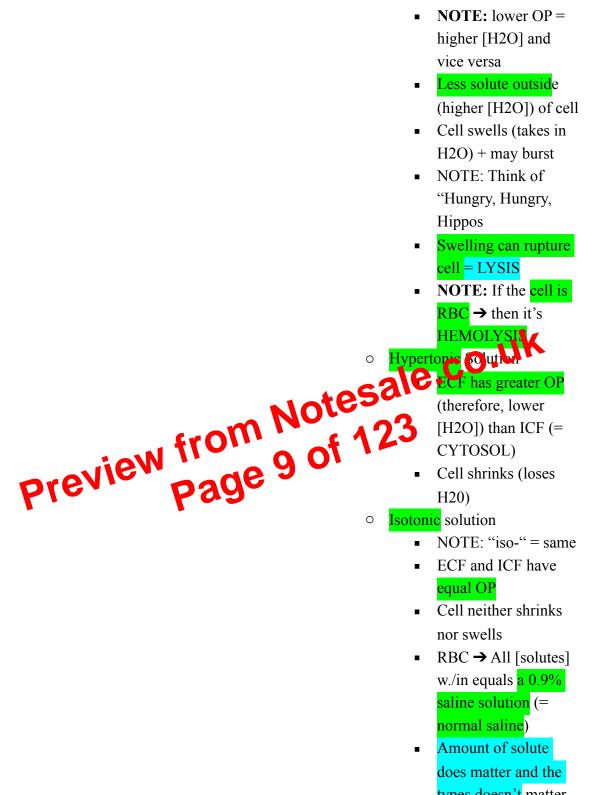
- **Solute** = substance dissolved in a solution (ex: salt)
- **Solvent** = substance that solute is dissolved in (Ex: H2O) (Fig. 3.6)


• Types of transport:

- **Passive transport**
 - No NRG required (no ATP)
 - Movement from high [] to low [] (i.e. down its [] gradient) = DIFFUSION
 - Diffusion \rightarrow passive process; no input of NRG required
 - The greater the diff. in [] \rightarrow the more molecules wants to move
 - ٠ LESS [] GRADIENT VS. HIGH [] GRADIENT—depends on the [solute] on one side of the membrane. Check extra notes
 - Types:
 - Simple diffusion (PASSIVE TRANSPORT) (solute 0 movement) (Fig. 3.7a)
 - Solute diffuses have a cell membrane
 - small, <u>lipid-soluble</u> (O2, CO2,

c.) OR ffuse through membrane via protein hannels

Preview from Page Facilitated diffusion (PASSIVE TRANSPORT) (solute movement) (Fig. 3.7)

- Still from high [] to low [] •
- For large, charged molecules or H2Osoluble molecules (NOTE: lipid soluble molecules diffuse by simple diffusion)
- Diffuse across membrane using a specific • carrier protein
 - Ex: glucose (an H2O soluble molecule) into sk. muscle
- NOTE: PROTEIN CHANNELS just pores/hole within membrane vs. CARRIER PROTEINS – they bind to molecule and change shape - carries molecule from one side to the other

types doesn't matter when we're

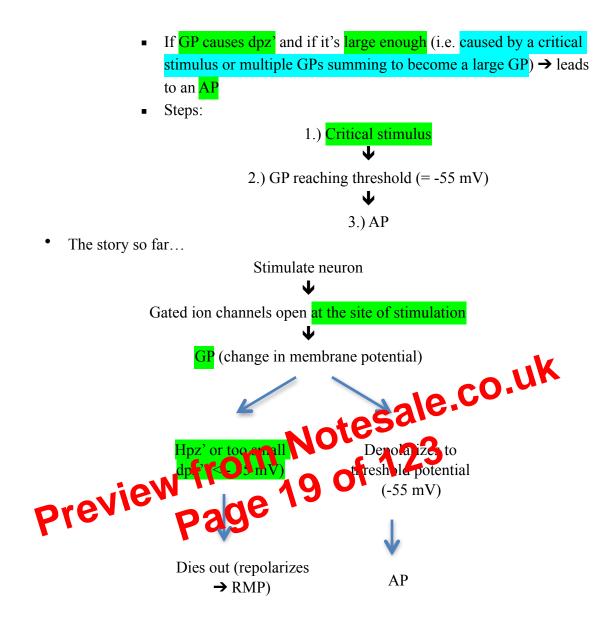
- Chemicals (ex: binding of hormone or nt) = <mark>chemical gates</mark> (=ligandgated channels)
- (NOTE: gated channels are named after their stimuli)
- Other examples:
 - \circ Temp' = thermal gates
 - Mechanical (physical) deformation = mechanical gates

