Module: BIOM - 1010 Lecturer: Dr Zhu Date: 3/11/16

The Nervous System Part 4

- **Neurone to neuron** transmission is connected by **synapses**
 - They can also transfer information from **neurone to effector cell**
- The neurones preceding and succeeding the synapse have special names:
 - Presynaptic neurone
 - Conducts the impulse to the synapse
 - Postsynaptic neurone
 - Transmits electrical signal away from synapse
 - Can be neurone, muscle cell or gland cell in PNS
- There are two types of synapse:
 - **Chemical synapse**
 - This is the **most common** type of the two
 - These synapses are specialised for the release and reception of chemical neurotransmitters
 - They are composed of two parts:
 - Axon terminal
 - This is on the presynaptic neurones membrane
 - o These contain synaptic vesicles filled with neurotransmitter
 - **Receptor region**
- This on the postsynaptic neurones medicale
 This area receives the

 - The synaptic cleft prevents imp a ses being spread directly the next neurone
 - It allows res that the peuone path is unidirectional
 - Process of chemica sometic ransfer: The action potential arrives at the terminal
 - Voltage gated Ca²⁺ channels open and Ca²⁺ enters the terminal
 - Ca²⁺ causes synaptic vesicles to release neurotransmitter and be exocytosed
 - The neurotransmitter diffuses across the synaptic cleft and binds to receptors on the postsynaptic neurone
 - The binding of neurotransmitter causes ion channels to open and create graded potentials
 - The neurotransmitter is the retaken by the presynaptic neurone via membrane proteins or enzyme degradation
 - **Electrical synapse**
 - These are less common than a chemical synapse
 - The neurones are electrically coupled
 - They are **joined by gap junctions** that connect the cytoplasm of the two neurones
 - Communication is very fast and can be unilateral or bilateral
 - These are found in some regions of the brain that are responsible for eye movement and in the hippocampus in areas involving memory and emotion
 - These are most abundant in embryonic nervous tissue
- Depending on the amount of neurotransmitter released, and the amount of time it stays in the cleft, the graded potentials can be of different strengths
 - Depending on the effect of the postsynaptic neurone, postsynaptic potentials can be:
 - **EPSP:** excitatory postsynaptic potentials
 - IPSP: Inhibitory postsynaptic potential

These are ected via

to