Module: BIOM – 1007 Lecturer: Dr Bhambra Date: 07/10/16

Atoms, Elements and Isotopes

 To achieve consistent communication between chemists around the globe, the International Union of Pure and Applied Chemistry (IUPAC) was formed

- Of the 92 naturally occurring elements in the earth, 25 of these are required for life
 - 11 of these are vital for biological systems
 - However, 4 of these, hydrogen, carbon, oxygen and nitrogen make up just under 97% of a human's total body mass. They also constitute 99% of the atoms from which the body is formed
- o The quest to discover the composition of matter has spanned for many years. In **440 B.C**, the Greek philosopher **Empedocles** postulated that all matter was a construct from 4 different elements:
 - Earth, fire, air and water
 - In 300 B.C this became known as the **Aristotelian view of matter** (from Aristotle)
- In 1643, a pupil of Galileo, Evangelista Torricelli proved that air had a weight and that it was capable of pushing down on liquid mercury
 - This lead to the **discovery of the barometer** and further led to the theory that air and other gases consists of loosely packed particles, too small to be seen
 - Furthermore, during the late 18th and early 19th century a scientist, John Dalton developed his **atomic theory**
 - That all matter is made of atoms and that they cannot be broken lown into anything simpler
 - That all atoms in a particular element are idea it a to each other and differ to atoms of other elements
 - In 1987 JJ Thompson discovered the electron
 - He showed that atoms to thin smaller piece in own as subatomic particles
 - This man to the discovery by **Earnest Kutherford** in **1911**, that an atom must contain a **central puress**
 - Niels Bohr used experimental evidence to show that electrons occupy orbits and shells around the nucleus
- Atoms can be arranged in different structures known as allotropes
 - Both diamonds and graphene are made from carbon atoms
 - The carbon in diamonds is a complex structure consisting of strong covalent bonds
 - The carbon in graphene is arranged in layers being held together with weak bonds
- Atoms with the same number of protons and electrons but a different number of neutrons is known as an isotope
 - For example, oxygen has 8 protons, 8 electrons and can either have 8, 9 or 10 neutrons
 - This is written as ¹⁶O, ¹⁷O or ¹⁸O
 - The number is the atomic mass of the atom, therefore, 'normal' oxygen is ¹⁶O
 - Plants can discriminate between the 2 isotopes of CO₂ in our atmosphere, ¹²C (98.9%) and ¹³C (1.1%)
 - The difference in neutrons is enough to alter the diffusion of CO₂ within the plants chloroplast, therefore, ¹²CO₂ is preferred
 - Tracers used in metabolic studies also use isotopes such as PTOX tracers which are labelled with ¹³C
 - Isotopes can also have severely negative effects
 - D_2O compared with H_2O , studies show that a 90% replacement to D_2O proved fatal to fish and other organisms
 - It impaired the organism's haematopoiesis, inhibited mitosis, muscle and nervous function