• Resting Membrane Potential (RMP)

- (Fig. 11.7 + 11.8)
- **NOTE:** Diff. in [ionic] on diff. side
 - ٠ At rest (= not stimulated), a charge diff. (potential difference) exist just across the cell mem' (= **MEMBRANE POTENTIAL)**
 - ٠ NOTE: Voltage is always montro between 2 points (= i et off. in charge between 2 points = potential diff)
 - voltage

$*$
 -70 mV (msid of cell is more neg') = RMP

PIEVE Factors Establishing RMP (Fig. 11.8):


Xa+/K+-ATPase (Na+/K+ pumps)

- NOT A CHANNEL !!! It's a carrier protein 0 functioning as a pump
- Breaks down 1 ATP and uses NRG to pump 3 Na+ out and 2 K+ in \rightarrow both ions are pumped against their [] gradient, therefore, ACTIVE TRANSPORT
- Effects:
 - **IMPORTANT**: maintains [] grad' of Na+ and K+
 - Contributes a little (a few mV) to RMP (pumping more + ions out than in)

2.) Org- inside cell

• Can't cross membrane (org- are non-diffusible) **NOTE:** Large org- ions stay inside b/c they're too large to diffuse and transport

- 3.) More non-gated K+ channels than non-gated Na+ channels (this is not the Na+/K+-ATPase pumps)
 - (Membrane is more permeable to K+ than Na+ at 0 rest. Therefore, K+ is the MAJOR determinant of RMP)
 - K+ diffuses out of cell down its [] grad'. Tf, cell loses +ve charge (inside becomes more -ve inside)
 - Unlike charges attract and K+ diffusion slows as inside becomes increasingly negative – negativity inside the cell pulls the positive K+ back in
 - Na+ diffusion \uparrow due to increasing attraction to -ve 0 interior of cell – which is due to K+ efflux
 - Until -70 mV is reached, +ve charge going out (K+ diffusion out of cell) is greater than +ve charge going in (Na+ diffusion into cell) \rightarrow greater k+ permeability
 - =ve (K+) moving out Once at -70mV, amount equals the treat of the +ye (Na+) moving in (at -70 mV → e have equal leaving and
- Preview fronenaci enterin, Therefore, net movement of charge (ions – Na+ and +) is zero (equal in both directions) \rightarrow <u>RMP --</u> -70 mV
 - **Electrically Excitable Cells** 0
 - **ONLY** muscle and nerve cells
 - Capable of producing departures from RMP (-70 mV = set point) in response to stimuli (= changes in ext. or int. envr')
 - When a neuron is stimulated:
 - A.) Gated ion channels (voltage-gated channels) (ex: Na+/ K+ channels) open (IMP. in establishing membrane potential (MP = a charge/voltage diff. across membrane))
 - B.) MP changes = producing a graded potential (NOTE: graded b/c of various levels/grades due to strength of stimulus – ex: small changes in MP – either +ve or -ve) (i.e open lots of gates \rightarrow strong stimulation)
 - C.) GP \rightarrow Triggers an action potential (AP) (Fig. 11.11) • **NOTE:** -55 mV = THRESHOLD POTENTIAL

• Action Potential (AP)

- A nerve impulse (signal)
 - How neuron transmits a signal
 - Large change in MP that propagates along an axon w. no change in intensity
- Initiates at trigger zone (Table 11.1)
 - Ex: axon hillock of multipolar + bipolar neurons; just past the dendrites of unipolar neurons
- Steps (Check back to notes for an imp' drawing) (Fig.11.11):
 - 1.) GP MP at the axon hillock reaches -55 mV
 - AP...

