

6.4: Wave Properties of Matter

Nodes: a collection of points at which electron density in an atom is 0; amplitude of the wave at this point is 0

Equation 6.8

 $2\pi r = n\lambda$

- r = radius of the orbit
- λ = wavelength of the electron wave
- *n* = a positive integer

*Because *n* is an integer, *r* can only have certain values (integral multiples of λ) as *n* increases. *Because the energy of the electron depends on the size of the orbit (or the value of r), the energy can have only certain values, too.

*de Broglie's reasoning led to the conclusion that waves can behave like particles and particles can exhibit wavelike properties.

- mu• λ = wavelength of moving to receive a left \mathfrak{P} in $m = \max(in \log n)$ $u = \operatorname{vel}(n)$
- *m* = mass (in kg) *u* = cvel(chy (in s)

de Broglie Wavelength, wav length calculated by the Gorementioned equation (Equation 6.9) 6.5: Quanton Mechanics

Heise berg Uncertainty Principle: it is impossible to know simultaneously both the momentum (p) [defined as mass m^* velocity u] and the position (X) of a particle with certainty

$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi}$$
Equation 6.10
$$\Delta x \cdot m\Delta u \ge \frac{h}{4\pi}$$
Equation 6.11

- Δx = uncertainty in measuring the position
- Δu = uncertainty in measuring the velocity
 - m = mass in units kg

*If the measured uncertainties of position and velocity are large, their product can be substantially greater than $h/4\pi$, hence the > sign.

*Even in the most favorable conditions for measuring the position and velocity, the product of the uncertainties can never be less than $h/4\pi$, hence the = sign.

*If the velocity is more precise, the position is less precise and vice versa.

*The Schrödinger equation specifies the possible energy states the electron can occupy in a hydrogen atom and identifies the corresponding wave functions. (ex: cloud model)

- Electron Density: the probability that an electron will be found in a particular region of an atom
- Atomic Orbital: the wave function of an electron in an atom, has a characteristic energy as well as a characteristic distribution of electron density