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can write it in product notation in di�erent forms:

n∏
k=m

k,∏
m≤k≤n

k,∏
k∈S

k, where S = {m,m+ 1, . . . , n } .

It may happen that the sum or product should be evaluated on the empty

set. By de�nition, in such situations the sum is always 0 and the product is

always 1, e.g. ∑
k∈∅

k = 0,∏
k∈∅

k = 1.

If S and T be two disjoint sets, then∑
k∈S

k +
∑
k∈T

k =
∑

k∈S∪T

k,∏
k∈S

k ·
∏
k∈T

k =
∏

k∈S∪T

k.

Note, that this is true even if S or T is the empty set. (This is the main

reason we de�ne the empty sum to be 0 and the empty product to be 1.)

There is a special notation for the product of positive integers up to n,

that is, when we multiply the elements of

Sn = { k | k is a positive integer, k ≤ n } = { 1, 2, . . . , n } .

The product of the elements of Sn is called n factorial and denoted by n!,

that is,

n! =
∏
k∈Sn

k =
n∏

k=1

k = 1 · 2 · · · · · (n− 1) · n.

We even de�ne 0!, that is, the products of elements of S0:

0! =
∏
k∈S0

k =
∏
k∈∅

k = 1.
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14 INTRODUCTION

Factorials are always computed before any other operation. For example

2 + 3! = 2 + 1 · 2 · 3 = 2 + 6 = 8,

(2 + 3)! = 5! = 1 · 2 · 3 · 4 · 5 = 120.

Exercise 1.9. Expand the following sums.

(a)
∑7

i=4 i,

(b)
∑5

i=1(i
2 − i),

(c)
∑4

i=1 10
i,

(d)
∑

2≤i≤5
1
2i
,

(e)
∑

i∈S(−1)i, where S = { 2, 3, 5, 8 }.

Exercise 1.10. Write the following expressions in summation notation.

(a) 2 + 4 + 6 + 8 + 10,

(b) 1 + 4 + 7 + 10,

(c) 1
4
+ 1

2
+ 1 + 2 + 4,

(d) 1
4
− 1

2
+ 1− 2 + 4.

Exercise 1.11. Expand the following products.

(a)
∏−1

i=−4 i,

(b)
∏4

i=1(i
2),

(c)
∏3

i=1 2
i,

(d)
∏
−2≤i≤3

1
2i
,

(e)
∏

i∈S(−1)i, where S = { 2, 4, 6, 7 }.

Exercise 1.12. Write the following expressions in product notation.

(a) 1 · 3 · 5 · 7,
(b) (−1) · 2 · 5 · 8,
(c) 1

9
· 1
3
· 1 · 3 · 9.

Exercise 1.13. Compute the values of n! for every n ∈ { 0, 1, 2, 3, 4, 5, 6, 7, 8 }.
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1.3 The Euclidean algorithm 17

a remainder r1. Then we apply the Division algorithm for b and r1 to get a

new quotient q2 and a new remainder r2. We continue, we divide r1 by r2 to

obtain q3 and r3. We stop if we obtain a zero remainder. Since the procedure

produces a decreasing sequence of non-negative integers so must eventually

terminate by descent. The last non-zero remainder is the greatest common

divisor of a and b.

As an example we compute gcd(553, 161). We write the computations in

the following way:

553 = 3 · 161 + 70 q1 = 3, r1 = 70

161 = 2 · 70 + 21 q2 = 2, r2 = 21

70 = 3 · 21 + 7 q3 = 3, r3 = 7

21 = 3 · 7 + 0 q4 = 3, r4 = 0.

That is, the last non-zero remainder is 7, so gcd(553, 161) = 7. If we would

like to express 7 as 553x + 161y for some x, y ∈ Z, we can do it by working

backwards

7 = 70− 3 · 21

= 70− 3 · (161− 2 · 70) = −3 · 161 + 7 · 70

= −3 · 161 + 7 · (553− 3 · 161) = 7 · 553− 24 · 161.

It follows that x = 7 and y = −24.

Exercise 1.16. Use the Euclidean algorithm to �nd gcd(a, b) and compute

integers x and y for which

ax+ by = gcd(a, b) :

(a) a = 678, b = 567,

(b) a = 803, b = 319,

(c) a = 2701, b = 2257,

(d) a = 3397, b = 1849.
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22 INTRODUCTION

Now, rewrite 25010 into base 3:

250 = 83 · 3 + 1,

83 = 27 · 3 + 2,

27 = 9 · 3 + 0,

9 = 3 · 3 + 0,

3 = 1 · 3 + 0,

1 = 0 · 3 + 1.

The remainders backwards are 1, 0, 0, 0, 2, 1, thus

3728 = 25010 = 1000213.

Finally, we mention that some rewriting can be done much quicker if one

base is a full power of another. For example, 8 = 23, and then every base 8

digit can be rewritten easily to three base 2 digits:

08 = 0002, 18 = 0012,

28 = 0102, 38 = 0112,

48 = 1002, 58 = 1012,

68 = 1102, 78 = 1112.

Going from right to left, every three base 2 digits can be easily rewritten into

base 8, as well. Thus, it is easy to rewrite 3728 into base 2 or 101012 into

base 8:

3728 = 011 111 0102 = 111110102,

101012 = 010 1012 = 258.

Similarly, as 16 = 24, every base 16 digit can be rewritten easily to four

Preview from Notesale.co.uk

Page 22 of 203



1.4 Numeral systems 23

base 2 digits:

016 = 00002, 116 = 00012,

216 = 00102, 316 = 00112,

416 = 01002, 516 = 01012,

616 = 01102, 716 = 01112,

816 = 10002, 916 = 10012,

A16 = 10102, B16 = 10112,

C16 = 11002, D16 = 11012,

E16 = 11102, F16 = 11112.

Going from right to left, every four base 2 digits can be easily rewritten into

base 16, as well. Thus, it is easy to rewrite AFE16 into base 2 or 101012 into

base 16:

AFE16 = 1010 1111 11102 = 1010111111102,

101012 = 0001 01012 = 1516.

We have to stress, though, that this method only works if one base is a

full power of the other. Finally, base 8 numbers can be easily changed to

base 16 (and vice versa) by �rst changing them to base 2, and then into the

other base:

3728 = 011 111 0102 = 111110102 = 1111 10102 = FA16,

AFE16 = 1010 1111 11102 = 1010111111102 = 101 011 111 1102 = 53768.

Exercise 1.19. (a) Write the following numbers into base 10: 1110011012,

10101012, 111112, 101102, 1010101012, 100010002, 10101112, 1111012,

211023, 12345, 12347, 12348, 7778, 3458, 20128, 45658, 11238, 6668, 7418,

CAB16, BEE16, EEE16, 4D416, ABC16, 9B516, DDD16, 3F216.

