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can write it in product notation in different forms:

n

I+
k=m
II *

m<k<n

Hk:, where S ={m,m+1,....,n}.
kesS

It may happen that the sum or product should be evaluated on the empty
set. By definition, in such situations the sum is always 0 and the product is

always 1, e.g.

> k=0,
[[x=1

kel

If S and T be two disjoint sets, then a\e .

‘?(e\l\ % 180
Note?
reason we define the empty sum to be 0 and the empty product to be 1.)

that this is true e n or T is the empty set. (This is the main

There is a special notation for the product of positive integers up to n,

that is, when we multiply the elements of
Sn ={k |k is a positive integer,k <n}={1,2,...,n}.

The product of the elements of S, is called n factorial and denoted by n!,
that is,

n

= [[k=]]k=1-2--- (n—1)-n.

keSh k=1

We even define 0!, that is, the products of elements of S:

o=J[r=]]r=1

keSy kel
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Factorials are always computed before any other operation. For example

2431=2+1-2:-3=2+6=38,
(2+43)=51=1-2-3-4-5=120.

Exercise 1.9. Expand the following sums.
(a) ZZ=4 2
b) Z?zl(iQ - i)v

Exercise 1.10. Write the following expressions in summation notatiﬁn(

(a) 244+ 6+ 8+ 10, 9
O‘
b) 144+ 7+ 10, tesa\e C

(

(©) L4 l41+2+44,

R »{*émN ' 203
P %%’s\e Expangleol&mg products.

(b) TTi ( %),

() T,

(d) [T oci< %

() [Tieg(—1)", where S = {2,4,6,7}.

Exercise 1.12. Write the following expressions in product notation.
(a) 1-3-5-7,
(b) (=1)-2-5-8,
(¢) $-5-1-3-9.

Exercise 1.13. Compute the values of n! for every n € {0,1,2,3,4,5,6,7,8 }.
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a remainder r{. Then we apply the Division algorithm for b and r; to get a
new quotient ¢ and a new remainder r,. We continue, we divide r; by 75 to
obtain g3 and r3. We stop if we obtain a zero remainder. Since the procedure
produces a decreasing sequence of non-negative integers so must eventually
terminate by descent. The last non-zero remainder is the greatest common
divisor of a and b.

As an example we compute ged(553,161). We write the computations in

the following way:

553 =3-161+70 ¢ =3,7 =70
161 =2-70+21 ¢y =2,75 =21
M0=3-214+7 qgz=3,r3=17
21=3-7+0 q,=3,r,=0.

That is, the last non-zero remainder is 7, so gcd (553,161 IfOQould

like to express 7 as 553x + 161y for som 1t by working

backwards m 203
P(QX,SO ?agg Z3.161 4770

= -3-161 553 —3-161) = 7-553 — 24 - 161.

B\

It follows that x =7 and y = —24.

Exercise 1.16. Use the Euclidean algorithm to find ged(a, b) and compute

integers = and y for which
ax + by = ged(a, b) :

(a) a = 678,b = 567,
(b) a = 803,b = 319,
(c) a = 2701, b = 2257,
(d) a = 3397, b = 1849,
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Now, rewrite 2501 into base 3:

250 = 83 -3+ 1,
83 =127-3+2,
27=9-3+0,
9=3-3+0,
3=1-3+0,
1=0-3+1.

The remainders backwards are 1, 0, 0, 0, 2, 1, thus

Finally, we mention that some rewriting c% \@ mgh quicker if one
base is a full power of another. & 23 and then every base 8
ase

digit can be rewmﬁen @m %d-%g?)
pre® gage 2 o

48 - 1002, 58 - 1012,

68 == 1102, 78 - 1112

Going from right to left, every three base 2 digits can be easily rewritten into
base 8, as well. Thus, it is easy to rewrite 3725 into base 2 or 101015 into
base 8:

372¢ =011 111 0109 = 11111010,
101015 = 010 1015 = 25s.

Similarly, as 16 = 2%, every base 16 digit can be rewritten easily to four
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base 2 digits:

016 = 00005, 116 = 00015,
216 = 00105, 316 = 00115,
416 = 01005, 516 = 01015,
616 = 01105, 716 = 0111,,
816 = 10005, 916 = 10015,
A = 1010s, Big = 1011,
Che = 1100, Dyg = 11015,
Eqg = 1110s, Fig = 1111,.

Going from right to left, every four base 2 digits can be easily rewritten into

base 16, as well. Thus, it is easy to rewrite AF Fg into base 2 or 101015 into

base 16: \e CO ‘\)
AFE;g = 1010 1111 1110, = 101{]@9& ’

10101, = 0001 010 ?)

We have to 5{ OI;Sh that thle% (Qxy works if one base is a
full 8 numbers can be easily changed to

base *16 (and vice versa) rst changing them to base 2, and then into the

other base:

372g = 011 111 0109 = 11111010 = 1111 10105 = F Ay,
AFFE;s = 1010 1111 11105 = 1010111111105 = 101 011 111 1105 = 5376s.

Exercise 1.19. (a) Write the following numbers into base 10: 1110011015,
1010101, 111115, 101105, 1010101012, 100010002, 10101115, 111101,,
211025, 12345, 12347, 1234s, TT7s, 3455, 2012, 45655, 11235, 6665, T41s,
CABys, BEEys, EEEyg, AD45, ABCys, 9B515, DDDyg, 3F215.

