tenth of an inch. And inside these parts are a multitude
more parts that are very close to each other, some just
thousandths of an inch apart. And the shorter the
distance the electricity has to travel, the sooner it
gets there.

There is no point in saying how many things today’s
computers do in a single second, because that would date
this book. Computer manufacturers continue to produce
new computers that go twice as fast as the fastest
computers of only two or three years past. There is a
theoretical limit to how fast they can go, but engineers
keep finding practical ways to get around the theories
and make machines that go faster and faster.

During all of this time that computers have been getting
faster, smaller and cheaper, the things that computers
do, really have not changed since they were first
invented in the 1940's. They still do the same few
simple things, just faster, cheaper, more reliably and
in a smaller package.

There are only a few sections to a computer, and they
are all made out of the same kinds of parts. Each
section has a specific mission, and the combination of
these parts into a machine was a truly marvelous
invention. But it is not difficult to understand.

13

be able to call it a bit. It could sit on a table with
either the “yes” or “no” showing. Then it would only
have two states.

You have probably heard of bits before in relation to
computers, and now you know what they are. In a
computer, the bits are not like the coin or the lock,
they are most like the light. That is, the bits in a
computer are places that either have electricity or they
do not. In a computer, the bits are very, very small and
there are a very large number of bits, but that’s all
that is in there.

Like the light in the living room, the bit is either on
or off. In the living room, there is electricity in the
wall coming into the switch. When you turn the switch
on, the electricity goes from the switch, through the
wires in the wall and ceiling, into the light socket and
then into the light bulb. So this bit in the living room
is several feet long, it includes the switch, the wires,
the socket and the light bulb. In a computer, bits are
mostly tiny, actually microscopic. Also, the computer
bit doesn’t have a mechanical switch at one end or a
light bulb at the other. If you removed the light bulb
from the socket in the living room, the switch would
still send electricity to the socket when it was on, and
it would still be a bit - you just wouldn’t be able to
see whether it was on or off by looking at a light bulb.
Your computer has something resembling switches, like
the keys on the keyboard, and something resembling light
bulbs, like the tiny dots on the screen, but most of the
bits are inside and unseen.

This is basically all there is in a computer - bits.
There are lots and lots of them, and they are arranged
and connected up in various ways, which we will examine
in detail as the book progresses, but this is what is
inside all computers - bits. A bit is always in one of
its two possible states, either off or on, and they
change between on and off when they are told to do so.
Computer bits aren’t like the coin that has to
physically flip over to change from one state to the
other. Bits don’t change shape or location, they don’t
look any different, they don’t move or rotate or get
bigger or smaller. A computer bit is just a place, if
there is no electricity in that place, then the bit is

16

What the..?

Imagine it is a bright sunny day, and you walk into a
room with lots of open windows. You notice that the
ceiling light is on. You decide that this is a waste,
and you are going to turn the light off. You look at the
wall next to the door and see a switch plate with two
switches. So you assume that the one closer to the door
is for the ceiling light. But then you notice that the
switch is already off. And the other switch is off too.
So then you think “well, maybe someone installed the
switch upside down,” so you decide to flip the switch
anyway. You flip it on and off but nothing happens, the
ceiling light stays lit. So then you decide that it must
be the other switch, and you flip it on, off, on, off.
Again nothing happens, that ceiling light continues to
shine at you. You look around, there is no other door,
there are no other switches, no apparent way to turn off
this darned light. It just has to be one of these two
switches, who built this crazy house anyway? So you grab
one switch with each hand and start flipping them
wildly. Then suddenly you notice the ceiling light
flicker off briefly. So you slow down your switch
flipping and stop when the ceiling light is off. Both
switches say “on”, and the light is now off. You turn
one switch off, then on, and the light goes on, then
back off. This is backwards. One switch off equals light
on? So then you turn the other switch off, then on, the
same thing, the light goes on, then back off. What the
heck? Anyway, you finally figure out how it works. If
both switches are on, the light goes off. If one or the
other or both switches are off, then the ceiling light
is on. Kind of goofy, but you accomplish what you
intended, you turn both switches on, the light goes off,
and you get the heck out of this crazy room.