(b) Write the following decimal numbers into base 2, 3, 5, 7, 8, 9, 16:

6410, 5010, 1610, 10010, 201210, 20010, 15110, 4810, 9910, 99910.
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2.2 Number of subsets 33

After solving Exercise 2.11, one suspects that the number of subsets de-

pend only on the cardinality of the set, and not on the actual elements of

the set. This is true in general: for example if a set has three elements, then

we might as well name the elements a, b and c, and then its subsets will be

exactly the same as we determined in Exercise 2.11.

Let us try to determine the number of subsets of a set with given car-

dinality. Let S be a set of cardinality 0, i.e. S = ∅. Then S has only one

subset: ∅. If S is a set of cardinality 1, e.g. S = { a }, then it has two subsets:

{ } = ∅, { a } = S. If S is a set of cardinality 2, e.g. S = { a, b }, then it has

four subsets: { } = ∅, { a }, { b }, { a, b } = S. If S is a set of cardinality 3,

e.g. S = { a, b, c }, then it has eight subsets: { } = ∅, { a }, { b }, { c }, { a, b },
{ a, c }, { b, c }, { a, b, c } = S. Figure 2.1 shows all subsets of { a, b, c }. In

this �gure, two sets are connected if the lower one is a subset of the upper

one. Table 2.2 summarizes our �ndings on the number of subsets so far.

{ a, b, c }

{ a, b } { a, c } { b, c }

{ a } { b } { c }

{ }

Figure 2.1: Subsets of { a, b, c }.

Exercise 2.12. Guess what the rule is by looking at Table 2.2 and listing

all subsets of { a, b, c, d } and { a, b, c, d, e }, if necessary.

It seems that if S has n elements, then it has 2n subsets. This is reinforced

by Figure 2.1, where we represented the subsets of a three-element set by the
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42 COUNTING

responding to the anagram `eye' (upper right part). There are two di�erent

colourings depending on the e's: we can colour the �rst `e' by two colours,

and the second `e' by one colour, therefore there are 2·1 = 2 coloured `eye's in

that group. Similarly, every group contain exactly two coloured anagrams.

Thus the number of groups (and the number of uncoloured anagrams) is
6
2
= 3.

Exercise 2.26. How many anagrams does the word `puppy' have? Try to

use the argument presented above.

This argument can now be generalized when more letters can be the same:

Theorem 2.8. Let us assume that a word consists of k di�erent letters,

such that there are n1 of the �rst letter, n2 of the second letter, etc. Let

n = n1 + n2 + · · ·+ nk be the number of letters altogether in this word. Then

the number of anagrams this word has is exactly

n!

n1! · n2! · · · · · nk!
.

Proof. Let us color all the letters with di�erent colours, and let us count �rst

the number of coloured anagrams. This is the number of permutations of n

di�erent letters, that is, n! by Theorem 2.7.

Now, group together those anagrams which represent the same word,

and di�er only in their colourings. The number of uncoloured anagrams is

the same as the number of groups. To compute this number, we count the

number of coloured words in each group.

Take an arbitrary group representing an anagram. The words listed in

this group di�er only by the colourings. The �rst letter appears n1-many

times, and these letters have n1!-many di�erent colourings by Theorem 2.7.

Similarly, the second letter appears n2-many times, and these letters have

n2!-many di�erent colourings by Theorem 2.7, etc. Finally, the kth letter

appears nk-many times, and these letters have nk!-many di�erent colourings

by Theorem 2.7. Thus, the number of words in a group is n1! · n2! · · · · ·
nk!. Therefore the number of groups, and hence the number of (uncoloured)

anagrams is
n!

n1! · n2! · · · · · nk!
.
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2.7 Distributing money 51

2.7 Distributing money

Three pirates (Anne Bonney, Black Bellamy and Calico Jack) raid a small

ship. They take all the treasure they can �nd, which is seven gold pieces

altogether. Afterwards, they would like to distribute the loot among them-

selves. They only have one rule: since everybody was useful during the raid,

everyone should receive at least 1 gold piece. How many ways can they dis-

tribute the seven gold pieces? Gold pieces are identical, it does not matter

who gets which gold piece. It only matters how many gold pieces each pirate

gets.

One way to solve this problem is of course to write down all possible

distributions. Let us list the possibilities by considering the amount of gold

pieces received by the highest rewarded pirate. If everyone needs to get at

least one gold piece, then nobody can have more than �ve gold pieces. In

fact, if somebody gets �ve gold pieces, then the other two will have two

gold pieces to distribute, which they can only do by giving one gold piece

to each of them. This is three possibilities (depending on who receives the

�ve gold pieces). If the pirate in the highest regard gets four gold pieces,

then the other two pirates will have three gold pieces to distribute. They

can only distribute it as two-one. This altogether amounts to 6 possibilities:

3 possibilities on who gets four gold pieces, then in each case 2 possibilities

on who gets two gold pieces, that is, 3 · 2 possibilities. (Note that this is

the number of permutations of the three pirates.) Finally, if the highest

reward is three gold pieces, then the other two pirates can distribute the

remaining four gold pieces in two di�erent ways: either one of them gets

three gold pieces, and the other gets one, or both get two gold pieces. Both

distributions amount to 3 possibilities altogether. In the �rst case there are 3

possibilities to choose who gets one gold piece (and the other two gets three

gold pieces each). In the second case there are 3 possibilities to choose who

gets three gold pieces (and the other two gets two gold pieces each). Table 2.4

summarizes the 15 possible distributions.
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2.7 Distributing money 55

Here, we received exactly the same number of distributions as for the

earlier case, when the three pirates needed to distribute 7 gold pieces, and

everybody needed to get at least one. This can hardly be a coincidence.

Somehow, we should be able to reduce the new problem to the earlier prob-

lem. The main di�erence is that now every pirate needs to get at least two

gold pieces instead of one. This can be easily remedied: everyone takes one

gold piece at the very beginning. Then seven gold pieces remain (10 − 3),

and everyone needs to get at least one more. And this is now exactly the

same problem as before. Again, the argument works in general: if there are

n pirates and k gold pieces, and everybody needs to get at least two gold

pieces, then �rst every pirate takes one gold piece. This way, everyone needs

to get one more gold piece, and they will have k−n gold pieces to distribute

further. Applying Theorem 2.15 we can prove

Proposition 2.16. Assume n pirates want to distribute k gold pieces among

themselves (for some k ≥ 2n) such that everybody gets at least two gold

pieces. They can do this in
(
k−n−1
n−1

)
-many ways.

Exercise 2.40. Prove Proposition 2.16 precisely.

The three pirates continued to raid ships. Next time they found a small

boat with a �sherman and only four gold pieces. They, again, want to dis-

tribute these gold pieces among themselves. But this time they do not want

to impose any conditions on the distributions. It may be possible that some-

body does not receive any gold pieces, even that somebody takes all the gold.

