
2

© 2003, 2004 Kevin J. Maciunas, Charles Lakos Slide 5CC&P 2004

Eliminating left recursion
 An algorithm to eliminate arbitrary left recursion (by replacing it

with right recursion) is as follows:
1. Arbitrarily order the non-terminals: N1, N2, N3, ...
2. Apply the following steps to the productions for N1, then N2, ...
3. For Ni:

a) For all productions Ni → Nk α, where k < i and if the productions
for Nk are Nk → β1 | β2 | β3 | ... then expand the reference to Nk,
i.e. replace the production Ni → Nk α by Ni → β1 α | β2 α | ...

b) If the productions for Ni are now
Ni → α1 | α2 | ... | Ni β1 | Ni β2 | ...

(where the first few are not left recursive while the latter are)
then replace them with

Ni → α1 Ni’ | α2 Ni’ | ...
Ni’ → ε | β1 Ni’ | β2 Ni’ | ...

© 2003, 2004 Kevin J. Maciunas, Charles Lakos Slide 6CC&P 2004

Example of eliminating left recursion
 Consider the productions:

A → a | Ba B → b | Cb C → c | Ac
1. Arbitrarily order the non-terminals:  A, B, C
2. Consider the productions for A: no change
2. Consider the productions for B: no change
3. Consider the productions for C:

a) Replace C → Ac by C → ac | Bac
a) Replace C → Bac by C → bac | Cbac
 Productions for C are now: C → c | ac | bac | Cbac

b) Replace the productions for C by:
C → cC’ | acC’ | bacC’
C’ → ε | bacC’

© 2003, 2004 Kevin J. Maciunas, Charles Lakos Slide 7CC&P 2004

A Workable Solution
Observation
 The trouble which gives rise to nondeterminacy and

backtracking in top down parsers shows itself in only one
place – that is when a parser has to choose between
several alternatives with the same left hand side.

 The only information which we can use to make the
correct decision is the input stream itself.

—In the example, we (humans) could see which alternative
to choose by looking at the input yet-to-be-read.

 If we are going to look ahead in order to make the correct
decision, we need a buffer in which to store the next few
symbols.

 In practice, this buffer is of a fixed length.

© 2003, 2004 Kevin J. Maciunas, Charles Lakos Slide 8CC&P 2004

Definitions
 A parser which can make a deterministic decision about which

alternative to choose when faced with one, if given a buffer of k
symbols, is called a LL(k) parser.

—Left to right scan of input
—Left most derivation
—k symbols of look-ahead

 The grammar that an LL(k) parser recognizes is an LL(k) grammar
and any language that has an LL(k) grammar is an LL(k) language.

—We are constructing an LL(1) compiler that recognises LL(1)
grammars.

—So the question is How do we know when we have an LL(1)
grammar?

 We also have LR(k) grammars and other variations, but our focus is
currently on LL(1) grammars.

Preview from Notesale.co.uk

Page 2 of 4