Now what is the purpose of this little story about the
odd light switches? The answer is, that in this chapter
we are going to present the most basic part that
computers are made of. This part works exactly like the
lighting system in that strange room.

This computer part is a simple device that has three
connections where there may or may not be some

19

Off Off On

Off On On
On Off On
On On Off

Each line shows one possible combination of the inputs
and what the output will be under those circumstances.

Compare this little chart with the experience with the
odd room with the two light switches. If one switch is
called ‘a,’ the other switch is called ‘b,’ and the
ceiling light is called ‘c,’ then this little chart
describes completely and exactly how the equipment in
that room operates. The only way to get that light off
is to have both switch ‘a’ and switch ‘b’ on.

23

Diagrams
If you want to see how a mechanical machine works, the
best way to do it is to look inside of it, watch the
parts move as it operates, disassemble it, etc. The
second best way is to study it from a book that has a
lot of pictures showing the parts and how they interact.

A computer is also a machine, but the only thing that
moves inside of it is the invisible and silent
electricity. It is very boring to watch the inside of a
computer, it doesn’t look like anything is happening at
all.

The actual construction of the individual parts of a
computer is a very interesting subject, but we are not
going to cover it any further than to say the following:
The technique starts with a thin crystal wafer, and in a
series of steps, it is subjected to various chemicals,
photographic processes, heat and vaporized metal. The
result is something called a ‘chip,’ which has millions
of electronic parts constructed on its surface. The
process includes connecting the parts into gates, and
connecting the gates into complete computer sections.
The chip is then encased in a piece of plastic that has
pins coming out of it. Several of these are plugged into
a board, and there you have a computer. The computer we
are going to ‘build’ in this book could easily fit on
one chip less than a quarter of an inch square.

But the point is, that unlike a mechanical machine, the
actual structure of a chip is very cluttered and hard to
follow, and you can’t see the electricity anyway. The
diagrams we saw in the previous chapter are the best way
to show how a computer works, so we’d better get pretty
good at reading them.

Throughout the rest of this book, we are going to build
new parts by connecting several gates together. We will
describe what the new part does, and then give it a name
and its own symbol. Then we may connect several of those
new parts into something else that also gets a name and
a symbol. Before you know it, we will have assembled a
complete computer.

Every time there is a new diagram, the text will explain

29

Remember When

You have probably heard of computer memory, and now we
are going to see exactly what that is. Since the only
thing inside of computers is bits, and the only thing
that happens to bits is that they either turn on or turn
off, then it follows that the only thing a computer can
‘remember’ is whether a bit was on or off. We will now
see how that is accomplished.

The following diagram shows one bit of computer memory.
It happens to be one of the neatest tricks you can do
with a few gates. We will examine how it works here at
great length, and after we understand it, we will
replace it with its own symbol, and use it as a building
block for bigger and better things.

It is made of only four NAND gates, but its wiring is
kind of special. Here it is:

i =2

Z 4 c
5

This combination as a whole has two inputs and one
output. ‘I’ is where we input the bit that we want to
remember, and ‘o’ is the output of the remembered bit.
'S’ is an input that tells these gates when to ‘set’ the
memory. There are also three internal wires labeled ‘a’
‘b’ and ‘c’ that we will have to look at to see how
these parts work together. Try to follow this carefully,
once you see that it works, you will understand one of
the most important and most commonly used things in a
computer.

To see how this works, start with ‘s’ on and ‘i’ off.
Since ‘i’ and ‘s’ go into gate 1, one input is off, so
‘a’ will be on. Since ‘a’ and ‘s’ go to gate 2, both

32

Imagine replacing input ‘c’ with another AND gate, then
you would have a four input AND gate. You could then
replace any of the four inputs with another AND gate,
and have a five input AND gate. This can be done as many
times as necessary for what you are doing.

As you add inputs, the chart will need more and more
lines. Every time you add another input, you double the
number of combinations that the inputs can have. The
chart we saw for the original two input AND gate had
four lines, one for each possibility. The three input,
directly above, has eight lines. A four input AND gate
will have 16 lines, a five input will have 32, etc. In
all cases though, for an AND gate, only one combination
will result in the output turning on, that being the
line where all inputs are on.