How many ways can they distribute the four gold pieces among themselves?

After the previous two exercises, it is not too di�cult to �nd all the

possibilities. There are three possibilities corresponding to the distribution

where one of them gets all four gold pieces (three possibilities depending

on who gets all the gold). If one of them gets three gold pieces, then the

remaining one gold piece goes to one of the remaining pirates. There are 6

such possibilities: 3 choices on who gets three gold pieces, and for each choice

there are 2 choices on who of the remaining two pirates gets 1 gold piece (and

the last pirate does not get any gold pieces). If the highest rewarded pirate

gets two gold pieces, then the remaining two gold pieces can be distributed
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Chapter 3

Proof techniques

3.1 Proofs by induction

In mathematics one often uses induction to prove general statements. Let

us see how this argument works. Suppose we have a statement S(n) which

depends on n. When we apply induction we prove that S(n0) is true for the

smallest possible value n0. Then we show that if the statement is true for all

possible values less than n, then the statement is also true for n. Finally, we

conclude that the statement is true for all n ≥ n0. There is a very similar

notion called recursion. For example we can de�ne n! as follows

n! =

1 if n = 1,

n · (n− 1)! if n > 1.

The basic idea is that we can compute e.g. 100! if we have computed 99!,

98!, . . ., 1!. Induction works in the same way, if we can prove a statement for

certain smaller instances, then we can prove it for large values as well. More

about recursion will follow in Chapter 5.

Now we study induction in more detail.

Theorem 3.1 (Mathematical Induction I). Let S(n) be a statement depend-

ing on n ∈ N. Suppose that

(a) S(1) is true,
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3.2 Proofs by contradiction 75

3.2 Proofs by contradiction

In this section we study an important tool to prove mathematical theorems.

This tool is called proof by contradiction or indirect proof. There is a simple

logic behind, instead of proving that something must be true, we prove it

indirectly by showing that it cannot be false. We assume that the opposite of

our theorem is true. From this assumption we try to obtain such a conclusion

which is known to be false. This contradiction then shows that our theorem

must be true.

Let us consider a basic example. We try to prove that
√
2 is irrational.

We provide an indirect proof. We assume the opposite of our statement, that

is, that
√
2 is rational. Rational numbers can be written as a

b
for some a ∈ Z

and b ∈ N such that the greatest common divisor of a and b is 1. So we have

√
2 =

a

b
.

Hence a2 = 2b2. It follows that 2 divides a, so a = 2a1 for some a1 ∈ Z.
We substitute this into the equation a2 = 2b2 and we get 4a21 = 2b2. After

dividing by 2 we get 2a21 = b2. So we have that 2 divides b. We have a

contradiction since the greatest common divisor of a and b should be 1, but

we obtained that 2 divides a and also divides b. Hence 2 divides the greatest

common divisor. This contradiction shows that our statement must be true,

that is,
√
2 is irrational.

In Section 1.3 there is a statement about the Division algorithm which

says that given two integers a and b such that b > 0, there exist unique

integers q and r for which

a = qb+ r, 0 ≤ r < b.

Now we prove that q and r are unique. We give a proof by contradiction.

Assume that there exist integers q, q′ and r, r′ such that q 6= q′ or r 6= r′ and

a = qb+ r, 0 ≤ r < b,

a = q′b+ r′, 0 ≤ r′ < b.
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78 PROOF TECHNIQUES

Exercise 3.14. Prove that if x + y > 10 for some x, y ∈ Z, then x > 5 or

y > 5.

Exercise 3.15. Prove that there exists no integer n such that n2 − 2 is a

multiple of 4.

Exercise 3.16. Prove that
√
2 +
√
3 is irrational.

Exercise 3.17. Prove that if a, b and c are odd integers, then the equation

ax2 + bx+ c = 0

has no solution with x ∈ Q.

Exercise 3.18. Given n integers a1, a2, . . . , an, prove that there exists 1 ≤
i ≤ n such that

ai ≥
a1 + a2 + . . .+ an

n
.

Exercise 3.19. Let Fn be a sequence de�ned by F1 = F2 = 1 and Fn =

Fn−1+Fn−2, n ≥ 3, that is, the Fibonacci sequence. Prove that gcd(Fn, Fn+1) =

1 for all positive integer n.

3.3 Constructive proofs

In this section we deal with several problems for which a method can be

provided to create a solution. We consider the coin problem (known also

as the Frobenius problem). Let us be given a currency system with k ≥ 2

distinct integer denominations a1 < a2 < . . . < ak. Which amounts can be

changed? This question yields the following linear Diophantine equation

a1x1 + a2x2 + . . .+ akxk = n,

where x1, . . . , xk are non-negative integers. Now we study the case k = 2,

that is, our equation is

a1x1 + a2x2 = n.

There are some natural questions to pose:
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82 PROOF TECHNIQUES

We would like to have non-negative solutions, hence

−3n− 11t ≥ 0⇒ t ≤ −3n
11

2n+ 7t ≥ 0⇒ t ≥ −2n
7

.

So we have the following inequalities

−2n
7
≤ t ≤ −3n

11
.

If there is an integer contained in the interval [−2n
7
, −3n

11
], then n can be repre-

sented in the form 7x1+11x2. Denote by In the set
{
t | −2n

7
≤ t ≤ −3n

11
, t ∈ Z

}
.

n In n In n In n In n In

1 ∅ 16 ∅ 31 ∅ 46 {−13 } 61 {−17 }
2 ∅ 17 ∅ 32 {−9 } 47 {−13 } 62 {−17 }
3 ∅ 18 {−5 } 33 {−9 } 48 ∅ 63 {−18 }
4 ∅ 19 ∅ 34 ∅ 49 {−14 } 64 {−18 }
5 ∅ 20 ∅ 35 {−10 } 50 {−14 } 65 {−18 }
6 ∅ 21 {−6 } 36 {−10 } 51 {−14 } 66 {−18 }
7 {−2 } 22 {−6 } 37 ∅ 52 ∅ 67 {−19 }
8 ∅ 23 ∅ 38 ∅ 53 {−15 } 68 {−19 }
9 ∅ 24 ∅ 39 {−11 } 54 {−15 } 69 {−19 }
10 ∅ 25 {−7 } 40 {−11 } 55 {−15 } 70 {−20 }
11 {−3 } 26 ∅ 41 ∅ 56 {−16 } 71 {−20 }
12 ∅ 27 ∅ 42 {−12 } 57 {−16 } 72 {−20 }
13 ∅ 28 {−8 } 43 {−12 } 58 {−16 } 73 {−20 }
14 {−4 } 29 {−8 } 44 {−12 } 59 ∅ 74 {−21 }
15 ∅ 30 ∅ 45 ∅ 60 {−17 } 75 {−21 }

We can �nd 7 consecutive integers indicated in the table for which the set In
is not empty, that is, those integers can be represented in the form 7x1+11x2 :

n = 60 x1 = (−3) · 60− 11 · (−17) = 7, x2 = 2 · 60 + 7 · (−17) = 1,

n = 61 x1 = (−3) · 61− 11 · (−17) = 4, x2 = 2 · 61 + 7 · (−17) = 3,

n = 62 x1 = (−3) · 62− 11 · (−17) = 1, x2 = 2 · 62 + 7 · (−17) = 5,
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84 PROOF TECHNIQUES

for some t ∈ Z. It remains to determine the integer solutions of the equation

y1 = 4x1+5x2 = n+7t. The �rst thing to do is to �nd a particular solution.

