

To get all columns of a table without typing all column names, use:

SELECT * FROM TableName;

Each database management system (DBMS) and database software has different methods for logging in to
the database and entering SQL commands; see the local computer "guru" to help you get onto the system,
so that you can use SQL.

Conditional Selection

To further discuss the SELECT statement, let's look at a new example table (for hypothetical purposes
only):

EmployeeStatisticsTable
EmployeeIDNo Salary Benefits Position
010 75000 15000 Manager
105 65000 15000 Manager
152 60000 15000 Manager
215 60000 12500 Manager
244 50000 12000 Staff
300 45000 10000 Staff
335 40000 10000 Staff
400 32000 7500 Entry-Level

Preview from Notesale.co.uk

Page 3 of 39

result to use to evaluate the OR, which evaluates to true if either value is true). Mathematically, SQL
evaluates all of the conditions, then evaluates the AND "pairs", and then evaluates the OR's (where both
operators evaluate left to right).

To look at an example, for a given row for which the DBMS is evaluating the SQL statement Where
clause to determine whether to include the row in the query result (the whole Where clause evaluates to
True), the DBMS has evaluated all of the conditions, and is ready to do the logical comparisons on this
result:

True AND False OR True AND True OR False AND False

First simplify the AND pairs:

False OR True OR False

Now do the OR's, left to right:

True OR False
True

The result is True, and the row passes the query conditions. Be sure to see the next section on NOT's, and
the order of logical operations. I hope that this section has helped you understand AND's or OR's, as it's a
difficult subject to explain briefly.

To perform OR's before AND's, like if you wanted to see a list of employees making a large salary
($50,000) or have a large benefit package ($10,000), and that happen to be a manager, use parentheses:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND (SALARY > 50000 OR BENEFITS > 10000);

IN & BETWEEN

An easier method of using compound conditions uses IN or BETWEEN. For example, if you wanted to list
all managers and staff:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION IN ('Manager', 'Staff');

Preview from Notesale.co.uk

Page 6 of 39

All tables within a database must be created at some point in time...let's see how we would create the
Orders table:

CREATE TABLE ORDERS
(OWNERID INTEGER NOT NULL,
ITEMDESIRED CHAR(40) NOT NULL);

This statement gives the table name and tells the DBMS about each column in the table. Please note that
this statement uses generic data types, and that the data types might be different, depending on what
DBMS you are using. As usual, check local listings. Some common generic data types are:

Char(x) - A column of characters, where x is a number designating the maximum number of
characters allowed (maximum length) in the column.
Integer - A column of whole numbers, positive or negative.
Decimal(x, y) - A column of decimal numbers, where x is the maximum length in digits of the
decimal numbers in this column, and y is the maximum number of digits allowed after the decimal
point. The maximum (4,2) number would be 99.99.
Date - A date column in a DBMS-specific format.
Logical - A column that can hold only two values: TRUE or FALSE.

One other note, the NOT NULL means that the column must have a value in each row. If NULL was
used, that column may be left empty in a given row.

Altering Tables

Let's add a column to the Antiques table to allow the entry of the price of a given Item (Parentheses
optional):

ALTER TABLE ANTIQUES ADD (PRICE DECIMAL(8,2) NULL);

The data for this new column can be updated or inserted as shown later.

Adding Data

To insert rows into a table, do the following:

INSERT INTO ANTIQUES VALUES (21, 01, 'Ottoman', 200.00);

This inserts the data into the table, as a new row, column-by-column, in the pre-defined order. Instead,
let's change the order and leave Price blank:

Preview from Notesale.co.uk

Page 14 of 39

though it is somewhat common to use other, more advanced forms (fourth, fifth, Boyce-Codd; see
documentation).

First Normal Form refers to moving data into separate tables where the data in each table is of a
similar type, and by giving each table a primary key.

Putting data in Second Normal Form involves removing to other tables data that is only dependent
of a part of the key. For example, if I had left the names of the Antique Owners in the items table,
that would not be in Second Normal Form because that data would be redundant; the name would
be repeated for each item owned; as such, the names were placed in their own table. The names
themselves don't have anything to do with the items, only the identities of the buyers and sellers.

Third Normal Form involves getting rid of anything in the tables that doesn't depend solely on the
primary key. Only include information that is dependent on the key, and move off data to other
tables that are independent of the primary key, and create a primary key for the new tables.

There is some redundancy to each form, and if data is in 3NF (shorthand for 3rd normal form), it is
already in 1NF and 2NF. In terms of data design then, arrange data so that any non-primary key
columns are dependent only on the whole primary key. If you take a look at the sample database,
you will see that the way then to navigate through the database is through joins using common key
columns.

Two other important points in database design are using good, consistent, logical, full-word names
for the tables and columns, and the use of full words in the database itself. On the last point, my
database is lacking, as I use numeric codes for identification. It is usually best, if possible, to come
up with keys that are, by themselves, self-explanatory; for example, a better key would be the first
four letters of the last name and first initial of the owner, like JONEB for Bill Jones (or for
tiebreaking purposes, add numbers to the end to differentiate two or more people with similar
names, so you could try JONEB1, JONEB2, etc.).

