
Motivating example

I In this lecture we discuss techniques (that sometimes work) to
convert a grammar that is not LL(1) into an equivalent
grammar that is LL(1).

I - Consider the following grammar:
exp → exp addop term | term
addop → + | −
term→ term mulop factor | factor
mulop → ∗
factor → ( exp ) | number

- This grammar is not LL(1) since number is in First(exp) and
in First(term).

- Thus in the entry M[exp, number] in the LL(1) parsing table
we will have the entries exp → exp addop term and
exp → term

- The problem is the presence of the left recursive rule
exp → exp addop term | term.

- Thus in order to try to convert this grammar into an LL(1)
grammar, we remove the left recursion from this grammar.
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Left and right recursion continue

I In general, rules of the form
A→ Aα | β are called left recursive
and rules of the form
A→ αA | β right recursive.

I Grammars equivalent to the regular expression a∗ are given by
pause A→ Aa | ε or A→ aA | ε
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Left recursion removal continue

I If we remove the left recursion from the rule

exp → exp + term | exp − term | term

we obtain

exp → term exp
′

exp
′
→ + term exp

′
| − term exp

′
| ε
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Left Factoring

I Left factoring is required when two or more grammar rule
choices share a common prefix string, as in the rule

A→ α β | α γ

I Obviously, an LL(1) parser cannot distinguish between the
production choices in such a situation.

I In the following example we have exactly this problem:

if -stmt → if ( exp ) statement | if ( exp ) statement else statement
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Left factoring continue

I Consider the following grammar of if-statements:

if -stmt → if ( exp ) statement | if ( exp ) statement else statement

The left factored form of this grammar is

if -stmt → if ( exp ) statement else-part
else-part → else statement | ε

Left Recursion Removal and Left Factoring

Preview from Notesale.co.uk

Page 56 of 63



Left factoring continue

I Here is a typical example where a programming language fails
to be LL(1):

statement → assign-stmt | call-stmt | other
assign-stmt → identifier := exp
call-stmt → identifier ( exp-list )

I This grammar is not in a form that can be left factored. We
must first replace assign-stmt and call-stmt by the right-hand
sides of their defining productions:

statement → identifier := exp | identifier ( exp-list ) | other

I Then we left factor to obtain:

statement → identifier statement
′
| other

statement
′
→ := exp | ( exp-list )

I Note how this obscures the semantics of call and assignment
by separating the identifier from the actual call or assign
action.
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