(b) Write the following decimal numbers into base 2, 3, 5, 7, 8, 9, 16:
6410, 5019, 1610, 10010, 201249, 20010, 15119, 4810, 9910, 99910.
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After solving Exercise 2.11, one suspects that the number of subsets de-
pend only on the cardinality of the set, and not on the actual elements of
the set. This is true in general: for example if a set has three elements, then
we might as well name the elements a, b and ¢, and then its subsets will be
exactly the same as we determined in Exercise 2.11.

Let us try to determine the number of subsets of a set with given car-
dinality. Let S be a set of cardinality 0, i.e. S = (). Then S has only one
subset: (). If S is a set of cardinality 1, e.g. S = { a }, then it has two subsets:
{}=0,{a}=S5.1f S is a set of cardinality 2, e.g. S = {a,b}, then it has
four subsets: { } =0, {a}, {b}, {a,b} = S. If S is a set of cardinality 3,
e.g. S ={a,b,c}, then it has eight subsets: { } =0, {a}, {0}, {c}, {a,b},
{a,c}, {b,c}, {a,b,c} = S. Figure 2.1 shows all subsets of {a,b,c}. In

this figure, two sets are connected if the lower one is a subset of the upper

{a,b,c} \ C

tesa
J\e Ja@g\cg 08207
pre

{a} {b} {c}

ANV

Figure 2.1: Subsets of { a,b, c}.

{}

Exercise 2.12. Guess what the rule is by looking at Table 2.2 and listing
all subsets of {a,b,c,d} and { a,b,c,d, e}, if necessary.

It seems that if .S has n elements, then it has 2" subsets. This is reinforced

by Figure 2.1, where we represented the subsets of a three-element set by the
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responding to the anagram ‘eye’ (upper right part). There are two different
colourings depending on the e’s: we can colour the first ‘e’ by two colours,
and the second ‘e’ by one colour, therefore there are 2-1 = 2 coloured ‘eye’s in
that group. Similarly, every group contain exactly two coloured anagrams.
Thus the number of groups (and the number of uncoloured anagrams) is
§_3

Exercise 2.26. How many anagrams does the word ‘puppy’ have? Try to

use the argument presented above.
This argument can now be generalized when more letters can be the same:

Theorem 2.8. Let us assume that a word consists of k different letters,
such that there are ny of the first letter, no of the second letter, etc. Let

n=mny+ns+---+ni be the number of letters altogether in this word. Then

the number of anagrams this word has is exactly u\(
(;O .

Proof. Let us color all the lettersﬂ é;?olouigand let us count first

his is of permutations of n

the number of col
different l?@\' iﬁs n! by The

oup Aagrams which represent the same word,
and differ only 1§ agourmgs The number of uncoloured anagrams is
the same as the number of groups. To compute this number, we count the
number of coloured words in each group.

Take an arbitrary group representing an anagram. The words listed in
this group differ only by the colourings. The first letter appears ni-many
times, and these letters have n;!-many different colourings by Theorem 2.7.
Similarly, the second letter appears no-many times, and these letters have
no!l-many different colourings by Theorem 2.7, etc. Finally, the kth letter
appears ni-many times, and these letters have n;!-many different colourings
by Theorem 2.7. Thus, the number of words in a group is ny! - ng! - -+ -
ng!. Therefore the number of groups, and hence the number of (uncoloured)

anagrams is
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2.7 Distributing money

Three pirates (Anne Bonney, Black Bellamy and Calico Jack) raid a small
ship. They take all the treasure they can find, which is seven gold pieces
altogether. Afterwards, they would like to distribute the loot among them-
selves. They only have one rule: since everybody was useful during the raid,
everyone should receive at least 1 gold piece. How many ways can they dis-
tribute the seven gold pieces? Gold pieces are identical, it does not matter
who gets which gold piece. It only matters how many gold pieces each pirate
gets.

One way to solve this problem is of course to write down all possible
distributions. Let us list the possibilities by considering the amount of gold
pieces received by the highest rewarded pirate. If everyone needs to get at
least one gold piece, then nobody can have more than five gold pieces. In
fact, if somebody gets five gold pieces, then the other two will ge K

p

gold pieces to distribute, which they can only do
to each of them. This is three p0551b1ht& @éo

1ece

n Who receives the

t reg 2 gold pieces,
ies 0 distribute. They

then the other two W ave tlﬁ
can lygdé two on e§‘Eher amounts to 6 possibilities:
é itles on w

ho ge d pieces, then in each case 2 possibilities

five gold pieces). If the plrate

3 po
on who gets two gold pieces, that is, 3 - 2 possibilities. (Note that this is
the number of permutations of the three pirates.) Finally, if the highest
reward is three gold pieces, then the other two pirates can distribute the
remaining four gold pieces in two different ways: either one of them gets
three gold pieces, and the other gets one, or both get two gold pieces. Both
distributions amount to 3 possibilities altogether. In the first case there are 3
possibilities to choose who gets one gold piece (and the other two gets three
gold pieces each). In the second case there are 3 possibilities to choose who
gets three gold pieces (and the other two gets two gold pieces each). Table 2.4

summarizes the 15 possible distributions.



