Moles, Molar Masses and Concentrations

- A mole is a number equal to 6.02 x 10²³
 - It is also known as Avogadro's constant
 - In 12g of 12 C, there are 6.02 x 10 23 molecules
- One mole of any element has the same number of atoms, therefore;
 - 1 mol of C = 6.02×10^{23} molecules
 - 1 mol of $H_2O = 6.02 \times 10^{23}$ molecules
- One mole of 2 different elements has the same number of atoms but different masses
 - The mass of one mole of a substance is the **molar mass**:
 - Measured in g mol⁻¹ or grams per mole
 - The molar mass of an element is the same as its mass number:
 - Potassium, for example, has mass number 39, and so has a molar mass of 39 g mol⁻¹

mass of sample (

molar ma

- The molar mass of a compound is just the sum of all the mass numbers in the molecule
 - For example, potassium hydroxide (KOH) will be 39+16+1 = 56g mol⁻¹
- You can calculate the amount (mol) of a substance if you know:
 - The mass of the sample (g)
 - The molar mass of the elements involved
 - The formula is the following:
 - Amount (mol) =
- For example, how many moles of fluorine are in 95 M this ele
- It would be 95/19 = 5 moles
- Another example, how many molecules of σ , for are in 500g of glucose (C₆H₁₂O₆)?
 - It would be 500/((6x12)+(1x12)-(6x16)) = 2.78 moles
- \circ $\;$ Sometimes you may need to know the amount of substance in a sample of blood or urine etc.
 - This is known as the **concentration**
 - The concentration is considered as the number of moles of a substance per litre of solution
 - This is known as molarity
 - This is measured in **mol L⁻¹** or **mol dm⁻³** or **M**
 - The formula for concentration is:

Amount (mol) = concentration (mol L^{-1}) × volume (L)

- For example, the amount of 500ml sodium chloride (NaCl) in a 2mol L⁻¹ concentration will be:
 - 2x0.5 = 1mol of NaCl
- You also might need to prepare a solution; you can use the same equations. So how do you prepare 2L of a 2M solution of NaCl?
 - The moles needed are 2 x 2 = 4

0

- 4 moles = mass needed/molar mass (58)
 - Therefore, you will need 232g of NaCl to make the solution
- Areas of science require solutions made by percentage weight calculations
 - Therefore, a 2% glucose solution in 400ml = 400x0.02 = 8g of glucose