It is easy to check that

x1 = −n+ 3t,

x2 = n− t

is a solution. Applying the techniques used in case of two variables we get

the following parametrization of integral solution

x1 = −n+ 3t− 5s,

x2 = n− t+ 4s,

x3 = −t

for some s, t ∈ Z. As a concrete example consider the equation 4x1 + 5x2 +

7x3 = 23. Then we obtain integer solutions by substituting concrete integral

values into the above formulas. Some solutions are indicated in the following

table

(s, t) (x1, x2, x3)

(0, 0) (−23, 23, 0)
(−1, 0) (−18, 19, 0)
(0,−1) (−26, 24, 1)
(1, 0) (−28, 27, 0)
(0, 1) (−20, 22,−1)

(−1,−1) (−21, 20, 1)
(1, 1) (−25, 26,−1)

What about non-negative integer solutions? That is, if one asks for solu-

tions such that x1, x2, x3 ∈ N∪{ 0 }. In case of the equation 4x1+5x2+7x3 =

n we determined the parametrization of the integral solutions, so we get the

following inequalities

0 ≤ −n+ 3t− 5s,

0 ≤ n− t+ 4s,

0 ≤ −t.
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88 PROOF TECHNIQUES

Proposition 3.9. There is a nonzero multiple of 6 whose digits are all zeroes

and ones.

Proof. We apply the pigeonhole principle and the Division algorithm. Con-

sider the integers an =
∑n

k=0 10
k for n = 0, 1, 2, 3, 4, 5. We can write these

numbers as qn · 6 + rn, where qn is the quotient and rn is the remainder,

so 0 ≤ rn < 6. There are six possibilities for rn and there are six integers

a0, a1, . . . , a5. The numbers a0, a1, . . . , a5 are odd integers while 6 is even,

hence rn 6= 0 for all n. We have that rn ∈ { 1, 2, 3, 4, 5 } for all n. There

are only 5 pigeonholes (possible remainders) and 6 pigeons (integers an). We

obtain that there are at least two integers having the same remainder, say,

am1 and am2 , where m1 < m2. In this case am2 − am1 is divisible by 6 and all

the digits are zeroes and ones.

n an qn · 6 + rn

0 1 0 · 6 + 1

1 11 1 · 6 + 5

2 111 18 · 6 + 3

3 1111 185 · 6 + 1

4 11111 1851 · 6 + 5

5 111111 18518 · 6 + 3

It is clear that r0 = r3 = 1, therefore a3− a0 = 1111− 1 = 1110 is a multiple

of 6 (1110 = 185 · 6) and this integer is in a right form.

Proposition 3.10. Let A be a set containing n ≥ 2 integers. There is a

subset of A such that the sum of its elements is a multiple of n.

Proof. We have a set containing n elements, let us say these are a1, a2, . . . , an.

We de�ne n subsets as follows

Sk = { a1, . . . , ak } , k = 1, 2, . . . , n,

that is, S1 = { a1 } , S2 = { a1, a2 } , . . . , Sn = A. Denote by sk the sum of the

elements of Sk. We apply the Division algorithm to write sk = qk · n + rk,

where 0 ≤ rk < n. If for some k we have rk = 0, then

sk = a1 + . . .+ ak = qk · n,
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4 Pascal's triangle 95

(every row starts with the zeroth number), the two numbers above it are the

(k − 1)st and kth of row n − 1, that is,
(
n−1
k−1

)
and

(
n−1
k

)
. Thus, if we prove

that
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
, then the two triangles are indeed the same.

Proposition 4.1. For positive integers k ≤ n we have(
n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
.

Proof. Let us substitute the formula (2.1) into the right-hand side:(
n− 1

k − 1

)
+

(
n− 1

k

)
=

(n− 1)!

(k − 1)! · (n− 1− (k − 1))!
+

(n− 1)!

k! · (n− 1− k)!

=
(n− 1)!

(k − 1)! · (n− k)!
+

(n− 1)!

k! · (n− k − 1)!

=
(n− 1)! · k + (n− 1)! · (n− k)

k! · (n− k)!
=

(n− 1)! · (k + n− k)

k! · (n− k)!

=
(n− 1)! · n
k! · (n− k)!

=
n!

k! · (n− k)!
=

(
n

k

)
.

Exercise 4.1. Create a precise proof using induction that the two triangles

are the same.

This proof is a correct one, but not necessarily satisfying. It contains

calculations, but does not show the reason why the sum of the binomial

coe�cients
(
n−1
k−1

)
and

(
n−1
k

)
is really

(
n
k

)
. One might wonder if there is an

�easier� proof, which only uses the de�nition of
(
n
k

)
. Indeed there is, as we

show now.

Second proof of Proposition 4.1. Let A = { 1, 2, . . . , n }, and we count the

number of k-element subsets of A in two di�erent ways. On the one hand,

we know that the number of k-element subsets of A is
(
n
k

)
. On the other

hand, we count the k-element subsets such that we �rst count those which

contain the element n, then we count those, which do not.
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4.2 Identities 101

Let us start by the sum of the numbers in a row:

1 = 1,

1 + 1 = 2,

1 + 2 + 1 = 4,

1 + 3 + 3 + 1 = 8,

1 + 4 + 6 + 4 + 1 = 16,

1 + 5 + 10 + 10 + 5 + 1 = 32,

1 + 6 + 15 + 20 + 15 + 6 + 1 = 64.

It seems from these equations that the sum of the numbers in the nth

row is 2n. This stetement is equivalent to the equality

(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)
= 2n.

Note, that we have already proved this, �rst in Proposition 2.14, then later

in Exercise 4.5. Now, we prove it a third way, using the generating rule of

Pascal's triangle.

Let us consider �rst the 7th row, and try to compute the sum using the

generating rule of Pascal's triangle, rather than adding the numbers:

1 + 7 + 21 + 35 + 35 + 21 + 7 + 1

= 1 + (1 + 6) + (6 + 15) + (15 + 20) + (20 + 15) + (15 + 6) + (6 + 1) + 1

= 2 · (1 + 6 + 15 + 20 + 15 + 6 + 1) = 2 · 26 = 27 = 128.