2.7 Distributing money 5

Here, we received exactly the same number of distributions as for the
earlier case, when the three pirates needed to distribute 7 gold pieces, and
everybody needed to get at least one. This can hardly be a coincidence.
Somehow, we should be able to reduce the new problem to the earlier prob-
lem. The main difference is that now every pirate needs to get at least two
gold pieces instead of one. This can be easily remedied: everyone takes one
gold piece at the very beginning. Then seven gold pieces remain (10 — 3),
and everyone needs to get at least one more. And this is now exactly the
same problem as before. Again, the argument works in general: if there are
n pirates and k£ gold pieces, and everybody needs to get at least two gold
pieces, then first every pirate takes one gold piece. This way, everyone needs
to get one more gold piece, and they will have £ —n gold pieces to distribute

further. Applying Theorem 2.15 we can prove

Proposition 2.16. Assume n pirates want to distribute k gold pze&go g \4

themselves (for some k > 2n) such that everybody geté- gold

knl

pieces. They can do this in et manﬁ

otisaly. 20?)

The three \Ntmued to raid %5 t time they found a small

? erman a? gold pieces. They, again, want to dis-
tribute these gold pieces dmong themselves. But this time they do not want

to impose any conditions on the distributions. It may be possible that some-

Exercise 2.40. Prove Pro&

body does not receive any gold pieces, even that somebody takes all the gold.
How many ways can they distribute the four gold pieces among themselves?

After the previous two exercises, it is not too difficult to find all the
possibilities. There are three possibilities corresponding to the distribution
where one of them gets all four gold pieces (three possibilities depending
on who gets all the gold). If one of them gets three gold pieces, then the
remaining one gold piece goes to one of the remaining pirates. There are 6
such possibilities: 3 choices on who gets three gold pieces, and for each choice
there are 2 choices on who of the remaining two pirates gets 1 gold piece (and
the last pirate does not get any gold pieces). If the highest rewarded pirate

gets two gold pieces, then the remaining two gold pieces can be distributed



Chapter 3

Proof techniques

3.1 Proofs by induction

In mathematics one often uses induction to prove general SQ \(Let
S ) which

E ng) is true for the

us see how this argument works. Suppose we h

depends on n. When we apply ind ;j !

smallest possible Value ‘T{‘ w that,z—g tement is true for all
p0551b1e valu gj\lf hgt so true for n. Finally, we
statem or all n > ng. There is a very similar

P (én called rec@ @r example we can define n! as follows

1 ifn=1,
n! =
n-(n—1)" ifn>1

The basic idea is that we can compute e.g. 100! if we have computed 99!,
98!, ..., 1!. Induction works in the same way, if we can prove a statement for
certain smaller instances, then we can prove it for large values as well. More
about recursion will follow in Chapter 5.

Now we study induction in more detail.

Theorem 3.1 (Mathematical Induction I). Let S(n) be a statement depend-
ing on n € N. Suppose that

(a) S(1) is true,
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3.2 Proofs by contradiction

In this section we study an important tool to prove mathematical theorems.
This tool is called proof by contradiction or indirect proof. There is a simple
logic behind, instead of proving that something must be true, we prove it
indirectly by showing that it cannot be false. We assume that the opposite of
our theorem is true. From this assumption we try to obtain such a conclusion
which is known to be false. This contradiction then shows that our theorem
must be true.

Let us consider a basic example. We try to prove that v/2 is irrational.
We provide an indirect proof. We assume the opposite of our statement, that
is, that v/2 is rational. Rational numbers can be written as 7 for some a € Z
and b € N such that the greatest common divisor of a and b is 1. So we have

N O‘u\i

b
Hence a® = 2b%. 1t follows that 2 divides a %a&' some a; € Z.
We substitute this into the equati éage % 20%. After
dividing by 2 we get 2¢2 (ﬁ(\} ng We have a
contradlctlor\';‘ eatest co %Olﬁ a and b should be 1, but
we (@i¥ hat 2 leld?ag d1V1des b. Hence 2 divides the greatest
tr

common divisor. This cotltradiction shows that our statement must be true,
that is, V/2 is irrational.

In Section 1.3 there is a statement about the Division algorithm which
says that given two integers a and b such that b > 0, there exist unique

integers ¢ and r for which
a=qgb+r, 0<r<hb.

Now we prove that ¢ and r are unique. We give a proof by contradiction.

Assume that there exist integers ¢, ¢ and r,r’ such that ¢ # ¢’ or r # ' and

a=qgb+r, 0<r<hb,
a=¢b+r, 0<r <b.
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Exercise 3.14. Prove that if x +y > 10 for some z,y € Z, then © > 5 or
y > b.

Exercise 3.15. Prove that there exists no integer n such that n? — 2 is a

multiple of 4.

Exercise 3.16. Prove that v/2 + /3 is irrational.

Exercise 3.17. Prove that if a,b and ¢ are odd integers, then the equation
ar’> +bx+c=0

has no solution with z € Q.

Exercise 3.18. Given n integers aq, as, ..., a,, prove that there exists 1 <

7 < n such that
>a1+a2+...+an K

aj = \16 CO‘

Exercise 3.19. Let F,, be a sequenceie 1 = F, =1 and F,, =

F, 1+F,_o,n > 3, that s, m‘ quen e@%e that ged(Fy,, Frp1) =
1 for all posmve i ’2
ng Cons ge proofs

In this section we deal with several problems for which a method can be

provided to create a solution. We consider the coin problem (known also
as the Frobenius problem). Let us be given a currency system with & > 2
distinct integer denominations a; < as < ... < ag. Which amounts can be

changed? This question yields the following linear Diophantine equation
a1, + asTo + ...+ apxp =N,

where x1,..., 7, are non-negative integers. Now we study the case k = 2,
that is, our equation is

a1T1 + Ao = N.

