Motivating example

» In this lecture we discuss techniques (that sometimes work) to
convert a grammar that is not LL(1) into an equivalent
grammar that is LL(1).

Left Recursion Removal and Left Factoring

Left and right recursion continue

» In general, rules of the form
A — Aa | (are called left recursive
and rules of the form
A — aA | B right recursive.

» Grammars equivalent to the regular expression a* are given by
pause A — Aa|corA—aA|e

Left Recursion Removal and Left Factoring

Left recursion removal continue

» |If we remove the left recursion from the rule

exp — exp + term | exp — term | term

we obtain

Left Recursion Removal and Left Factoring

Left Fact

» Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

Left Recursion Removal and Left Factoring

Left Factoring

» Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A—-afB|lay

Left Recursion Removal and Left Factoring

Left Factoring

» Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A—-afB|lay

» Obviously, an LL(1) parser cannot distinguish between the
production choices in such a situation.

» In the following example we have exactly this problem:

Left Recursion Removal and Left Factoring

Left factoring continue

» Consider the following grammar of if-statements:

if-stmt — if (exp) statement | if (exp) statement else statement

The left factored form of this grammar is

Left Recursion Removal and Left Factoring

Left factoring continue

» Here is a typical example where a programming language fails
to be LL(1):

statement — assign-stmt | call-stmt | other
assign-stmt — identifier := exp
call-stmt — identifier (exp-list)

» This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

Left Recursion Removal and Left Factoring

Left factoring continue

» Here is a typical example where a programming language fails
to be LL(1):

statement — assign-stmt | call-stmt | other
assign-stmt — identifier := exp
call-stmt — identifier (exp-list)

» This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement — identifier := exp | identifier (exp-list) | other

» Then we left factor to obtain:

Left Recursion Removal and Left Factoring

Left factoring continue

» Here is a typical example where a programming language fails
to be LL(1):

statement — assign-stmt | call-stmt | other
assign-stmt — identifier := exp
call-stmt — identifier (exp-list)

» This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement — identifier := exp | identifier (exp-list) | other

» Then we left factor to obtain:

’
statement — identifier statement | other

!
statement — := exp | (exp-list)

Left Recursion Removal and Left Factoring

