Lecture 24 November 20, 2014

Population Ecology 53.2-53.5

- Introduction
 - a) **Population** = group of potentially interbreeding organisms of same species
 - i) living in same area/ same time
 - ii) share common gene pool
 - iii) share same resources
 - iv) influenced by same environmental factors
 - b) **Ecology** = study of interactions between **living organisms** and physical **environment**
 - c) **Population Ecology:**
 - i) Considers number of individuals of a species in an area & pop dynamics
 - d) Populations Dynamics
 - i) Study of change in population
 - ii) How and why pop size increases or decreases over time
 - iii) determine processes common to all populations
 - iv) Different features of population studied
- II) Changes in Population Size: Pop Growth
 - a) Evaluation of Change in population
- inges in Population Size: Pop Growth

 Evaluation of Change in population

 i) All populations have potential to change in size over time (1) Change in population size = Births + Immitrees to terms population Death Emigrants leaving populations
- III) Change in Population Size Over inc
 - a) Let's consider in this (B) and deaths (A) and no mmigration or emigration
 - ed mathematically as: $\frac{\Delta N}{\Lambda t} = B D$ Growth Rate ca
 - ΔN = change in population size
 - ii) $\Delta t = time interval$
 - iii) B = number of births
 - iv) D = number of deaths
- IV) Per Capita (Per individual Growth Rate
 - a) Now express **B** as **average birth (bN) per capita** (per individual) per year →
 - i) <u>b= per capita birth rate</u> → number offspring produced per year by average member of population → calculate
 - ii) divide total number birth by total number of individuals
 - (1) Ex: 75 births per year in population of 1,000 individuals
 - (a) b = 75/1000 = 0.075 births per individuals
 - iii) **B=bN** = **expected number of births per year** in population of any size
 - (1) Ex: In a population of 200 individuals
 - (2) B (number of births) = 0.075 births per individual x 200 individuals = 15 births
 - b) now express **D** as average death (mN) per capita (per individual) per year →
 - i) m= per capita death rate → (= mortality) expected number deaths per year → calculate
 - (1) divide total number of death by total number of individuals
 - (a) Ex: 20 deaths per year in population in 1,000 individuals