There are some natural questions to pose:
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We would like to have non-negative solutions, hence

—3n—11tZO:>t§_1—31n

—2n

So we have the following inequalities

—2n —3n
— <t< —.
T T 11
If there is an integer contained in the interval [_72”, _1—31"], then n can be repre-

sented in the form 7x;+11x,. Denote by I,, the set {t | ’T% <t< ’1—31",25 €7 }

6] 0 |31 0 [46] {13} 61| {17}
7] 0 |32 (-9} |47 {—13} | 62| {—p

18 {5} [33] (-9} [48] 0 Jhqgy {\DNIT
19 0 34| 0 |49 \@}G'-’m {18}
20 0 [ 3y 5e 114} | 65 {-18)
23 LA~ X —10 ) (YD} | 66 | {-18)

'({\—’6'} HN (()ﬁ; 57T 0 67| {-19}
23 . A ®T0 |53 {-15)]6s]{-19}
AN 30| (—11) |54 ] {=15} [ 69 ] {—19}

| |ot ks |w|N|—=3

0
-
T
R

-t
N

10 25 | {—7} 40 | {=11} | 55| {—-15}| 70| {—20}
11 {=3}|l26] ©® [41| ¢ 56 | {—16} | 71| {—20}
120 0 |27 2 {-12} |57 {-16} | 72| {—20}
13 0 | 28|{-8}|43|{-12} 58| {-16} | 73|{—20}
14| {-ay |20 {8 [laa]|{-122 |50 0 [7a]{-21}

1) 0 30| 0 |45 0 |60|{—17} |75 |{—21}

We can find 7 consecutive integers indicated in the table for which the set I,

is not empty, that is, those integers can be represented in the form 7x;+11z5 :

n==60 a3 =(=3)-60—11-(=17)=7,20=2-60+7-(—17) =1,
n==61 x1=(-3)-61—11-(=17)=4,2y=2-61+7-(=17) = 3,
n=062 x1=(-3)-62—11-(=17)=1,29=2-62+7-(=17) =5,
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for some t € Z. Tt remains to determine the integer solutions of the equation
y1 = 4x1+ 5wy = n+ Tt. The first thing to do is to find a particular solution.
It is easy to check that

1 = —n + 3t,

To=n—1

is a solution. Applying the techniques used in case of two variables we get

the following parametrization of integral solution
r1 = —n+ 3t — 5s,
To =n —1+4s,
T3 = —t

for some s,t € Z. As a concrete example consider the equation 47, To +

7Tx3 = 23. Then we obtain integer solutions by subs& @re Integral
values into the above formulas. Some solutér%@_ a%ed in the following
table

0,1) | (—20,22,—1)
(=1,-1) | (=21,20,1)
(1,1) | (—25,26,—1)

What about non-negative integer solutions? That is, if one asks for solu-

tions such that x1, 29, 23 € NU{0 }. In case of the equation 4z1 4 5xs+ 723 =
n we determined the parametrization of the integral solutions, so we get the
following inequalities

0 < —n+ 3t — 5s,

0<n-—t+4s,

0< —t.
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Proposition 3.9. There is a nonzero multiple of 6 whose digits are all zeroes

and ones.

Proof. We apply the pigeonhole principle and the Division algorithm. Con-
sider the integers a, = >, _, 10¥ for n = 0,1,2,3,4,5. We can write these
numbers as g, - 6 + r,, where g, is the quotient and r, is the remainder,
so 0 < r, < 6. There are six possibilities for r,, and there are six integers
ag, a1, ...,as5. The numbers ag,aq,...,a; are odd integers while 6 is even,
hence r, # 0 for all n. We have that r, € {1,2,3,4,5} for all n. There
are only 5 pigeonholes (possible remainders) and 6 pigeons (integers a,). We
obtain that there are at least two integers having the same remainder, say,
Qpm, and a,,,, where m; < my. In this case a,,, — a,,, is divisible by 6 and all

the digits are zeroes and ones.

n an Qn -6 +1,

o 1 0-6+1 O\)K
1] 11 16 £5m\ ec

2| ke

_‘( Ox‘(‘\m“ 185¢ 67) o)
- o\N AT\
e\,\e @M 185186+ 3
P¥t is clear that r(gv’aé , therefore a3 —ag = 1111 — 1 = 1110 is a multiple
of 6 (1110 = 185 - 6) and this integer is in a right form. [

Proposition 3.10. Let A be a set containing n > 2 integers. There is a

subset of A such that the sum of its elements is a multiple of n.

Proof. We have a set containing n elements, let us say these are ay, as, . .., a,.

We define n subsets as follows
Sk:{al,...,ak}, k:1,2,...,n,

that is, Sy = {a1},59% ={a1,a2 },...,S, = A. Denote by s the sum of the
elements of Sp. We apply the Division algorithm to write sp = qx - n + 7,

where 0 < r, < n. If for some k£ we have r, = 0, then

Sp=a1+...+ar=q-n,
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(every row starts with the zeroth number), the two numbers above it are the

(k — 1)st and kth of row n — 1, that is, (Zj) and (";1) Thus, if we prove

that (Z) = (Zj) + (";1), then the two triangles are indeed the same.