• 3.) Rise Ca++ triggers exocytosis of ntcontaining vesicles • 4.) Nt crosses synaptic cleft, binds to specific receptors on postsynaptic membrane Receptors = chemically gated ion channels = open in response to nt(=ligands) \circ 5.) Gated ion channels open \rightarrow allowing movement of ions into (or out of) postsynaptic membrane (Fig. 11.16) Creates graded potential (GP) called a POSTSYNAPTIC POTENTIAL (PSP) **NOTE:** Characteristics of PSPs is SAME as GP – any type of GP has same characteristics as ordinary GP. e.co. **Postsynaptic potentials (PSPs)** 0 PSPs may be: 1) Excitation E: EPSPs Preview fro Pad <mark>kpolarizing GP</mark> (Fig. 11.19 + 11.18) to opening of Na+ (or Ca++) channels or closing of K+ channels **NOTE:** Some stimuli can close channels Nt is often ACETYLCHOLINE (ACh) or 0 **GLUTAMATE** (Note: there are other types of nt) 2.) Inhibitory PSPs (IPSPs) • = GP \rightarrow causes hpz' (moving away from -55) mV to more -ve charge) • Due to opening of K+ or Cl- channels • Inhibits neuron from reaching AP • Nt is often **GLYCINE** (DON'T MIX THIS WITH EXCITATORY GLUTAMATE) or GABA PSPs occur on CELL BODY or DENDRITES (Like any GP) Many neurons can synapse on to one (postsynaptic neuron) (Fig. 11.16) \rightarrow If many EPSPs \rightarrow summation

- Reflex pathway/arc = pathway of impulses
- Fig. 13.15

Stimulus \rightarrow R (specific to a type of stimulus; responds to a specific stimulus) \rightarrow CNS \rightarrow E (effectors)

Reflexes

- Reflexes are categorized according to:
 - A.) Effector
 <u>i.) SOMATIC</u> = effector is SKELETAL muscle (Fig. 13.17)
 - <u>ii.) VISCERAL (AUTONOMIC)</u> = effector is
 SMOOTH muscle, CARDIAC muscle, or GLANDS
 - B.) Which side of the body the sensory + motor neurons are located (Fig. 13. 20)
 - i.) IPSILATERAL reflex = sensory + motor neurons on same side
 - Ex: stimulus on right side = reconstruction right side
 - ii.) CONTRACATED AL reflex = sensory + motor

Auro ber of synapses (+ neurons) in are:

- MONOSYNAPTIC reflex = 1 synapse between 1 sensory neuron and 1 motor neuron
- POLYSYNAPTIC reflex = 2 or more synapses between 3 or more neurons (NOTE: # of synapses doesn't equal the # of neurons)
- Examples:
 - <u>A.) SOMATIC spinal reflexes (somatic E = sk. muscle)</u>
 - 1.) Stretch reflex
 - Ex: Knee jerk reflex
 - Extensor muscle contracts (Fig. 13.18)
 - Stimulus = tapping the patellar ligament, which stretches the <u>quadriceps femoris</u> muscle (quad')
 - Receptor = muscle spindle (in quad') (i.e.
 stretch receptor)