This idea can be used in the general case, as well.

Now, we prove that the sum of the numbers in the nth row of Pascal's

triangle is 2n by induction on n. The statement holds for n = 0 and n = 1

(in fact, we just calculated that it holds for n ≤ 7). Assume now that the

statement holds for n, as well. That is, the sum of the numbers in the nth

row is 2n. Consider the sum of the (n+1)st row, and let us use the generating
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102 PASCAL'S TRIANGLE

rule of Pascal's triangle:(
n+ 1

0

)
+

(
n+ 1

1

)
+

(
n+ 1

2

)
+ · · ·+

(
n+ 1

n− 1

)
+

(
n+ 1

n

)
+

(
n+ 1

n+ 1

)
=

(
n

0

)
+

((
n

0

)
+

(
n

1

))
+

((
n

1

)
+

(
n

2

))
+

((
n

2

)
+

(
n

3

))
+ . . .

+

((
n

n− 2

)
+

(
n

n− 1

))
+

((
n

n− 1

)
+

(
n

n

))
+

(
n

n

)
= 2 ·

[(
n

0

)
+

(
n

1

)
+

(
n

2

)
+ · · ·+

(
n

n− 2

)
+

(
n

n− 1

)
+

(
n

n

)]
= 2 · 2n = 2n+1.

First, we replaced
(
n+1
0

)
= 1 by

(
n
0

)
= 1, and

(
n+1
n+1

)
= 1 by

(
n
n

)
= 1, then we

used the generating rule of Pascal's triangle. Then we observed that every(
n
k

)
occurs twice in the sum (for 0 ≤ k ≤ n). Finally, we used the induction

hypothesis on the sum of the numbers for the nth row.

Let us use a similar reasoning to calculate the sum of the numbers in a

row, with alternating signs. That is, compute the sum

n∑
k=0

(−1)k ·
(
n

k

)
=

(
n

0

)
−
(
n

1

)
+

(
n

2

)
−· · ·+(−1)n−1 ·

(
n

n− 1

)
+(−1)n ·

(
n

n

)
.

It is easy to compute this sum for the �rst couple rows:

1 = 1,

1− 1 = 0,

1− 2 + 1 = 0,

1− 3 + 3− 1 = 0,

1− 4 + 6− 4 + 1 = 0,

1− 5 + 10− 10 + 5− 1 = 0,

1− 6 + 15− 20 + 15− 6 + 1 = 0,

1− 7 + 21− 35 + 35− 21 + 7− 1 = 0.

It seems likely that for n ≥ 1 the alternating sum of the numbers in the nth

row of Pascal's triangle is 0.
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106 PASCAL'S TRIANGLE

Exercise 4.11. Prove that

l∑
k=0

(
n

k

)
·
(

m

l − k

)
=

(
n+m

l

)
, that is,(

n

0

)
·
(
m

l

)
+

(
n

1

)
·
(

m

l − 1

)
+ · · ·+

(
n

l

)
·
(
m

0

)
=

(
n+m

l

)
.(4.6)

How do we need to choose m and l so that (4.6) gives us the equality (4.5)?

We could have used the Binomial theorem to prove (4.5):

Second proof of Proposition 4.4. Consider (x+y)2n, and expand it using the

Binomial theorem:

(x+ y)2n =
2n∑
k=0

(
2n

k

)
x2n−k · yk.

Then the right hand side of (4.5) is the coe�cient of the term xnyn. We

prove that the left hand side is the coe�cient of xnyn, as well. For this, we

compute (x + y)2n by multiplying (x + y)n · (x + y)n after expanding both

factors using the Binomial theorem:

(x+ y)2n = (x+ y)n · (x+ y)n =

(
n∑

k=0

(
n

k

)
xn−kyk

)
·

(
n∑

k=0

(
n

k

)
xn−kyk

)
.

Now, let us compute the coe�cient of xnyn. When do we obtain xnyn when

we multiply
(∑n

k=0

(
n
k

)
xn−kyk

)
by itself? Take for example xn from the �rst

factor, this must be multiplied by yn from the second factor to obtain xnyn.

The coe�cient of xn in the �rst factor is
(
n
0

)
, the coe�cient of yn in the

second factor is
(
n
n

)
, thus this multiplication contributes by

(
n
0

)
·
(
n
n

)
to the

coe�cient of xnyn in (x+ y)2n. Similarly, take the term xn−1y from the �rst

factor, this must be multiplied by xyn−1 from the second factor to obtain

xnyn. The coe�cient of xn−1y in the �rst factor is
(
n
1

)
, the coe�cient of

xyn−1 in the second factor is
(

n
n−1

)
, thus this multiplication contributes by(

n
1

)
·
(

n
n−1

)
to the coe�cient of xnyn in (x + y)2n. In general, for some k the

term xn−kyk in the �rst factor must be multiplied by xkyn−k from the second

factor. The coe�cient of xn−kyk in the �rst factor is
(
n
k

)
, the coe�cient of

xkyn−k in the second factor is
(

n
n−k

)
, thus this multiplication contributes by
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6.1 Introduction 133

4,5 6,7

8,9,10

A B

C

1,2

3

1.9 (a)
∑7

i=4 i = 4 + 5 + 6 + 7,

(b)
∑5

i=1(i
2 − i) = 0 + 2 + 6 + 12 + 20,

(c)
∑4

i=1 10
i = 10 + 100 + 1000 + 10000,

(d)
∑

2≤i≤5
1
2i
= 1

4
+ 1

8
+ 1

16
+ 1

32
,

(e)
∑

i∈S(−1)i, where S = { 2, 3, 5, 8 } is 1 + (−1) + (−1) + 1.

1.10 (a) 2 + 4 + 6 + 8 + 10 =
∑5

i=1 2i,

(b) 1 + 4 + 7 + 10 =
∑3

i=0(3i+ 1),

(c) 1
4
+ 1

2
+ 1 + 2 + 4 =

∑2
i=−2 2

i,

(d) 1
4
− 1

2
+ 1− 2 + 4 =

∑2
i=−2(−2)i.

1.11 (a)
∏−1

i=−4 i = (−4) · (−3) · (−2) · (−1),

(b)
∏4

i=1(i
2) = 1 · 4 · 9 · 16,

(c)
∏3

i=1 2
i = 2 · 4 · 8,

(d)
∏
−2≤i≤3

1
2i
= 4 · 2 · 1 · 1

2
· 1
4
· 1
8
,

(e)
∏

i∈S(−1)i, where S = { 2, 4, 6, 7 } is (−1)2 · (−1)4 · (−1)6 · (−1)7.