Proposition 4.1. For positive integers k < n we have

() =G+ (%)

Proof. Let us substitute the formula (2.1) into the right-hand side:

() ()

@“—“’m NP of 202

ExePcis(e 4.1. Create a@c@‘%of using induction that the two triangles

are the same.

©
o

This proof is a correct one, but not necessarily satisfying. It contains
calculations, but does not show the reason why the sum of the binomial
coefficients (Zj) and (";l) is really (Z) One might wonder if there is an
“easier” proof, which only uses the definition of (Z) Indeed there is, as we

show now.

Second proof of Proposition 4.1. Tet A = {1,2,...,n}, and we count the
number of k-element subsets of A in two different ways. On the one hand,
we know that the number of k-element subsets of A is (Z) On the other
hand, we count the k-element subsets such that we first count those which

contain the element n, then we count those, which do not.
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Let us start by the sum of the numbers in a row:

1=1,
1+1=2,
14+2+1=4,

1+3+3+1=38,
14+44+6+4+1=16,
14+5+10+10+5+1 =32,
146415420+ 15+6+ 1 = 64.

It seems from these equations that the sum of the numbers in the nth

row is 2". This stetement is equivalent to the equality

(0-0:0 () (dofle e
Note, that we have already pro ro 2 then later
in Exercise 4.5. Now, & Q a thlr@r& &th generating rule of

Pascal’s trj \
consider firs eagow and try to compute the sum using the

generating rule of Pascal’s triangle, rather than adding the numbers:

1+7+21+354+35+214+7+1
=1+ (1+6)+(6+15)+(15+20)+(20+15) + (154+6) + (6 +1) + 1
=2-(1+6+15+20+15+6+1) =220 =27 = 128.

This idea can be used in the general case, as well.

Now, we prove that the sum of the numbers in the nth row of Pascal’s
triangle is 2" by induction on n. The statement holds for n =0 and n =1
(in fact, we just calculated that it holds for n < 7). Assume now that the
statement holds for n, as well. That is, the sum of the numbers in the nth

row is 2". Consider the sum of the (n+1)st row, and let us use the generating
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(ng—l) (n+1)+(n N
=(0) () () + () + )+ ()
AGI) L)) (GE) () -
2 (o) (D) ) e () (2) + ()

=2.2" ="

o+

) (G0

First, we replaced (”31) =1 by ( ) =1, and ("H) =1 by (Z) = 1, then we
used the generating rule of Pascal’s triangle. Then we observed that every
(Z) occurs twice in the sum (for 0 < k < n). Finally, we used the m‘ztlon

hypothesis on the sum of the numbers for the nth row.

Let us use a similar reasoning to Calculate t cﬁ%e numbers in a
row, with alternating signs. That i sum
;2,0 -
n :
P Yt 15 easy to CO sum for the first couple rows:
1=1,
1-1=0,
1-24+1=0,

1-3+3—1=0,
1—4+46-4+1=0,
1-5+10-10+5—1=0,
1—-6+15-204+15—6+1=0,
1—7+21—-354+35-21+7—1=0.

It seems likely that for n > 1 the alternating sum of the numbers in the nth

row of Pascal’s triangle is 0.



106 PASCAL’S TRIANGLE

Exercise 4.11. Prove that
!
n m n+m .
£0) (7)) e
k=0
n m n m n m n+m
bo (0)- (1) ()2 () ()= (37)
How do we need to choose m and [ so that (4.6) gives us the equality (4.5)7

We could have used the Binomial theorem to prove (4.5):

Second proof of Proposition 4.4. Consider (z+y)*", and expand it using the

Binomial theorem:

2n o (20 -k k
(z+vy) :Z R E

k=0
Then the right hand side of (4.5) is the coeflicient of the t \(We
prove that the left hand side is the coefficient o é}n s@ For this, we

compute (z + y)** by multlplymg !xé-‘ 6

factors using the Blnomlal

ox e@\nexﬂn Q @ )( ()=

Now, let us corglte the coefficient of z"y". When do we obtain z"y"™ when
we multiply (3>°;_, (7)™ *y*) by itself? Take for example 2™ from the first
factor, this must be multiplied by y" from the second factor to obtain x"y".
The coefficient of ™ in the first factor is (8), the coefficient of 3" in the
second factor is (Z), thus this multiplication contributes by (8) . (Z) to the

after expanding both

coefficient of z"y™ in (x + y)?". Similarly, take the term 2" 'y from the first
factor, this must be multiplied by xy™ ! from the second factor to obtain

2"y". The coefficient of 2" 1y in the first factor is (T), the coefficient of

2™ ! in the second factor is (nf ) thus this multiplication contributes by

(n) . (n 1) to the coefficient of z"y" in (z + y)*". In general, for some k the

1
term x" " k

factor. The coefficient of 2" *y* in the first factor is (Z), the coefficient of
2k

in the first factor must be multiplied by xz*y"~* from the second

2%y"* in the second factor is (nfk), thus this multiplication contributes by
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19 (a) 7 ,i=4+5+6+7,
b) S0 (12— i) =0+ 246+ 12 + 20,

d) QL '+ +16+32

M

(

(

(¢) 324, 10° = 10 + 100 + 1000 + 10000,
(

(

e)z ( 1)/, where S = {2358}1s1+éé6_\&‘1.