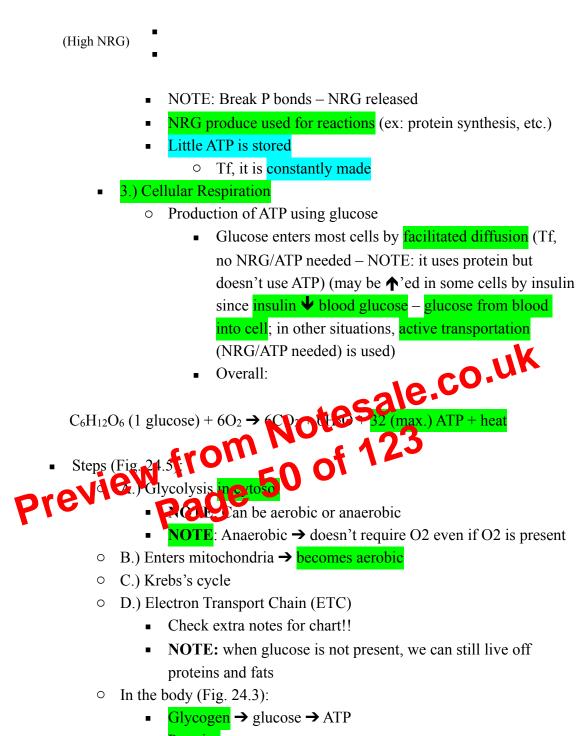
- Ex: epinephrine on liver cells \rightarrow activates cAMP \rightarrow causes breakdown of glycogen to glucose \rightarrow released to blood
- Why use 2nd messenger systems?
 - 0 A.) Hormone can't enter cell (water soluble hormones can't enter phospholipid bilayer)
 - B.) Rapid acting (enzymes are already present just activate – you don't have to make the protein – you just activate them)
 - C.) 1 hormone molecule \rightarrow many enzyme molecules are activated (ex: G protein = enzyme molecule) \rightarrow multiple signals produced
 - D.) Limited messengers (i.e. hormones) can be broken down or removed
 - Breakdown of hormones
- Lipid soluble hormones
 - Still binds to receptors (= intracellular receptors) n w still bind to receptors diffuse through the plasma membrane in the cytoplasm of cell
 - Steroid (ex: erm stress event) and E: witer soluble hormones – peptides,
- Previe proteins, cath solarithes
 - in synthesi
 - Takes time. Tf, slow, but longer-lasting response
 - Steps for action:
 - A.) Enter target cell and bind to **INTRACELLULAR** (= nuclear - in cytoplasm or nucleus, NOT intercellular) receptors
 - ** Hormone receptor complex binds to a specific region on • **DNA (activate genes)** \rightarrow starts gene transcription (transcribing from DNA strand to mRNA) \rightarrow produces messenger RNA (mRNA)
 - mRNA attaches to ribosomes to produce proteins (translation \rightarrow translating a series of nucleotides from mRNA to a. acids [aa] - DON'T CONFUSE IT W. **TRANSCRIPTION**)
 - 0 **Regulation of Hormone Secretion into Blood:**
 - Fig. 16.4

NE converts glycogen to glucose IN LIVER) • Low insulin \rightarrow glucose is then not taken up well, esp. by sk. muscle at rest and adipose tissue (fat). Therefore: Glucose is spared for NS 0 Non-NS (other cells of the body) 0 use fats for NRG (control: GH, cortisol – they signal non-NS to use fats for NRG) • If stress continues, cortisol inhibits GH release and then protein is used • Overall: \uparrow in blood FA and a. acids (b/c you'r Areaking down Preview from Note Page 43.01 and fats and then use them as NRG source) \rightarrow NRG **xcept brain** – brain uses hibition of immune system, inhibition of formation of connective tissue (ex: bone) = delayed healing C.) Release of aldosterone + antidiuretic hormone (ADH) Reduce kidney Na+ and water loss to maintain blood volume • Long Term Effects

↓ weight (b/c fats and proteins are being used),
 ↑ bp, ↑ h.r., ↓ bone density, ↑ risk of Type 2 diabetes (b/c of ↑ in blood glucose due to cortisol inhibiting the release of glucose)

• 3.) Phase 3: Exhaustion

- Results from:
 - Depletion of body resources (i.e. lipid reserves)
 - Aldosterone causes loss of Na+ (NOTE: Na+ is used in causing AP)


- Bone growth, closure of epiphyses (epiphyseal plates close up)
- (NOTE: in males: testosterone goes into bones then converted to estrogen to stop growth = closure of plates – becomes epiphyseal line)
- Progesterone
 - From CORPEUS LUTEUM
 - Prepares uterus for pregnancy