Here is the last combination we need to make the first
half of a computer. This combination is different from
anything we have looked at so far, in that it has more
outputs than inputs. Our first example has two inputs
and four outputs. It is not very complicated, it just
has two NOT gates and four AND gates.

In the diagram below, ‘a’ and ‘b’ are the inputs coming
in from the left. Both of them are connected to NOT
gates. The NOT gates generate the opposite of their
inputs. There are four vertical wires going down the
page that come from ‘a’ and ‘b’ and the opposites of ‘a’
and ‘b.’ Thus, for each ‘a’ and ‘b,’ there are two wires
going down the page, where one of them will be on if its
input is on, and the other will be on if its input is
off. Now we put four AND gates on the right, and connect
each one to a different pair of the vertical wires such
that each AND gate will turn on for a different one of
the four possible combinations of ‘a’ and ‘b.’ The top

57

416

||
[LS

[

A¥16

1]

B
g P EERE N

At the bottom of this diagram is one bus and an ‘s’ and
‘e’ bit, just the same as the connections that go to a
register. As you can see, they go upwards and into the
grid. The diagram doesn’t show it, but they go up under

64

the grid all the way to the top, so that each of the 256
intersections has a bus and an ‘s’ and ‘e’ bit nearby.

There is a circle on the diagram above, around one of
the intersections of the grid. What is in this circle is
magnified in the diagram below, showing that there are
three AND gates and one register at each of the 256
intersections. As we can see, there is an AND gate ‘x,’
connected to the one vertical grid wire and the one
horizontal grid wire at this intersection. These ‘x’
gates are the only things connected to the grid. The
rest of the connections go down to the bus and ‘s’ and
‘e’ bits at the bottom of the diagram. Remember that
there is only one intersection where both grid wires are
on. Therefore, there are 256 of these ‘x’ gates, but
only one of them has its output on at any given time.
The output of that ‘'x’ gate goes to one side each of two
more AND gates. These two gates control access to the
set and enable inputs of the register at that
intersection. So when an ‘x’ gate is off, the ‘s’ and
‘e’ bits of that register cannot be turned on. That will
be the case for 255 of these registers, the ones where
the ‘'x’ gate is off. But one intersection has its ‘x’
gate on, and its register can be set from the bus, or
its contents can be enabled onto the bus and sent
elsewhere by using the ‘s’ and ‘e’ bits at the bottom of
the diagram.

65

To all 85,536 intersections

3%

69

A bus carries one byte at a time, so selecting one of
the 65,536 memory locations of this RAM would be a two-
step process. First, one byte would have to be placed on
the ‘a’ bus and set into RO, then the second byte would
have to be placed onto the ‘a’ bus and set into R1l. Now
you could access the desired memory location with the
bus and the ‘s’ and ‘e’ bits at the bottom of the
drawing.

Simplifying again, we have something that looks very
much like our 256 byte RAM, it just has one more input
bit.

£ m—

s — MAR
57

Vo RAM
eo——1 65536

e

For the rest of this book, we will be using the 256 byte
RAM just to keep things simple. If you want to imagine a
computer with a larger RAM, every time we send a byte to
the Memory Address Register, all you have to do is
imagine sending two bytes instead.

70

In this code, 0000 0001 means one, 0001 0000 means
sixteen, 0001 0001 means seventeen (sixteen plus one,)
1111 1111 means 255, etc. In an eight-bit byte, we can
represent a number anywhere from 0 to 255. This code is
called the “binary number code.”

The computer works just fine with this arrangement, but
it is annoying for people to use. Just saying what is in
a byte is a problem. If you have 0000 0010, you can call
it “zero zero zero zero zero zero one zero binary” or
you can mentally translate it to decimal and call it
“two,” and that is usually what is done. In this book
when a number is spelled out, such as ‘twelve,’ it means
12 in our decimal system. A binary 0000 0100 would be
called ‘four,’ because that is what it works out to be
in decimal.

Actually, in the computer industry, people often use
hexadecimal, (and they just call it ‘hex’.) If you look
at the chart above, you can see that four digits of
binary can be expressed by one digit of hex. If you have
a byte containing 0011 1100, you can translate it to 60
decimal, or just call it “3C hex.” Now don’t worry,
we’re not going to use hex in this book, but you may
have seen these types of numbers somewhere, and now you
know what that was all about.

80

Addresses

Now that we have the binary number code, we can use it
for various purposes in our computer. One of the first
places we will use it, is in the Memory Address
Register. The pattern of bits that we put into this
register will use the binary number code. The bits of
this number in MAR then select one of the 256 RAM
storage locations. The number in MAR is considered to be
a number somewhere between 0 and 255, and thus each of
the 256 RAM bytes can be considered to have an address.

This is fairly simple, but a point needs to be made here
about exactly what is meant by an address inside of a
computer. In a neighborhood of homes, each house has an
address, like 125 Maple Street. There is a sign at the
corner that says “Maple St.” and written on the house
are the numerals “125.” This is the way we normally
think of addresses. The point to be made here is that
the houses and streets have numbers or names written on
them. In the computer, the byte does not have any
identifying information on it or contained in it. It is
simply the byte that gets selected when you put that
number in the Memory Address Register. The byte gets
selected by virtue of where it is, not by any other
factor that is contained at that location. Imagine a
neighborhood of houses that had sixteen streets, and
sixteen houses on each street. Imagine that the streets
do not have signs and the houses do not have numbers
written on them. You would still be able to find any
specific house if you were told, for example, to go to
‘the fourth house on the seventh street.’ That house
still has an address, that is, a method of locating it,
it just doesn’t have any identifying information at the
location. So a computer address is just a number that
causes a certain byte to be selected when that address
is placed into the Memory Address Register.

81

More Gates

We have used NAND, AND and NOT gates so far. There are
two more combination gates that we need to define. The
first is built like this:

B— c

b—r d

All it does is to NOT the two inputs to one of our good
old NAND gates. Here is the chart for it, showing the
intermediate wires so it is easy to follow.

a b c d e
0 0 1 1 0
0 1 1 0 1
1 0 0 1 1
1 1 0 0 1

In this case, when both inputs are off, the output is
off, but if either ‘a’ OR ‘b’ is on, or both, then the
output will be on. So it has another very simple name,
it is called the “OR gate.” Instead of drawing all the
parts, it has its own diagram shaped something like a
shield. The diagram and chart look like this:

a
b:D_“"

a b c
0 0 0
0 1 1

84

Messing with Bytes
Individual gates operate on bits. Two bits in, one bit
out. But the RAM stores and retrieves a byte at a time.
And the bus moves a byte at a time. Here in the CPU, we
want to be able to work on a whole byte at one time. We
want some ‘gates’ that affect an entire byte. In the
chapter on the bus, we saw how the contents of a byte
can be copied from one register to another. This is
usually referred to as moving a byte. Now we are going
to see some variations on this.

First we will see three ways that we can change the
contents of a byte as it moves from one register to
another. Second, we will see four ways that we can take
the contents of two bytes, and have them interact with
each other to create the contents for a third byte.
These are all of the things that computers actually do
to bytes. All things ultimately come down to these seven
operations.

88

step 2 | ‘ :

stap 3 :

opd

step -
step7 _ l——

Here is how the stepper is built. It is done using some
of the same memory bits that we used to make registers
but they are arranged very differently. We are not going
to store anything in these bits, we are going to use
them to create a series of steps.

The stepper consists of several memory bits connected in
a string, with the output of one connected to the input
of the next. Here is a diagram that shows most of the
stepper:

126

because its ‘set’ bit is connected to ‘clk,’ which is
now off. When ‘clk’ comes back on, the second ‘M’ will
now come on. As the clock ticks, the ‘on’ that enters
the first memory bit will step down the line, one bit
for each time the clock goes on, and one bit for each
time the clock goes off. Thus two bits come on for each
clock cycle.

Now, turning to the full stepper diagram below, step 1
comes from a NOT gate connected to the output of the
second ‘M.’ Since all 'M’s start off, step 1 will be on
until the second ‘M’ comes on, at which time step 1 will
be over. For the remaining steps, each one will last
from the time its left side ‘M’ turns on until the time
its right side ‘M’ turns on. The AND gates for steps 2-6
have both inputs on when the left ‘M’ is on, and the
right ‘M’ is off. If we connect the output of one ‘M’
and the NOT of the output of an ‘M’ two spaces farther
on to an AND gate, its output will be on for one
complete clock cycle. Each one comes on when its left
input has come on, but its right input has not yet come
on. This gives us a series of bits that each come on for
one clock cycle and then turn off.

The only thing missing here is that the ‘M’ bits come on
and stay on. Once they are all on, there is no more
action despite the clock’s continued ticking. So we need
a way to reset them all off so we can start over again.
We have to have a way to turn off the input to the first
‘M,’ and then turn on all of the set bits at the same
time. When that happens, the ‘off’ at the input to the
first ‘M’ will travel through all of the 'M’s as fast as
it can go. We will add a new input called ‘reset,’ which
will accomplish these things.

128

itself off as soon as the zero can get through the
string of ‘M’s. This means that step 7 will not last
long enough to be used for one of our data transfers
over the bus. All of the things we want to accomplish
will take place in steps 1 through 6.

The First Great Invention

What we need is some way to do different operations from
one stepper sequence to the next. How could we have it
wired up one way for one sequence, and then a different
way for the next sequence? The answer, of course, is to
use more gates. The wiring for one operation can be
connected or disconnected with AND gates, and the wiring
for a different operation can be connected or
disconnected with some more AND gates. And there could
be a third and fourth possibility or more. As long as
only one of those operations is connected at one time,
this will work fine. Now we have several different
operations that can be done, but how do you select which
one will be done?

The title of this chapter is “The First Great
Invention,” so what is the invention? The invention is
that we will have a series of instructions in RAM that
will tell the CPU what to do. We need three things to
make this work.

The first part of the invention is, that we are going to
add another register to the CPU. This register will be
called the “Instruction Register,” or “IR” for short.
The bits from this register will “instruct” the CPU what
to do. The IR gets its input from the bus, and its
output goes into the control section of the CPU where
the bits select one of several possible operations.

The second part of the invention is another register in
the CPU called the “Instruction Address Register,” or
“IAR” for short. This register has its input and output
connected to the bus just like the general purpose
registers, but this one only has one purpose, and that
is to store the RAM address of the next instruction that
we want to move into the IR. If the IAR contains 0000
1010 (10 decimal,) then the next instruction that will
be moved to the IR is the byte residing at RAM address
ten.

The third part of the invention is some wiring in the
control section that uses the stepper to move the
desired “instruction” from RAM to the IR, add 1 to the
address in the IAR and do the action called for by the

141

The Arithmetic or Logic Instruction

This first type of instruction is the type that uses the
ALU like our ADD operation earlier. As you recall, the
ALU has eight things it can do, and for some of those
things it uses two bytes of input, for other things it
only uses one byte of input. And in seven of those
cases, it has one byte of output.

This type of instruction will choose one of the ALU
operations, and two registers. This is the most
versatile instruction that the computer can do. It
actually has 128 variations, since there are eight
operations, and four registers, and you get to choose
twice from the four registers. That is eight times four
times four, or 128 possible ways to use this
instruction. Thus this is not just one instruction, but
rather it is a whole class of instructions that all use
the same wiring to get the job done.

Here is the Instruction Code for the ALU instruction. If
the first bit in the Instruction Register is a 1, then
this is an ALU instruction. That’s the simplicity of it.
If the first bit is on, then the next three bits in the
instruction get sent to the ALU to tell it what to do,
the next two bits choose one of the registers that will
be used, and the last two bits choose the other register
that will be used.

149

The Data Instruction

Now here is an interesting instruction. All it does is
load a byte from RAM into a Register like the Load
instruction, above. The thing that is different about it
though, is where in RAM it will get that byte.

In the Data instruction, the data comes from where the
next instruction ought to be. So you could consider that
this instruction is actually two bytes long! The first
byte is the instruction, and the next byte is some data
that will be placed into a register. This data is easy
to find, because by the time we have the instruction in
the IR, the IAR has already been updated, and so it
points right to this byte.

Here is the Instruction Code for the Data instruction.
Bits 0 to 3 are 0010. Bits 4 and 5 are not used. Bits 6
and 7 select the register that will be loaded with the
data that is in the second byte.

|Data nstru-::tnnl

Heg B
00 - Register 0)
01-Regser1| | Anybitevouwant |
10 - Register 2
11 - Register 3

: . *

ofo] To][o]o
Instruction Register Mext byte in RAM

All this instruction needs to do is, in step 4, send IAR
to MAR, and in step 5, send RAM to the desired CPU

16l

Bus 1e—— 4 5 & Sets
Enables — MAR

IAR +— — ACC
RAM :DJ RegB
=D

ACC + + IAR
[=)

Q00T
001

010

56500000

Y
S
-y

L=
ey
[—
waf—
-
o
o
—f—

Like the Data instruction, the IAR already points to the
byte we need. Unlike the Data Instruction, we don’t need
to add 1 to the IAR a second time because we are going
to replace it anyway. So we only need two steps. In step
4, we send IAR to MAR. In step 5 we move the selected
RAM byte to the IAR. Step 6 will do nothing.

Here is the wiring that makes it work:

valid during step 5 of the ALU instruction. Therefore,
we need a way to save the state of the Flag bits as they
were during step 5 of the ALU instruction.

- MAR
T

B Lop

=]

, RAM
Control Section 256

S @
AR 5

@

10

Here is the last register that we are going to add to
the CPU. This will be called the FLAG register, and we
are only going to use four bits of it, one for each of
the flags.

The Flag bits from the ALU are connected to the input of
this register, and it will be set during step 5 of the
ALU instruction just like ACC and it will stay set that
way until the next time an ALU instruction is executed.
Thus if you have an ALU instruction followed by a “Jump
If” instruction, the “Flag” bits can be used to “decide”
whether to Jump or not.

Every instruction cycle uses the ALU in step 1 to add 1

173

Stepper

Bug 1 +— 4 g & Sets
e | i
ACC ':DJ =) AR
RAM AR
P =)
o]
ot
1ot
ot -
oot
10—
'Fr:?,.,“; 1o
f:j; o | L -
.8 larger 'y
equal —F
2e[0 i
01234567

175

JAE Addr Jump if A is larger or Equal to B
JAZ Addr Jump if A is larger or answer is
JEZ Addr Jump if A Equals B or answer is 2
JCAE Addr Jump if Carry or A larger or Equa
JCAZ Addr Jump if Carry or A larger or Zero
JCEZ Addr Jump if Carry or A Equals B or Ze
JAEZ Addr Jump if A larger or Equal to B or
JCAEZ Addr Jump if Carry, A larger, Equal or

177

The Clear Flags Instruction

There is one annoying detail that we need to have here.
When you do addition or shifting, you have the
possibility of getting the carry flag turned on by the
operation. This is necessary, we use it for the Jump If
instruction as in the previous chapter.

The Carry Flag is also used as an input to the addition
and shift operations. The purpose of this is so you can
add numbers larger than 255 and shift bits from one
register to another.

The problem that arises is that if you are just adding
two single-byte numbers, you don’t care about any
previous Carry, but the Carry Flag may still be set from
a previous operation. In that case, you might add 2+2
and get 5!

Bigger computers have several ways to do this, but for
us, we will just have a Clear Flags Instruction that you
need to use before any adds or shifts where an
unexpected carry bit would be a problem.

Here is the Instruction Code for this instruction. Bits
4, 5, 6 and 7 are not used.

[Elear Flags Instruct

|

of1]1 DILC ofo]o
Instruction Register

The wiring for this is very simple and a bit tricky. We
will not enable anything onto the bus, thus it and the
‘A’ ALU input will be all zeros. We will turn on ‘Bus 1’

178

Ta Daa!

We have now wired up the Control Section of our CPU. As
a result, we can place a series of instructions in RAM,
and the Clock, Stepper, Instruction Register and wiring
will fetch and execute those instructions. Here is the
entire control section:

181

Yes, this looks pretty complicated, but we have looked
at every part of it already. The only thing we had to
add were some OR gates because most of the ‘enables’ and
‘sets’ need multiple connections. This actually has a
lot fewer parts than the RAM, but that was much more
repetitive. Most of the mess here is just getting the
wires from one place to another.

The byte that is placed in the Instruction Register
causes a certain activity to occur. Each possible
pattern causes a different activity. Therefore, we have
a code where each of the 256 possible codes represents a
different specific activity.

As mentioned, this is called the Instruction Code.
Another name for it is “machine language,” because this
is the only language (code) that the machine (computer)
“understands.” You “tell” the machine what to do by
giving it a list of orders you want it to carry out. But
you have to speak the only language that it
“understands.” If you feed it the right byte-sized
patterns of ons and offs, you can make it do something
that will be useful.

Here are all of the Instruction Codes and our shorthand
language brought together in one place.

Instruction Code | Language Meaninc
1000 rarb ADD RA, RB Add

1001 rarb SHR RA, RB shift F
1010 rarb SHL RA, RB Shift I
1011 rarb NOT RA,RB Not

1100 rarb AND RA, RB And

1101 rarb OR RA,RB Oor

1110 rarb XOR RA,RB Exclusi
1111 rarb CMP RA, RB Compare
0000 rarb LD RA,RB Load RE
0001 rarb ST RA,RB Store F
0010 00rb XXXXXXXX DATA RB, Data Load tt
0011 00rb JMPR RB Jump tc
0100 0000 XXXXXXXX JMP Addr Jump tc

on. When this Memory bit is on, it means that the
keyboard adapter is active.

AND gate #3 comes on during ‘clk e’ time of an IN Data
instruction. If the Memory bit is on, AND gate #4 will
come on and the Keycode Register will be enabled onto
the bus, which will be set into Reg B in the CPU.

Every adapter that is connected to the I/O bus needs to
have the type of circuitry we see in gates #1 and #2 and
the memory bit above. Each adapter will have a
different combination that turns gate #1 on; this is
what allows the CPU to select each adapter individually.

Here is a little program that moves the current keypress
into Reg 3 in the CPU.

Instruction Comments

Data R2,0000 1111 * Put Addr of Keyboard ir
ouT Addr,R2 * Select Keyboard

IN Data,R3 * Get ASCII of key presse
XOR R2,R2 * Clear Address in Reg 2
ouT Addr,R2 * Un-Select Keyboard

That little ‘Control’ box clears the Keycode Register
after it has been sent to the CPU.

The program running in the CPU will check the keyboard
adapter on a regular basis, and if the byte that it
receives is all zeros, then no key has been pressed. If
the byte has one or more bits on, then the program will
do whatever the program has been designed to do with a
keystroke at that time.

Again, we are not going to go through every gate in the
Keyboard adapter. All device adapters have the same
sorts of circuitry in order to be able to respond when
they are addressed, and send or receive bytes of
information as needed. But it is no more complicated
than that. That is all that I/O devices and adapters do.

works.

In this chapter we will look at the simplest kind of
screen, the kind that is black and white, and whose
pixels can only either be fully on or fully off. This
type of screen can display characters and the type of
pictures that are made of line drawings. Later in the
book we will see the few simple changes that enable a
screen to display things like color photographs.

The major parts are three. First there is the computer,
we have seen how that works. It has an I/O Bus that can
move bytes to and from things outside of the computer.
Second is the screen. The screen is just a large grid of
pixels, each of which can be selected, one at a time,
and while selected, can either be turned on, or not. The
third item is the ‘display adapter.’ The display adapter
is connected to the I/O Bus on one side, and to the
screen on the other side.

The heart of a display adapter is some RAM. The display
adapter needs its own RAM so it can “remember” which

pixels should be on, and which pixels should be off. In
the type of screen we are going to describe here, there
needs to be one bit in RAM for each pixel on the screen.