1.10()2+4+6+8+10_§ NO
(31 +

(
2 i
(¢)5-3-1-3-9=T[__,3"
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If n > 2, then another proof could be

n!:n-\(n—l)-(n—2)-----2-1}=n-(n—1)!.

(n—1)!

Nevertheless, the claim is true for n = 1, as well:

"'=1=1-1=1-0.
1.16 (a) We obtain that

678 =1-567+ 111
567 =5-111+ 12
111=9-12+3
12=4-3+40.
Thus ged(678,567) = 3. We work backwards to compute x andé u\(

3=111-9-12

=111-9- 567 11 ‘,%543'\6‘
ey TN L 00,
YR \}g &t

Hen Ke’&@
P é 4@3’@‘% 567 = ged(678,567) = 3.

(b) We get that

803 = 2-319 4 165
319 =1-165+ 154
166 =1-154+11
154 =14-11+40.

It follows that ged(803,319) = 11. Now we find = and y :

11 =165 — 154
= 165 — (319 — 165) = —319+ 2 - 165
=—-319+2-(803—2-319) =2-803 — 5-319.
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to divide it by 2. But 15/2 is not an integer, while the number of
handshakes should be an integer. This contradiction proves that it is

not possible that each of 5 people shakes hand with 3 others.

For 7 people we can use this argument, again. If we sum up all the
handshakes for everyone, we obtain 7 - 3 = 21, as each of the 7 people
shakes hand with 3 others. This way, we counted every handshake
twice, thus to obtain the number of handshakes we need to divide it by
2. But 21/2 is not an integer, while the number of handshakes should
be an integer. This contradiction proves that it is not possible that

each of 7 people shakes hand with 3 others.

2.3 The four boys shake hands with each other, that is, => = 6 handshakes.

43
2

formula we use for handshakes. Finally, a boy and a girl k1sses as wegl. \A
All four boys kiss all four girls on the cheek, which i
kisses. Ultimately, there are 6 handshakes 9@
24 ) Not possible. If ﬁ{S each f Q&ammg odd
@N altogeth q_ Qacks there are odd many
@b&i‘\ odd d@g 31! d is odd). As 100 is not an odd

number it 1

The four girls kisses each other, those are =6 klsses by the same

le to do the required distribution.

(b) Tt is possible, e.g. 3-3-1-1-1. Another possibility could be
9-1-(=1)-1-(—1), or simply 9 (as only one integer).

(c) It is possible, e.g. 3-3-1-1-1-1-(=1)-1-(=1), or another
possibility is 9-1-(—=1)-1-(=1)-1-(=1)-1-(=1).

(d) Not possible. If the product of integer numbers is 9, then all of
them are odd. But then the sum of 9 odd integer numbers is odd

again, and hence cannot be 0.

2.5 (a) We can apply Proposition 2.1 and obtain

24-25
1+2+3+---+23+24:T:300.
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2.17 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number | binary number subset of S
11 01011, {ap,a1,a3}
7 00111, {ap,a1,as }
15 01111, {ap,a1,a9,a3}
16 100005 {as}
31 11111, {ap,a1,a9,as3,a4}

Note, that the encoding was defined in such a way, that the sub-
set of { ag,a1,as,a3} corresponding to k is the same as the subset of

{ ap, a1, a9, a3, ays } corresponding to k (for arbitrary 0 < k < 15).

2.18 After computing the binary representation, we just add th“ ents
corresponding to the places where the digits \e 1. CO

2. 19{,[\ utlng the bl\fagAe%JseQatlon we just add the elements
P (e orrespox@a@ laces where the digits are 1.

decimal number ‘ binary number ‘ subset of S

101 1100101, | {ao, as,as, ag }

2.20 After computing the binary representation, we just add the elements

corresponding to the places where the digits are 1.

decimal number ‘ binary number ‘ subset of S
199 | 11000111, | {ao,a1,as, a6, a7 }

2.21 All possibilities are listed in Table 6.2 on page 149.
2.22 The number of permutations of { 1,2,3,4} is 4! = 24.

2.23 The number of permutations of { a,b,c,d } is 4! = 24.
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The boys can sit on their seats in 5! = 120-many ways. The girls
(independently on how the boys sit) can sit on their seats in 3! = 6-

many ways. Altogether, they can sit in 6 - 120 = 720-many ways.

2.25 The number of anagrams of ‘retinas’ is the same as the number of
permutations of the letters ‘r’, ‘e’, ‘t’, ‘i’, ‘n’, ‘a’ and ‘s’. There are 7

different letters, hence the number of permutations is 7! = 5 040.

2.26 Again, let us color the ‘p’s in the anagrams by three colors: red, ,
blue. This way, there will be 5! = 120-many coloured anagrams of
puppy, the same as the number of permutations of five different el-
ements. Now, group together those anagrams, which only differ by
their colouring. For example the group ‘puppy’ would contain ‘puppy’,

‘puppy’, ‘puppy’, ‘puppy’, ‘puppy’, ‘puppy’. How do we know that

there are six coloured ‘puppy’s’? The coloured ‘puppy’s onlg'X\kr in
the colourings of the ‘p’s. The first * p can ifferent

colours, the next ¢ rlght after t oured by two differ-
ent colours (it cannot be C es mm’ as the first ‘p’),
then the lasivéyx;& \b ining colour. Thus,

e coloure@
1 = 6- puppy’s. Similarly, there are 6

P ( e\iiured g%ﬁ@ nagram Therefore there are @ = 20 (un-
na fe

coloured puppy’. These are ‘pppuy’, ‘pppyu’, ‘ppupy’,
‘ppypu’, ‘ppuyp’, ‘ppyup’, ‘puppy’, ‘pyppuw’, ‘pupyp’, ‘pypup’, ‘puypp’,
‘Pyupp’, ‘upppy’, ‘ypppu’, ‘uppyp’, ‘yppup’, ‘upypp’, ‘ypupp’, ‘uyppp’,
‘yuppp'.