Ovarian and Uterine Cycle

- Both occurs simultaneously
 - 1a.) Follicular (pre-ovulatory) phase: Days 1-14
 - Early on: low progesterone. Tf, LH and FSH are secreted (from the ant. pit.) (Check the chart in extra notes)
 - Tf, high levels of LH and FSH 0
 - Some 1° follicles turn to 2° follicles (due to high 0 le.co.uk levels of FSH)
 - Follicles secrete estrogen
 - Tf, blood estrogen rise 0
 - Later on: one usant v P follicle becomes a Graafian follic
 - **OFE:** Graafian (= te tiany) follicle (w. secondary) occyte floating around the fluid of antrum)

Preview. Uterus

- rs at same time as 1a
 - Menstrual phase (days 1-5)
 - Stratum functionalis shed (layer of endometrium) and bleeds
 - Tf, menstrual flow = blood cells and secretions
- **Proliferative phase (days 6-14)**
 - NOTE: \approx day 14 = ovulation
 - Estrogen causes \rightarrow repair and proliferation of st. functionalis (due to mitosis of st. basalis)
 - Peak in progesterone vascularized the endometrium and causes build up of glycogen
- 2.) Ovulation (Day 14)
 - Due to LH surge
 - LH triggers:
 - Completion of meiosis 1 0

- Proteins
 - Some amino acids can be converted to pyruvic acid or enters Kreb's cycle – depending on the body's need, they may form new glucose (liver, kidney) or ATP (most cells)
- Fats

• Cycle repeats many times to shorten the sarcomere (Fig. 9.6)

• Sliding Filament Mechanism

- Sarcomere shorten (Fig. 9.6)
 - H zone (=lighter band at center of A band →MYOSIN ONLY)
 and I band (=light band = actin + titin overlap) shorten
 - A band = same length (which is the length of thick filament)
- Myofibrils (NOTE: myofibrils makes up myofiber = muscle fiber) shorten
- Thin (actin) + Thick (myosin) myofilaments remain the same length

• Muscle Fiber Relaxation

- Steps (Fig. 9.8):
 - 1.) ACh broken down by AChE on motor end plate (= sarcolemma; which is facing the synaptic cleft)
 - NOTE: GO BACK to the drawing of "Break Down of Neurotransmitters ACh)
 - 2.) SR actively takes up (2.) SR actively takes up (2.) SR actively takes up (2.)
 - NOTE: in A quires active transport because Ca+2 is Occurs against its Lagradient, Tf, ATP used
- 3.) Tropomyosince vers myosin-binding sites on actin (b/c Depart no more Ca+2 that binds to troponin)
 - 4.) ATP binds to myosin and release myosin head from actin (no more actin-myosin binding) (Fig. 9.12)
 - ATP necessary for:
 - 1.) Cross bridge release (NOTE: ATP is not broken down yet when cross bridge breaks)
 - 2.) Activation of myosin (when $ATP \rightarrow ADP + Pi$)
 - 3.) Pump Ca+2 back into SR (NOTE: WHEN Ca+2 IS TAKEN UP: it's going against [] grad'; DURING RELEASE OF Ca+2: don't need ATP b/c we have high [] of Ca++ in SR already which goes down its grad')
 - 3.) Fiber (= muscle fiber) Na+/K+-ATPase activity
 - To reestablish [] gradients (i.e. Na+ and K+)
 - **Muscle Tension** (Fig. 9.13)
 - \circ = Force exerted by a muscle or a muscle fiber
 - Determined by a # of cross bridges formed
 - In a muscle fiber affected by:

• Excitation-Contraction Coupling in Myocardial Cells

- 1.) Open v-g Ca+2 channels of AP
 - Small increase in cytosolic Ca+2 (extracellular FROM OUTSIDE TO INSIDE) → not enough to trigger contraction BUT
- Opens CHEMICALLY-GATED Ca+2 channels on SR → Increases cytosolic Ca+2 → Binds to troponin, etc.,etc. → leads to contraction (same events occur just like the events that occur in sk. muscles)
- 3.) Contraction
 - Refer back to sliding filament mechanism
 - Begins a few msec after AP begins
 - NOTE: we don't want maintained contraction → heart would stop pumping if contraction is maintained
 - Duration of AP = ≈ 250 msec and duration of twitch/ CONTRACTION = ≈ 300 msec
 - Tf, contraction is almost over when AP ends
 - RESULT = NO SUMMATION REFRACIONY PERIOD PREVENTS TETANUS – CHEVEFIG. 18.13
 - Tf, NC TET, LCS you get alternation of
 - nthiction and relevation = once contraction ends,
- Cardif coccle 0 3 components
 - 1.) Electrical Activity (ECG or EKG)

relaxation of

- NOTE: ECG → we're looking at the whole electrical event of the whole heart
- Small currents due to dpz' and rpz' of heart movement through salty body fluids
- Potential measured on body surface using electrodes (= leads)
- Recording seen as waves
 - = SUM of electrical activity of all myocardial cells
 (NOT AN AP)
- ECG Waves (Fig. 18.17 + 18.18):
 - A.) P wave = atrial dpz \rightarrow followed by contraction
 - B.) QRS wave = ventricular dpz \rightarrow contraction
 - Also <u>atrial rpz</u> (→ relaxation) but masked by a larger ventricular electrical event (due

- Digitalis (drug) -- ↑ Ca+2 inside (Tf, ↑ • contract motility)
- Forced decreased by:
 - Acidosis excess of H+
 - \blacklozenge external K+ -- not a lot of K+ leaves the cell; Tf, no restoration of RMP
 - Ca+2 channel blockers
 - i.e. drug (Ex: verapamil)

• **Blood Circulation**

- Blood Flow = volume of blood flowing through any <u>tissue</u> per min (mL/min – same unit as CO)
- BF in a vessel is determined by **PRESSURE + RESISTANCE** 0
- BF is calculated as: 0
 - Flow = $\Delta P/R$ = (b.p. gradient)/R
 - F = Flow
 - $\Delta P = b.p.$ gradient from aorta \rightarrow artesi resistance vessels) (ΔP goin on aorta (low P) to CTE: DIAMETER OF LUMEN arteriol YOU REACH CAPS')
 - capa is ance vessels HIGH

Preview CE -- STRETCHY

NOTE: 60-75% of blood in veins

= resistance

- Opposes flow friction of blood rubbing against vessel walls
- Depends on: 0
 - a.) Vessel length (less R when diameter • is big and vice versa)
 - b.) Blood viscosity (\uparrow viscous = \uparrow R)
 - NOTE: vessel length and blood viscosity doesn't normally change
 - c.) Radius of arterioles (major RESISTANCE VESSELS) controlled by smooth muscle innervation by SNS
 - (NOTE: NO PSNS innervation of b.v.)
 - Vasodilation = \uparrow radius

- Vasoconstriction \rightarrow skin, viscera - reinforces SNS
- Vasodilation \rightarrow heart, sk. muscle, liver – opposes SNS in just these specific areas b/c we want increased blood flow in these areas
- Other hormone
 - Angiotensin II, ADH causes vasocon'
 - Histamine causes vasodil' • Ex: allergy/ inflammatory response

• **Blood Pressure**

- \circ = Hydrostatic P exerted by blood on wall of blood vessel (cliffically on the walls of arteries) – results when F is opposed by I
- Systolic pressure = pressure due ventriction
- Diastolic pressure = pressure lie @vascular resistance (when 0 ventricles are related - blood are in by all eacy)
 - What we neasone in an artery 1, 120/80 = systolic/diastolic)

Previous hard a system of the body regulated for the body regulated for the body regulated for the body hard body various hard regula re artery (i.e what the body measure)