1.12 (a) 1 · 3 · 5 · 7 =
∏3

i=0(2i+ 1),

(b) (−1) · 2 · 5 · 8 =
∏3

i=0(3i− 1),

(c) 1
9
· 1
3
· 1 · 3 · 9 =

∏2
i=−2 3

i.
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6.1 Introduction 135

If n ≥ 2, then another proof could be

n! = n · (n− 1) · (n− 2) · · · · · 2 · 1︸ ︷︷ ︸
(n−1)!

= n · (n− 1)!.

Nevertheless, the claim is true for n = 1, as well:

1! = 1 = 1 · 1 = 1 · 0!.

1.16 (a) We obtain that

678 = 1 · 567 + 111

567 = 5 · 111 + 12

111 = 9 · 12 + 3

12 = 4 · 3 + 0.

Thus gcd(678, 567) = 3. We work backwards to compute x and y :

3 = 111− 9 · 12

= 111− 9 · (567− 5 · 111) = −9 · 567 + 46 · 111

= −9 · 567 + 46 · (678− 567) = 46 · 678− 55 · 567.

Hence we have

46 · 678− 55 · 567 = gcd(678, 567) = 3.

(b) We get that

803 = 2 · 319 + 165

319 = 1 · 165 + 154

165 = 1 · 154 + 11

154 = 14 · 11 + 0.

It follows that gcd(803, 319) = 11. Now we �nd x and y :

11 = 165− 154

= 165− (319− 165) = −319 + 2 · 165

= −319 + 2 · (803− 2 · 319) = 2 · 803− 5 · 319.
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6.2 Counting 143

to divide it by 2. But 15/2 is not an integer, while the number of

handshakes should be an integer. This contradiction proves that it is

not possible that each of 5 people shakes hand with 3 others.

For 7 people we can use this argument, again. If we sum up all the

handshakes for everyone, we obtain 7 · 3 = 21, as each of the 7 people

shakes hand with 3 others. This way, we counted every handshake

twice, thus to obtain the number of handshakes we need to divide it by

2. But 21/2 is not an integer, while the number of handshakes should

be an integer. This contradiction proves that it is not possible that

each of 7 people shakes hand with 3 others.

2.3 The four boys shake hands with each other, that is, 4·3
2

= 6 handshakes.

The four girls kisses each other, those are 4·3
2

= 6 kisses by the same

formula we use for handshakes. Finally, a boy and a girl kisses, as well.

All four boys kiss all four girls on the cheek, which is 4 · 4 = 16 more

kisses. Ultimately, there are 6 handshakes and 22 kisses.

2.4 (a) Not possible. If there are �ve packs, each of them containing odd

many rabbits, then altogether in the �ve packs there are odd many

rabbits (odd+odd+odd+odd+odd is odd). As 100 is not an odd

number, it is not possible to do the required distribution.

(b) It is possible, e.g. 3 · 3 · 1 · 1 · 1. Another possibility could be

9 · 1 · (−1) · 1 · (−1), or simply 9 (as only one integer).

(c) It is possible, e.g. 3 · 3 · 1 · 1 · 1 · 1 · (−1) · 1 · (−1), or another

possibility is 9 · 1 · (−1) · 1 · (−1) · 1 · (−1) · 1 · (−1).

(d) Not possible. If the product of integer numbers is 9, then all of

them are odd. But then the sum of 9 odd integer numbers is odd

again, and hence cannot be 0.

2.5 (a) We can apply Proposition 2.1 and obtain

1 + 2 + 3 + · · ·+ 23 + 24 =
24 · 25

2
= 300.
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2.17 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number binary number subset of S

11 010112 { a0, a1, a3 }
7 001112 { a0, a1, a2 }
15 011112 { a0, a1, a2, a3 }
16 100002 { a4 }
31 111112 { a0, a1, a2, a3, a4 }

Note, that the encoding was de�ned in such a way, that the sub-

set of { a0, a1, a2, a3 } corresponding to k is the same as the subset of

{ a0, a1, a2, a3, a4 } corresponding to k (for arbitrary 0 ≤ k ≤ 15).

2.18 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number binary number subset of S

49 1100012 { a0, a4, a5 }

2.19 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number binary number subset of S

101 11001012 { a0, a2, a5, a6 }

2.20 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number binary number subset of S

199 110001112 { a0, a1, a2, a6, a7 }

2.21 All possibilities are listed in Table 6.2 on page 149.

2.22 The number of permutations of { 1, 2, 3, 4 } is 4! = 24.

2.23 The number of permutations of { a, b, c, d } is 4! = 24.
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The boys can sit on their seats in 5! = 120-many ways. The girls

(independently on how the boys sit) can sit on their seats in 3! = 6-

many ways. Altogether, they can sit in 6 · 120 = 720-many ways.

2.25 The number of anagrams of `retinas' is the same as the number of

permutations of the letters `r', `e', `t', `i', `n', `a' and `s'. There are 7

di�erent letters, hence the number of permutations is 7! = 5 040.

2.26 Again, let us color the `p's in the anagrams by three colors: red, green,

blue. This way, there will be 5! = 120-many coloured anagrams of

puppy, the same as the number of permutations of �ve di�erent el-

ements. Now, group together those anagrams, which only di�er by

their colouring. For example the group `puppy' would contain `puppy',

`puppy', `puppy', `puppy', `puppy', `puppy'. How do we know that

there are six coloured `puppy's? The coloured `puppy's only di�er in

the colourings of the `p's. The �rst `p' can be coloured by 3 di�erent

colours, the next `p' (right after the `u') can be coloured by two di�er-

ent colours (it cannot be coloured by the same colour as the �rst `p'),

then the last `p' should be coloured by the remaining colour. Thus,

there are 3 · 2 · 1 = 6-many coloured `puppy's. Similarly, there are 6

coloured versions of every anagram. Therefore there are 120
6

= 20 (un-

coloured) anagrams of `puppy'. These are `pppuy', `pppyu', `ppupy',

`ppypu', `ppuyp', `ppyup', `puppy', `pyppu', `pupyp', `pypup', `puypp',

`pyupp', `upppy', `ypppu', `uppyp', `yppup', `upypp', `ypupp', `uyppp',

`yuppp'.

2.27 (a) The word `college' contains 7 letters, two of them are `e's and two

of them are `l's, thus the number of anagrams is

7!

2! · 2!
=

5 040

2 · 2
= 1 260.

(b) The word `discrete' contains 8 letters, two of them are `e's, thus

the number of anagrams is

8!

2!
=

40 320

2
= 20 160.

Preview from Notesale.co.uk

Page 150 of 203



154 SOLUTIONS

2.33 The two numbers are equal, as the following calculation shows

90!

5! · 85!
=

90 · 89 · 88 · 87 · 86 · 85!
5! · 85!