2.27 (a) The word ‘college’ contains 7 letters, two of them are ‘e’s and two

of them are ‘I’s, thus the number of anagrams is

7! 5 040

= =1 260.
212! 2-2

(b) The word ‘discrete’ contains 8 letters, two of them are ‘e’s, thus

the number of anagrams is

8l 40320

— = = 20 160.
2! 2
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2.33 The two numbers are equal, as the following calculation shows
90!  90-89-88-87-86-85! 90-89-88-87-86
5851 5! - 85! B 5!

2.34 The required binomial coefficients are computed and arranged into a

triangle in Table 6.3 on page 201.

2.35 By the definition

n n! n! 1 1
— = = —_— = - = 17
0 o-(n=0) 0'-n! 0O 1

> n! n-(n—l)!zﬁzn .

Un—1) -1 1 1"

(n) n! n-(n—1)~(n—2) n- (n—l) n- (n—l)
)

2 21 (n—2)! 2! (n—2)!
( no\ n! _n-(n—1)- n—2 n-(n—1)
n—2) (-2 (n—-m-2) (n—2) %é
n- (n—l) u

a\e

<né>>\lﬂ—‘bm%% 200
eN\e/_»
Pg 36 Using T@ gm Exercise 2.34, it is not hard to determine the

required sums:

3
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On the other hand, by the induction hypothesis

k

k+1 1 B 1 1 B
;i(i—i—l)— ;i(i—i—l) +(k;+1)(k+2)_
_ Kk 1  k(E+2)+1
TE 1 ki DGkr2)  RrDk12)
(k+1?2  k+1

k+1)(k+2) k+2

Therefore S(k + 1) is true and the identity

‘(i +1) n+1

=1

is valid for all positive integers n.

3.8 Let us compute the first few elements of the sequence

L WO
o 100 g5 0t 22

\ NP5 Qg = 20
P(e\, P

ay + 2&3 =46

Now we compute the values of the formula 2 -2" + 2. (=1)" for n €
{1,2,3,4,5}

Son 4 2(—1)"
1
8
10
26
46

(G2 B TG BSOS I NG T I et

We checked that a, = 3 -2"+ 2. (=1)" for n € {1,2,3,4,5}. Assume
that the statement is true for S(k — 1) and S(k) for some 2 < k € N,
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By the induction hypothesis a; < 2, hence
ape1 < V2+2=2.
The statement S(k+ 1) has been proved and thus we have that a,, < 2
for all n € N.
3.11 We prove the statement by induction. If n = 1, then the 1-digit integer

preN*® pa9®

a; = 2 is divisible by 2. Therefore the statement is true for n = 1. It is
not difficult to deal with the case n = 2. There are only four possible
integers

ajay € {11,12,21,22}.

It is easy to see that 2% divides 12. Assume that the statement is true
for some 1 < k € N, that is, there exists a k-digit integer ajas . .. ax
which is a multiple of 2¥. Let us consider the statement for k J\{ By

induction hypothesis we have
e OV

We claim that elthe N ‘
\N "( OlOk Ka%% Q“alag

10k + aias...ap = 2@1@2 oL Qg

is a multiple of 281, We can rewrite the above integers as follows

10F +ajay...ap = 105 + 28 A = 2F(5% + A),
2-10" + ayay...ap = 2-10F + 27 . A = 2%(2.5% 4 A).

If A is odd, then 5 + A is even. In this case
lajas ... ay

is an integer having k + 1 digits and it is divisible by 2¥*!. If A is even,
then 2 - 5% + A is even. That is,

2a1a9 . .. a

a (k + 1)-digit number which is a multiple of 28+1,
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If n = 1, then the left-hand side is 5, = 1 and the right-hand side is
F3—1=2-—1=1. So the identity is valid. Assume that for some
1 < k € N the identity holds, that is,

Fy+Fy+ ...+ Fop = Foryq — 1.
Let us handle the sum for k£ + 1 terms, that is, the sum
Fo+ Fy+ ...+ o, + Fopga.
It can be written as
(Fo + Fy+ ...+ For) + Foryo = Forpr — 1+ Fopyg = Fopys — 1.
Thus the identity has been proved for all positive integers.

3.13 (a) First compute F3, for some n, let say for n = 1,2,3. We have

We checked that F;),,,SQ sugagﬁng is even
for SO \i rk + 1 ,&'g k+1) = F3r43. By definition

3k+3 F3k+2P g 3k+1 + Fyp + Fappq = 2+ Fapqq + F3.

By induction Fjj is even, so 2 - F3iy1 + Fj5i is even. The statement is
true.

(b) If n = 1, then F5; = 5. That is, the property holds for n = 1.
Assume that Fj; is a multiple of 5 for some 1 < k € N. For k + 1 we

have

Fstq1) = Fspys = Fsppa + Fspyz = Fspqz + Fspqo + Foppo + Fopy1 =
3F5kq2 + 2F5541 = 3(Fspq1 + Fii) + 2F541 = 5F5p41 + 3F5.

