
The Nervous System Part 3

- o An axon transmits an action potential from the axon initial segment, downwards towards the terminals
 - Once initiated, the action potential is **self-propagating**
 - In nonmyelinated axons, each successive segment of membrane is depolarised then repolarised
 - It differs in myelinated fibres (see later)
 - The action potential can only travel down the axon as the Na⁺ channels behind it are still inactive
- \circ $\,$ All action potentials are alike and are independent of stimulus intensity $\,$
 - Neurones can tell the difference between a weak stimulus and a strong one by the frequency of impulses
- The refractory period that occurs due to the inactivity of sodium channels, occurs in two stages (see right):
 - Absolute refractory period
 - This is the period of time from the opening of the Na⁺ channels until the resetting of the channels
 - This ensures that an action potential is either triggered or not, no in-between
 - It also ensures that the action potential is one way
 - Relative refractory period
 - This stage follows the absolute refractory period
 - Most Na⁺ channels have returned to their resting state
 - Sonek hannels are one
 - Y C Mepolarisation Coching
 - The threshold for another action potential is increased and therefore, only very strong stimuli can stimulate another action potential
- The rate of an action potential traveling down an axon depends on two factors:
 - The axon diameter
 - Large diameter faster conduction
 - The degree of myelination in the axon
 - Unmyelinated continuous conduction
 - This is relatively slow
 - Myelinated axon saltatory conduction
 - This is fast
- \circ Myelinated fibres transmit an action potential faster due to the nodes of Ranvier
 - The action potential is only generated in the nodes of Ranvier and so does not have to depolarise the whole length of the axon
- $\circ \quad \textbf{Multiple sclerosis} \text{ is an autoimmune disease that affects young adults}$
 - In multiple sclerosis, the **myelin sheaths are destroyed when the immune system attacks the myelin**
 - This turns the myelin into harden lesions called scleroses
 - The impulses conduct slower and eventually stop
 - Demyelinated axons gradually express Na⁺ channels causes cycles of relapse and remission