=
90 · 89 · 88 · 87 · 86

5!
.

2.34 The required binomial coe�cients are computed and arranged into a

triangle in Table 6.3 on page 201.

2.35 By the de�nition(
n

0

)
=

n!

0! · (n− 0)!
=

n!

0! · n!
=

1

0!
=

1

1
= 1,(

n

1

)
=

n!

1! · (n− 1)!
=

n · (n− 1)!

1! · (n− 1)!
=

n

1!
=

n

1
= n,(

n

2

)
=

n!

2! · (n− 2)!
=

n · (n− 1) · (n− 2)!

2! · (n− 2)!
=

n · (n− 1)

2!
=

n · (n− 1)

2
,(

n

n− 2

)
=

n!

(n− 2)! · (n− (n− 2))!
=

n · (n− 1) · (n− 2)!

(n− 2)! · 2!
=

n · (n− 1)

2!

=
n · (n− 1)

2
,(

n

n− 1

)
=

n!

(n− 1)! · (n− (n− 1))!
=

n · (n− 1)!

(n− 1)! · 1!
=

n

1!
=

n

1
= n,(

n

n

)
=

n!

n! · (n− n)!
=

n!

n! · 0!
=

1

0!
=

1

1
= 1.

2.36 Using Table 6.3 from Exercise 2.34, it is not hard to determine the

required sums:

0∑
k=0

(
0

k

)
=

(
0

0

)
= 1,

1∑
k=0

(
1

k

)
=

(
1

0

)
+

(
1

1

)
= 1 + 1 = 2,

2∑
k=0

(
2

k

)
=

(
2

0

)
+

(
2

1

)
+

(
2

2

)
= 1 + 2 + 1 = 4,

3∑
k=0

(
3

k

)
=

(
3

0

)
+

(
3

1

)
+

(
3

2

)
+

(
3

3

)
= 1 + 3 + 3 + 1 = 8,

4∑
k=0

(
4

k

)
=

(
4

0

)
+

(
4

1

)
+

(
4

2

)
+

(
4

3

)
+

(
4

4

)
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(g)

10010 = 1020,

(h)

10100.
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6.3 Proof Techniques 165

On the other hand, by the induction hypothesis

k+1∑
i=1

1

i(i+ 1)
=

(
k∑

i=1

1

i(i+ 1)

)
+

1

(k + 1)(k + 2)
=

=
k

k + 1
+

1

(k + 1)(k + 2)
=

k(k + 2) + 1

(k + 1)(k + 2)
=

=
(k + 1)2

(k + 1)(k + 2)
=

k + 1

k + 2
.

Therefore S(k + 1) is true and the identity

n∑
i=1

1

i(i+ 1)
=

n

n+ 1

is valid for all positive integers n.

3.8 Let us compute the �rst few elements of the sequence

n an

1 1

2 8

3 a2 + 2a1 = 10

4 a3 + 2a2 = 26

5 a4 + 2a3 = 46

Now we compute the values of the formula 3
2
· 2n + 2 · (−1)n for n ∈

{ 1, 2, 3, 4, 5 }

n 3
2
2n + 2(−1)n

1 1

2 8

3 10

4 26

5 46

We checked that an = 3
2
· 2n + 2 · (−1)n for n ∈ { 1, 2, 3, 4, 5 }. Assume

that the statement is true for S(k − 1) and S(k) for some 2 ≤ k ∈ N,
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By the induction hypothesis ak ≤ 2, hence

ak+1 ≤
√
2 + 2 = 2.

The statement S(k+1) has been proved and thus we have that an ≤ 2

for all n ∈ N.

3.11 We prove the statement by induction. If n = 1, then the 1-digit integer

a1 = 2 is divisible by 2. Therefore the statement is true for n = 1. It is

not di�cult to deal with the case n = 2. There are only four possible

integers

a1a2 ∈ { 11, 12, 21, 22 } .

It is easy to see that 22 divides 12. Assume that the statement is true

for some 1 ≤ k ∈ N, that is, there exists a k-digit integer a1a2 . . . ak

which is a multiple of 2k. Let us consider the statement for k + 1. By

induction hypothesis we have

a1a2 . . . ak = 2k · A.

We claim that either

10k + a1a2 . . . ak = 1a1a2 . . . ak

or

2 · 10k + a1a2 . . . ak = 2a1a2 . . . ak

is a multiple of 2k+1. We can rewrite the above integers as follows

10k + a1a2 . . . ak = 10k + 2k · A = 2k(5k + A),

2 · 10k + a1a2 . . . ak = 2 · 10k + 2k · A = 2k(2 · 5k + A).

If A is odd, then 5k + A is even. In this case

1a1a2 . . . ak

is an integer having k+1 digits and it is divisible by 2k+1. If A is even,

then 2 · 5k + A is even. That is,

2a1a2 . . . ak

is a (k + 1)-digit number which is a multiple of 2k+1.
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If n = 1, then the left-hand side is F2 = 1 and the right-hand side is

F3 − 1 = 2 − 1 = 1. So the identity is valid. Assume that for some

1 ≤ k ∈ N the identity holds, that is,

F2 + F4 + . . .+ F2k = F2k+1 − 1.

Let us handle the sum for k + 1 terms, that is, the sum

F2 + F4 + . . .+ F2k + F2k+2.

It can be written as

(F2 + F4 + . . .+ F2k) + F2k+2 = F2k+1 − 1 + F2k+2 = F2k+3 − 1.

Thus the identity has been proved for all positive integers.

3.13 (a) First compute F3n for some n, let say for n = 1, 2, 3. We have

F3 = 2,

F6 = 8,

F9 = 34.

We checked that F3n is even for n = 1, 2, 3. Assume that F3k is even

for some 1 ≤ k ∈ N. For k + 1 we have F3(k+1) = F3k+3. By de�nition

F3k+3 = F3k+2 + F3k+1 = F3k+1 + F3k + F3k+1 = 2 · F3k+1 + F3k.

By induction F3k is even, so 2 · F3k+1 + F3k is even. The statement is

true.

(b) If n = 1, then F5·1 = 5. That is, the property holds for n = 1.

Assume that F5k is a multiple of 5 for some 1 ≤ k ∈ N. For k + 1 we

have

F5(k+1) = F5k+5 = F5k+4 + F5k+3 = F5k+3 + F5k+2 + F5k+2 + F5k+1 =

3F5k+2 + 2F5k+1 = 3(F5k+1 + F5k) + 2F5k+1 = 5F5k+1 + 3F5k.