It is clear that 5 divides 5F5,41 and induction hypothesis implies that
3F5; is a multiple of 5. Therefore 5 divides bF5;y1 + 3F5,. We proved
the property for k£ + 1. It follows that Fy, is a multiple of 5 for all
n € N.
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® ® | ®| ® & ®

It remains to show that it is not possible to place more than 14 bishops
in such a way that they can not hit each other. A natural idea is to
divide the 64 chess squares into 14 groups such that if two bishops are

in the same group then they can hit each other. We can produce 14

such groups \)\4

s[8][5][9]6]10 7”1&6.00'

s 14|95 K@D
I CSAAEIE,

. \l\Z fdo"g‘ A5 6
e\,\e 10 o TN 712 ] 5 |13
P( W 3 |12]4]13] 5
T2 l12]3[13]4]14
1111221331414

3.32 (a) The first card is 7db, hence the suit of the hidden card is &. The

distance can be obtained from the following table

distance | order of the 3 cards
1 3O, JO, Ad
30, AM, TS
JO, 30, Al
J&, A, 3O
AN, 30, O
AN, TG, 36

OY | O = | W DO
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4.7 Using the Binomial theorem we obtain

8
8
(x+y)® = E (k) a5 Fyb = 2 4 82Ty + 28145y% + 5627y
k=0

+ 7Ox4y4 + 56x3y5 + 28x2y6 + 8my7 + yg,

8
8
(z—y)® = E <k> 7 (—y)" = 2% — 827y + 2845y — 562°°
=0

+ 70x*y* — 5623y 4 282%y° — 8xy” + ¢,

10

10

(a+ 1)1 = Z (k) ~a'%7F 1k = 0! +10a° + 456® + 120a”
k=0

+ 210a® 4 252a° 4 210a* 4 120a® 4 45a* + 10a + 1,
5

(b—3°=)_ (2) bk (=3)F = b — 150" + 900°

k=0

— 27002 + 405b — 243, \e CO
15%@& me% 8 %, 5

:I;5’
6 kb"” - %%QJF 15a462 + 20033

+ 102 + 52t 4 25,
4

(Ba+4b)t =) (2) - (3a)"7F - (40)F = 3a)" + 4 - (3a)” - (4D)

+ 6:(3@)2 - (4D)* 44 - (3a) - (4b)* + (4b)" = 81a*

+ 432a>b + 864a%b* + 768ab® + 2565,
4

(B-2z)' =) (2) 3R (—2)f =31 — 433 (22) + 632 (22)°

k=0

—4-3-(22)" 4 (22)* = 81 — 216z + 2162% — 962° + 162",

uk
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For this, we compute (z+y)"*™ by multiplying (x+y)"- (x+y)™ after

expanding both factors using the Binomial theorem:

oo = (B0 ) E D))

k=0 k=0

Now, let us compute the coefficient of 2"t~ !y'. When do we obtain

2"yl when we multiply (Zk 0( ) n—k ’“) by (Zk 0( )xm_kyk)?

For some 0 < k < [ the term 2" %y* in the first factor must be multi-
plied by 2~ **y!=* from the second factor. The coefficient of 2" *y* in
the first factor is (Z), the coefficient of 2™~**y!=* in the second factor
is (lf‘k) thus this multiplication contributes by (k) . (l_k) to the coeffi-

cient of 2"yl in (z + y)"*™. That is, the coefficient of 2"t !y! in

(x4 y)" ™ is
!
SO (") ~o0K
042, o
Moreover, the coefficient of e % ™ i ”*m , thus the

two numbers"must be xﬁ roves,nig
P(e\"e\N Gl

4.13 We can t Eto prove the identity by induction on m. For m = 0 the
identity holds, as the left hand side is (g) = 1, the right hand side is

(";1) =1, as well. Assume that the identity holds for m — 1, that is,

~ /n+k (") . n+1 P n+m-—1\ (n+m
“\ k) \0 1 m—-1 ) \m-1)
This is the induction hypothesis. Now we prove the identity for m.

)= @) e ()

-~

), by the induction hypothesis

3

>
Il

:<n+m

m—1

G R G E G ]
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5.4 This is an example of an order 3 linear recurrence. We define g,, = gor™
for some gy and r, which is a geometric progression. We assume that

it satisfies the same recurrence relation as a,,, that is, we obtain
= —2r 41+ 2.

It is a cubic polynomial. We look for integer solutions. If there is an

integral root, then it divides 2. Hence the possible integral roots are

42, 41,
rolr342r —r —2
-2 0
-1 0
1 0
2 12

The cubic polynomial 7 + 2r?2 — r — 2 can be W§
(x +1) - (z +2), that is, there are th1ree$U In thls case we
g th

have three geometric progges
the approprlate li mnﬁtlon is _‘ 2
" [ T

e V-4 960
P ( e\’he corr?ﬂ@ tem of linear equations is

eré)ecurrence therefore

s+t+u=0,
—2s—t4+u=1,
4s +t +u = 2.

We subtract the first equation from the third one to get 3s = 2. So we

have that s = 2/3. We eliminate s from the first two equations

t+ 2
U= —=
37

—t+u=

OJI\I

It is easy to see that u = 5/6 and ¢t = —3/2. The explicit formula for

a, is