- = Average b.p. through cardiac cycle
- But diastole is longer than systole (Check chart w. timeframe in extra notes), so: MAP = diastolic P + 1/3 pulse P
- MAP regulation:
 - $F = \Delta P/R \rightarrow \Delta P = (F)(R)$
- Where TPR = resistance in all arterioles; HR (beats/ min); SV (mL/beat)
- $\Delta P = MAP venous P (P in vein is \approx 0 \rightarrow Tf, \Delta P = MAP)$
- MAP is regulated by controlling:
 - 1.) Cardiac output
 - 2.) TPR (arteriolar radius)

 = Endocytosis from blood into <u>epithelial</u> cell then <u>exocytosis</u> from <u>endothelial</u> cell into ISF

- C.) Mediated transport
 - Requires a carrier protein
 - Imp. mainly in the brain
- Fluid (H2O) enters (=ABSORPTION) or leaves (= FILTRATION) capillaries by:
- NOTE: movement out of caps' = filtration; into caps' = absorption
 - 1.) Osmosis

Preview 1

- 2.) Bulk flow due to P diff.
 - 4 pressures involved (Check extra notes):
 - Blood hydrostatic P(BHP) = b.p.
 - Blood osmotic P (BOP) = due to plasma
 proteins in blood (mostly albumins)
 - ISF hydrostatic P (IFHP) = 0 mmHg 1
 - ISF osmotic P (IFOP) = $\frac{due to TF}{due to TF}$
- Net Filtration Pressure
 - NFP (in mn/h) = CIII + IFQP) (BOP + IFHP)
 - NOR: (BHP + IFQP) proces filtration and (BOP
 - +IFHP) apo entration (= absorption)
 - Theek extra notes
 - NOTE: Whichever has the largest # in the formula, it'll determine whether you have net filtration or absorption
 - Check extra notes for an example
 - In prev. example:
 - Overall, (across whole cap' not just one end)
 - 10 mmHg + (-9 mmHg) = 1mm Hg
 Tf, net filtration
 - \circ Tf, in the whole body
 - 90% of filtered body fluid (= ISF) reabsorbed to blood
 - 10 % enters the lymph which goes back to the blood eventually
 - Tf, ISF volume remains constant --100% of filtered fluid gets into the blood eventually

- **Clinical Application** 0
 - Edema .
 - ٠ = Accumulation of fluid (**ISF**) in the tissue
 - ISF causes swelling
 - Due to:
 - High b.p. (= increased in BHP)
 - Leakage of plasma protein into ISF \rightarrow inflammation (\bigstar IFOP)
 - \circ \checkmark plasma proteins (due to ex: malnutrition, burns) (tf, \checkmark BOP)
 - Obstruction of lymph vessels from ex: elephantitis, surgery
 - **Circulatory Shock**
 - = Inadequate blood flow
 - (\checkmark O2, nutrients to cell)
 - 1.) Hypovolemic shock
 - NOTE: "hyperice" = "low volume"
 - et cased blood vol.
 - Due to: 1001 los, severe burns,

narihea, vomiting

- Preview from 8 ascular shock Blood vol' normal but blood vessels are expanded
 - Due to: SYSTEMIC vasodilation of blood vessels $\rightarrow \Psi$ b.p. (= Ψ BOP)
 - Examples: ٠
 - a.) Anaphylactic shock = allergic rxns
 - Due to lots of histamine 0 (=vasodilator) released from lots of mast cells
 - NOTE: Epi pen \rightarrow lots of $EpiE \rightarrow causes$ vasoconstriction to offset vasodilation
 - 3.) Cardiogenic shock
 - Pump failure = $\mathbf{\Psi}$ cardiac output

- NOTE: RBC \rightarrow no nuc' or mitochondria (b/c mitochon' uses O2 for cell resp' \rightarrow we want O2 in gas transport)
 - Tf, RBC uses anaerobic resp' only
 - (i.e. don't use O2)
- b.) White Blood Cells (WBCs) (= Leukocytes)
 - i.) Granulocytes
 - 1.) Neutrophils
 - First to enter infected area (Fig. 17.10)
 - 2.) Eosinophil
 - Attacks parasites (ex: worms)
 - Break down chemicals released in allergic rxns