It is clear that 5 divides 5F5k+1 and induction hypothesis implies that

3F5k is a multiple of 5. Therefore 5 divides 5F5k+1 + 3F5k. We proved

the property for k + 1. It follows that F5n is a multiple of 5 for all

n ∈ N.
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6.3 Proof Techniques 181

~ ~ ~ ~ ~ ~ ~ ~

~ ~ ~ ~ ~ ~

It remains to show that it is not possible to place more than 14 bishops

in such a way that they can not hit each other. A natural idea is to

divide the 64 chess squares into 14 groups such that if two bishops are

in the same group then they can hit each other. We can produce 14

such groups

4 8 5 9 6 10 7 11

8 4 9 5 10 6 11 7

3 9 4 10 5 11 6 12

9 3 10 4 11 5 12 6

2 10 3 11 4 12 5 13

10 2 11 3 12 4 13 5

1 11 2 12 3 13 4 14

11 1 12 2 13 3 14 4

3.32 (a) The �rst card is 7♣, hence the suit of the hidden card is ♣. The

distance can be obtained from the following table

distance order of the 3 cards

1 3♦, J♦, A♠
2 3♦, A♠, J♦
3 J♦, 3♦, A♠
4 J♦, A♠, 3♦
5 A♠, 3♦, J♦
6 A♠, J♦, 3♦
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6.4 Pascal's triangle 189

4.7 Using the Binomial theorem we obtain

(x+ y)8 =
8∑

k=0

(
8

k

)
x8−kyk = x8 + 8x7y + 28x6y2 + 56x5y3

+ 70x4y4 + 56x3y5 + 28x2y6 + 8xy7 + y8,

(x− y)8 =
8∑

k=0

(
8

k

)
x8−k (−y)k = x8 − 8x7y + 28x6y2 − 56x5y3

+ 70x4y4 − 56x3y5 + 28x2y6 − 8xy7 + y8,

(a+ 1)10 =
10∑
k=0

(
10

k

)
· a10−k · 1k = a10 + 10a9 + 45a8 + 120a7

+ 210a6 + 252a5 + 210a4 + 120a3 + 45a2 + 10a+ 1,

(b− 3)5 =
5∑

k=0

(
5

k

)
b5−k (−3)k = b5 − 15b4 + 90b3

− 270b2 + 405b− 243,

(1 + 2/x)5 =
5∑

k=0

(
5

k

)
· 15−k ·

(
2

x

)k

= 1 +
10

x
+

40

x2
+

80

x3
+

80

x4
+

32

x5
,

(a+ b)6 =
6∑

k=0

(
6

k

)
a6−kbk = a6 + 6a5b+ 15a4b2 + 20a3b3

+ 15a2b4 + 6ab5 + b6,

(1 + x)5 =
5∑

k=0

(
5

k

)
· 15−k · xk = 1 + 5x+ 10x2

+ 10x3 + 5x4 + x5,

(3a+ 4b)4 =
4∑

k=0

(
4

k

)
· (3a)4−k · (4b)k = (3a)4 + 4 · (3a)3 · (4b)

+ 6 · (3a)2 · (4b)2 + 4 · (3a) · (4b)3 + (4b)4 = 81a4

+ 432a3b+ 864a2b2 + 768ab3 + 256b4,

(3− 2x)4 =
4∑

k=0

(
4

k

)
· 34−k · (−2x)k = 34 − 4 · 33 · (2x) + 6 · 32 · (2x)2

− 4 · 3 · (2x)3 + (2x)4 = 81− 216x+ 216x2 − 96x3 + 16x4.
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192 SOLUTIONS

For this, we compute (x+y)n+m by multiplying (x+y)n · (x+y)m after

expanding both factors using the Binomial theorem:

(x+y)n+m = (x+y)n·(x+y)m =

(
n∑

k=0

(
n

k

)
xn−kyk

)
·

(
m∑
k=0

(
m

k

)
xm−kyk

)
.

Now, let us compute the coe�cient of xn+m−lyl. When do we obtain

xn+m−lyl when we multiply
(∑n

k=0

(
n
k

)
xn−kyk

)
by
(∑m

k=0

(
m
k

)
xm−kyk

)
?

For some 0 ≤ k ≤ l the term xn−kyk in the �rst factor must be multi-

plied by xm−l+kyl−k from the second factor. The coe�cient of xn−kyk in

the �rst factor is
(
n
k

)
, the coe�cient of xm−l+kyl−k in the second factor

is
(

m
l−k

)
, thus this multiplication contributes by

(
n
k

)
·
(

m
l−k

)
to the coe�-

cient of xn+m−lyl in (x+ y)n+m. That is, the coe�cient of xn+m−lyl in

(x+ y)n+m is
l∑

k=0

(
n

k

)
·
(

m

l − k

)
.

Moreover, the coe�cient of xn+m−lyl in (x + y)n+m is
(
n+m

l

)
, thus the

two numbers must be equal, which proves (4.6):

n∑
k=0

(
n

k

)
·
(

m

l − k

)
=

(
n+m

l

)
.

4.13 We can try to prove the identity by induction on m. For m = 0 the

identity holds, as the left hand side is
(
n
0

)
= 1, the right hand side is(

n+1
0

)
= 1, as well. Assume that the identity holds for m− 1, that is,

m−1∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m− 1

m− 1

)
=

(
n+m

m− 1

)
.

This is the induction hypothesis. Now we prove the identity for m.

m∑
k=0

(
n+ k

k

)
=

(
n

0

)
+

(
n+ 1

1

)
+ · · ·+

(
n+m− 1

m− 1

)
︸ ︷︷ ︸

=(n+m
m−1), by the induction hypothesis

+

(
n+m

m

)

=

(
n+m

m− 1

)
+

(
n+m

m

)
=

(
n+m+ 1

m

)
.
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196 SOLUTIONS

5.4 This is an example of an order 3 linear recurrence. We de�ne gn = g0r
n

for some g0 and r, which is a geometric progression. We assume that

it satis�es the same recurrence relation as an, that is, we obtain

r3 = −2r2 + r + 2.

It is a cubic polynomial. We look for integer solutions. If there is an

integral root, then it divides 2. Hence the possible integral roots are

±2,±1.

r r3 + 2r2 − r − 2

-2 0

-1 0

1 0

2 12

The cubic polynomial r3 + 2r2 − r − 2 can be written as (x− 1) ·
(x+ 1) · (x+ 2), that is, there are three integral roots. In this case we

have three geometric progressions satisfying the recurrence, therefore

the appropriate linear combination is

Wn = s · (−2)n + t · (−1)n + u · 1n.

The corresponding system of linear equations is

s+ t+ u = 0,

−2s− t+ u = 1,

4s+ t+ u = 2.

We subtract the �rst equation from the third one to get 3s = 2. So we

have that s = 2/3. We eliminate s from the �rst two equations

t+ u = −2

3
,

−t+ u =
7

3
.

It is easy to see that u = 5/6 and t = −3/2. The explicit formula for

an is
2

3
· (−2)n − 3

2
· (−1)n + 5

6
.
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