
Motivating example

I In this lecture we discuss techniques (that sometimes work) to
convert a grammar that is not LL(1) into an equivalent
grammar that is LL(1).

I - Consider the following grammar:
exp → exp addop term | term
addop → + | −
term→ term mulop factor | factor
mulop → ∗
factor → (exp) | number

- This grammar is not LL(1) since number is in First(exp) and
in First(term).

- Thus in the entry M[exp, number] in the LL(1) parsing table
we will have the entries exp → exp addop term and
exp → term

- The problem is the presence of the left recursive rule
exp → exp addop term | term.

- Thus in order to try to convert this grammar into an LL(1)
grammar, we remove the left recursion from this grammar.

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 2 of 63

Left and right recursion continue

I In general, rules of the form
A→ Aα | β are called left recursive
and rules of the form
A→ αA | β right recursive.

I Grammars equivalent to the regular expression a∗ are given by
pause A→ Aa | ε or A→ aA | ε

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 21 of 63

Left recursion removal continue

I If we remove the left recursion from the rule

exp → exp + term | exp − term | term

we obtain

exp → term exp
′

exp
′
→ + term exp

′
| − term exp

′
| ε

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 38 of 63

Left Factoring

I Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A→ α β | α γ

I Obviously, an LL(1) parser cannot distinguish between the
production choices in such a situation.

I In the following example we have exactly this problem:

if -stmt → if (exp) statement | if (exp) statement else statement

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 49 of 63

Left Factoring

I Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A→ α β | α γ

I Obviously, an LL(1) parser cannot distinguish between the
production choices in such a situation.

I In the following example we have exactly this problem:

if -stmt → if (exp) statement | if (exp) statement else statement

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 50 of 63

Left Factoring

I Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A→ α β | α γ

I Obviously, an LL(1) parser cannot distinguish between the
production choices in such a situation.

I In the following example we have exactly this problem:

if -stmt → if (exp) statement | if (exp) statement else statement

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 52 of 63

Left factoring continue

I Consider the following grammar of if-statements:

if -stmt → if (exp) statement | if (exp) statement else statement

The left factored form of this grammar is

if -stmt → if (exp) statement else-part
else-part → else statement | ε

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 56 of 63

Left factoring continue

I Here is a typical example where a programming language fails
to be LL(1):

statement → assign-stmt | call-stmt | other
assign-stmt → identifier := exp
call-stmt → identifier (exp-list)

I This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement → identifier := exp | identifier (exp-list) | other

I Then we left factor to obtain:

statement → identifier statement
′
| other

statement
′
→ := exp | (exp-list)

I Note how this obscures the semantics of call and assignment
by separating the identifier from the actual call or assign
action.

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 60 of 63

Left factoring continue

I Here is a typical example where a programming language fails
to be LL(1):

statement → assign-stmt | call-stmt | other
assign-stmt → identifier := exp
call-stmt → identifier (exp-list)

I This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement → identifier := exp | identifier (exp-list) | other

I Then we left factor to obtain:

statement → identifier statement
′
| other

statement
′
→ := exp | (exp-list)

I Note how this obscures the semantics of call and assignment
by separating the identifier from the actual call or assign
action.

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 61 of 63

Left factoring continue

I Here is a typical example where a programming language fails
to be LL(1):

statement → assign-stmt | call-stmt | other
assign-stmt → identifier := exp
call-stmt → identifier (exp-list)

I This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement → identifier := exp | identifier (exp-list) | other

I Then we left factor to obtain:

statement → identifier statement
′
| other

statement
′
→ := exp | (exp-list)

I Note how this obscures the semantics of call and assignment
by separating the identifier from the actual call or assign
action.

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 62 of 63

