

DNA, RNA and Chromosomes

- The DNA double helix is composed of **sugar-phosphate backbones with bases attached**. There are hydrogen bonds between the complementary bases that link the two strands
 - On one end, there will always be an **exposed phosphate group**, this is known as the **5' end**
 - The other end shows an alcohol/OH group known as the 3' end
- The sugar, known as **deoxyribose** is a 5-carbon sugar (pentose)
 - The following shows the images of ribose sugar (left) and deoxyribose (right):

- The **phosphates are normally joined to the 5-carbon** (and so 5'). Monochosphate, diphosphate and triphosphate are common
 - This is essentially how many phosphates are valided to the CH₂ group
 - The phosphate makes the gueleotide negatively chargeo
- Nucleotides refer to the storcture that is a nifesenous base, a five-carbon sugar and one or more phosphate proups bonded together
 - Carbon-1 has the base attached
 - The bases are bonded to the sugar via *N*-glycosidic bonds
 - Carbon-2(RNA),3 have OH groups
 - Carbon-5 has the phosphate attached
- The **nitrogenous** bases can be separated into 2 classes based on the number of rings they contain:
 - Pyrimidines
 - These have one nitrogen-containing ring
 - They include C, T and U
 - \cup lacks the CH₃ group that T has
 - Purines
 - These have two nitrogen-containing rings
 - They include A and G
- The **base and sugar without the phosphate are known as nucleosides**, whereas with the phosphate they are nucleotides, the nucleosides are as follows:
 - A = adenosine
 - G = guanosine
 - C = cytidine
 - U = uridine
 - T = thymidine