Interval Estimation & Hypothesis testing

Confidence Intervals

- Confidence intervals for the population mean, μ
- when population standard deviation σ is known
- when population standard deviation σ is unknown
- Confidence intervals for the population proportion, p
- Determining the required sample size

Point and Interval Estimates

• A confidence interval provides additional information about an additional information additional info Upper Lower Confidence Confidence **Point Estimate** Limit Limit

> Width of confidence interval

Point Estimates

We can estimate a		
Population Parameter		with a Sample Statistic (a
		Point Estimate)
Mean	μ	\overline{X} Error! Bookmark not defined.
	π	

Confidence Interval for p (6 Known)

- Assumptions
- Population standard deviation σ is known
- Population is normally distributed
- If population is not normal, use large sample
- Confidence interval estimate

Common Levels of Confidence

• Commonly used confidence levels are 90%, 95% and 99%

Confidence Level	Confidence Coefficient, 1–α	Z value	
80%	0.80	1.28	
90%	0.90	1.645	
95%	0.95	1.96	
98%	0.98	2.33	
99%	0.99	2.58	K
99.8%	0.998	cale.co.	
99.9%	0.99 NOT	3.27	
ntervals and Level of Con	y from 5 0	f 30	

Sampling Distribution of the Mean

Determining Sample Size

Determining Sample Size

- To determine the required sample size for the mean, you must know
- The desired level of confidence (1), which determines the critical Z value
- The acceptable sampling error, e
- The standard deviation, σ

Level of Significance and the Rejection Region

Formal S-step procedure (reduced from text (steps)

Step 1: State null and alternative hypotheses

Step 2: State the decision rule

Step 3: Calculate the test statistic

Step 4: Compare and make a decision

Step 5: State a conclusion

There are two approaches: critical values & p-value

Test 2: t test on one population mean

- A serious problem facing strawberry growers is the control of nematodes. After fumigation the yield currently averages 3kg of fruit per plot. A new fumigant is applied to 8 plots which yield an average of 3.3 kg with a standard deviation of 0.6 kg.
- Is there sufficient evidence to conclude the new fumigant results in a higher yield? Assume the yields are approx N and use 5% significance level.
- Given: $\mu = 3$, n = 8, X = 3.3, s = 0.6, $\mu = 5$ = 0.1
- Test if new fumigant results in $\mu > 3$

- H₀: μ = 3 (yield is 3kg) or μ ≤ 3
 H_a: μ > 3 (yield is higher 3kg)
- Decision rule: reject H₀ if t_{calc} > t_{0.05,7} = 1.895
- Test statistics $t_{calc} = \frac{\overline{X} \mu}{\frac{8}{\sqrt{p}}} = \frac{3.3 3}{\frac{0.6}{\sqrt{8}}} = 1.41$
- Decision: since t_{cal} not greater than 1.895 \rightarrow not reject H_0
- Conclusion: Insufficient evidence at the 10% level of significance, to conclude that the new fumigant results in better yield.