14. What is the difference between a single-row query and a multiple-row query and why is it
important to know the difference? --First, to cover the obvious, a single-row query is a query that
returns one row as its result, and a multiple-row query is a query that returns more than one row as
its result. Whether a query returns one row or more than one row is entirely dependent on the
design (or schema) of the tables of the database. As query-writer, you must be aware of the
schema, be sure to include enough conditions, and structure your SQL statement properly, so that
you will get the desired result (either one row or multiple rows). For example, if you wanted to be
sure that a query of the AntiqueOwners table returned only one row, consider an equal condition of
the primary key column, OwnerID.

Three reasons immediately come to mind as to why this is important. First, getting multiple rows
when you were expecting only one, or vice-versa, may mean that the query is erroneous, that the
database is incomplete, or simply, you learned something new about your data. Second, if you are

Preview from Notesale.co.uk

Page 29 of 39

key column, and that for every primary key value, there is one foreign key value. For example, in
the first example, the EmployeeAddressTable, we add an EmployeeIDNo column. Then, the
EmployeeAddressTable is related to the EmployeeStatisticsTable (second example table) by means
of that EmployeeIDNo. Specifically, each employee in the EmployeeAddressTable has statistics
(one row of data) in the EmployeeStatisticsTable. Even though this is a contrived example, this is a
"1-1" relationship. Also notice the "has" in bold...when expressing a relationship, it is important to
describe the relationship with a verb.

The other two kinds of relationships may or may not use logical primary key and foreign key
constraints...it is strictly a call of the designer. The first of these is the one-to-many relationship ("1-
M"). This means that for every column value in one table, there is one or more related values in
another table. Key constraints may be added to the design, or possibly just the use of some sort of
identifier column may be used to establish the relationship. An example would be that for every
OwnerID in the AntiqueOwners table, there are one or more (zero is permissible too) Items bought
in the Antiques table (verb: buy).

Finally, the many-to-many relationship ("M-M") does not involve keys generally, and usually
involves identifying columns. The unusual occurrence of a "M-M" means that one column in one
table is related to another column in another table, and for every value of one of these two
columns, there are one or more related values in the corresponding column in the other table (and
vice-versa), or more a common possibility, two tables have a 1-M relationship to each other (two
relationships, one 1-M going each way). A [bad] example of the more common situation would be
if you had a job assignment database, where one table held one row for each employee and a job
assignment, and another table held one row for each job with one of the assigned employees. Here,
you would have multiple rows for each employee in the first table, one for each job assignment,
and multiple rows for each job in the second table, one for each employee assigned to the project.
These tables have a M-M: each employee in the first table has many job assignments from the
second table, and each job has many employees assigned to it from the first table. This is the tip of
the iceberg on this topic...see the links below for more information and see the diagram below for a
simplified example of an E-R diagram.

Preview from Notesale.co.uk

Page 31 of 39

16. What term is used to describe the event of a database system automatically updating the values of
foreign keys in other tables, when the value of a primary key is updated?
17. What database object provides fast access to the data in the rows of a table?
18. What type of SQL statement is used to change the attributes of a column?
19. In a Create Table statement, when a column is designated as NOT NULL, what does this mean?
20. If you wish to write a query that is based on other queries, rather than tables, what do these other
queries need to be created as?

Answers (Queries may have more than one correct answer):
1. SELECT AntiqueOwners.OwnerLastName, AntiqueOwners.OwnerFirstName,
Orders.ItemDesired
FROM AntiqueOwners, Orders
WHERE AntiqueOwners.OwnerID = Orders.OwnerID;
or
SELECT AntiqueOwners.OwnerLastName, AntiqueOwners.OwnerFirstName,
Orders.ItemDesired
FROM AntiqueOwners RIGHT JOIN Orders ON AntiqueOwners.OwnerID = Orders.
OwnerID;
2. SELECT *
FROM EmployeeStatisticsTable
ORDER BY Position, EmployeeIDNo;
3. SELECT Sum(Benefits)
FROM EmployeeStatisticsTable;
4. SELECT OwnerLastName, OwnerFirstName
FROM AntiqueOwners, Antiques
WHERE Item In ('Chair')
AND AntiqueOwners.OwnerID = Antiques.BuyerID;
5. SELECT OwnerLastName, OwnerFirstName
FROM AntiqueOwners
WHERE OwnerID NOT IN
(SELECT OwnerID
FROM Orders);
6. SELECT DISTINCT OwnerLastName, OwnerFirstName
FROM Orders, AntiqueOwners
WHERE AntiqueOwners.OwnerID = Orders.OwnerID;
or to use JOIN notation:
SELECT DISTINCT AntiqueOwners.OwnerLastName, AntiqueOwners.
OwnerFirstName
FROM AntiqueOwners RIGHT JOIN Orders ON AntiqueOwners.OwnerID = Orders.
OwnerID;
7. DELETE FROM ORDERS
WHERE OWNERID = 02;
8. INSERT INTO ORDERS VALUES (21, 'Rocking Chair');
9. CREATE TABLE EMPLOYEES

Preview from Notesale.co.uk

Page 36 of 39