- Hot sicrete histamine (a vasodilator) inflammation
 inflammation
 Ovecrete heparin inhibits local clotting infected areas - blood clot must be inhibited in infected areas
 - ii.) Agranulocytes 0
 - 1.) Monocytes
 - Enter tissues and enlarge to become phagocytic macrophages
 - 2.) Lymphocytes
 - a.) T-lymphocytes
 - Helper T (TH) + cytotoxic T 0 (CTCs) lymphocytes
 - ٠ b.) B lymphocytes
 - When activated, they give rise to plasma cells which

- Thoracic walls recoils out, lungs recoil in
- NOTE: lungs are elastic but fluid holds them together; Tf, P ip is slightly reduced
- **Types** (Fig. 22.13 + 22.14):
 - **Quiet Inspiration**
 - ACTIVE process \rightarrow still requires ATP (b/c muscles) contract)
 - At start, (before muscle contracts): P atm = P alv (P)inside lungs) (760 mmHg) – no air moves, then:
 - i.) Diaphragm, ext. intercostal contract
 - Tf, \uparrow vol. of thoracic cavity
 - ii.) Lung resist expansion
 - Tf, P ip \checkmark (756 mmHg \rightarrow 754 mmHg) (Fig. 22.14)
 - iii.) Higher P difference between P ly and P ip pushes lungs out \rightarrow lungs expand \rightarrow Tf, P alv \checkmark (b/c yoln \checkmark (760 \rightarrow 758 mm Hg)

```
voves in down P gradient (until P
```

v = P atmced Inspiration

wordes diaphragm, ext. intercostal,

Preview froi sternocleidomastoids, pectoralis minors, scalenes (Tf, ACTIVE)

- All aid in inspiration (Only diaphragm and ext. intercostals for quiet inspr')
- Big \uparrow in vol of thoracic cavity Tf, P gradient
 - (between P_{alv} and P_{atm}) \uparrow and more air moves in
- c.) Quiet Expiration
 - Relax muscle \rightarrow lungs to resting size \rightarrow Tf, \checkmark thoracic cavity (PASSIVE PROCESS)
 - Lung vol \checkmark , P ip \uparrow (754 \rightarrow 756 mm Hg)
 - Tf, P alv \bigstar (760 \rightarrow 762 mm Hg) \rightarrow air moves out/ down P gradient
- d.) Forced Expiration
 - Labored or impeded (ex: asthma) breathing
 - Relax diaphragm, ext. intercostals + contract int. intercostals, abdominals (ACTIVE PROCESS)

- b.) Then, inhibitory signals cause:
 - i.) Gastric motility (slows emptying) due to:
 - 1.) CCK released due to presence of FAs, a. acids
 - 2.) Enterogastric reflex (enteric NS) - triggered by a. acids, peptides, acid, duodenal stretch, hyper-tonicity
 - Directly
 - Signals CNS \rightarrow SNS
 - ii.) \clubsuit gastric secretion (acid, enzymes) due to:
 - Secretin released due to acid
 - CCK released due to a. acid, FAs
- Large Intestine (Fig. 23.29)

Motility: 0

- 1.) Haustral Contractions •
- Istral Contractions Slow, weak move material on the tube allow mixing, absorption
- 2.) Mass more nen
- Preview Due to food in toma to ria gastrocolic reflex = powerful of contraction from transverse colon to rectum wave

ecal mass to rectum:

0 Initiates urge to defecate (NOTE: Autonomic reflex involved)

- Rectal (Defecation) Reflex (Fig. 23.31): 0
 - Stimulus = feces in rectum (stretch receptor in rectal wall)
 - CNS =sacral segment of s.c. (PSNS)
 - Effector = sm. muscle of rectum contract, internal anal sphincter relaxes
 - External anal sphincter = under voluntary control (i.e. not part of reflex)
 - Digestion (Fig. 23.29):
 - NONE, but get bacterial fermentation of undigested nutrients
 - ٠ Bacteria synthesize some vitamins (B₆, B₅, K, Folate, Biotin)
 - Absorption: