Module: BIOM 1009 Lecturer: Dr Bonab Date: 15/11/16

Microbial Genetics

- o Understanding the genetics of microbes is important for a number of reasons:
 - Producing microbial strains with desirable characteristics
 - Producing medicines to fight against resistant microorganisms
- Bacterial DNA, unlike human DNA, is circular and contains a much lower number of base pairs.
 - E. coli for example contains ~4 million base pairs
 - Human DNA contains ~3 billion base pairs
- o There are a few distinct differences between microbial DNA and human DNA:

Microbial	Human
Small genome (Mbp)	Very large genomes (Bbp)
Gene density is high (>90% are exons)	Gene density is low (~25% are genes, only 1% are exons)
Exons are short (~1kbp)	Genes can span >30kbp
Operons with promotors upstream of exon	Genes have ~3 transcripts
Fewer non-coding RNA's	Promotor regions are distinct from the gene
Single circular chromosome	Multiple linear chromosomes
Chromosomes condensed in the nucleoid	Chromosomes condensed in nucleus via histones

- Microorganisms contain operons, clusters of genes
 - Their mRNA is synthesised in one place and is under the control of a single promoto
 - One example is the lac operon
- o The size of bacterial chromosomes range from 0.61 to lower 10
 - The smallest bacterial generate blongs to Mycoples ma genitalium with a genome of 0.58Mbp
 - This is not free in ng
 - The largest turently belong to or promyces coelicolor with 8.7Mbp
 - This is free living and hat genes dedicated to the biosynthesis and transport of nutrients etc.
- o Because microorganisms divide at a very fast rate, they must replicate their DNA very fast
 - More will be spoken on DNA replication in BIOM 1006 Dr Sherwood
 - There are 2 components to control the initiation of replication:
 - A replicator sequence
 - This is a specific set of DNA that tells the initiator protein where to start
 - The initiator protein
 - This recognises the replicator sequence and start the unzipping of the DNA adjacent to the sequence
 - Another three components are needed during the reactions:
 - A plentiful supply of nucleotides
 - DNA helicase
 - DNA polymerase
 - When the DNA stops replicating, the two circular strands must be cut apart from each other
 - This is done via the enzyme topoisomerase