In order to make the screen scan every pixel 30 times
every second, the Display Adapter needs its own clock
that ticks at a speed that is 30 times the number of
pixels on the screen. At each tick of the clock, one
pixel is selected and it is turned on or not by the
corresponding bit from the RAM.

As an example, lets use an old type of screen. It is a
black and white screen that displays 320 pixels across
the screen and 200 pixels down. That comes out to 64,000
individual pixels on the screen. Each pixel on the
screen has a unique address consisting of two numbers,
the first being the left-right or horizontal position,
and the other being the up-down or vertical position.
The address of the top left pixel is 0,0 and the bottom
right pixel is 319,199

64,000 pixels times 30 pictures per second means that
this Display Adapter’s clock needs to tick 1,920,000
times per second. And since there are eight bits in a
byte, we will need 8,000 bytes of display RAM to tell
each of the 64,000 screen pixels whether to be on or

202

operation. But the IAR has been replaced! So the next
instruction will be fetched from whatever address was in
RAM byte 2.

In other words, what the CPU had been doing is saved,
and the CPU is sent off to do something else. If at the
end of this new activity, the program puts RAM bytes 0
and 1 back into the IAR and Flags, the CPU will pick up
from exactly where it left off, before it was
interrupted.

This system is very useful for dealing with I/O
operations. Without interrupts, the program running in
the CPU would have to make sure to check all of the
devices on the I/0 Bus on a regular basis. With
interrupts, the program can just do whatever it is
designed to do, and the program that deals with things
like keyboard input will be called automatically as
needed by the interrupt system.

We have not included this in our CPU because it would
just make our Control Section wiring diagram too big. It
would need to add the following: two more steps to the
stepper, wiring to do the above 8 steps in place of the
normal instruction cycle, paths for the Flags register
to get to and from the bus, a method of sending a binary
0, 1, 2 or 3 to MAR, and an instruction that restores
RAM bytes 0 and 1 to the IAR and Flags register.

And that is an Interrupt system. As far as the language
is concerned, the computer designers took an existing
verb, ‘interrupt,’ and used it in three ways: It is a
verb in “the keyboard interrupted the program,” it is an
adjective in “This is the Interrupt system,” and it is a
noun in “the CPU executed an interrupt.”

217

Software can be copied easily by machine. All you need
is something that can read the disk or whatever it is
recorded on, and something else to write it onto a new
disk. The new one will be just like the original, it
will do all the same things. If the original is your
favorite movie, the copy will also be your favorite
movie. If the original is a program that will prepare
your tax papers, so will the copy.

Software is not a physical thing, it is just how the
physical things are set.

By far the most commonly used definition of ‘software’
is to refer to a package of computer instruction code. I
think that the way it got this name is that once you
have built a device as versatile as a computer, there
are many different things that it can be made to do. But
when there are no instructions in it, it can’t do
anything. So the software is an absolutely necessary
part of a computer that is doing some task. It is a
vital part of the total machine, yet it isn’t like any
other part in the machine. You can’t weigh it or measure
it or pick it up with a pair of pliers. So it is part of
the ‘ware,’ but it isn’t hardware. The only thing left
to call it is ‘software.’

222

Programs

As mentioned earlier, a series of instructions in RAM
are called a program.

Programs come in many sizes. Generally, a program is a
piece of software that has everything needed to do a
specific task. A system would be something larger, made
up of several programs. A program might be made up of
several smaller parts known as ‘routines.’ Routines in
turn may be made up of sub-routines.

There are no hard and fast definitions that
differentiate between system, program, routine and sub-
routine. Program is the general term for all of them,
the only difference is their size and the way they are
used.

There is another distinction between two types of
programs that is not related to their size. Most home
and business computers have a number of programs
installed on them. Most of these programs are used to do
something that the owner wants to do. These are called
application programs because they are written to apply
the computer to a problem that needs to be solved. There
is one program on most computers that is not an
application. Its job is to deal with the computer itself
and to assist the application programs. This one program
that is not an application is called the Operating
System.

223

programs had to be written directly in ones and zeros.
Then somebody got tired of the tedium of programming
that way, and decided to write the first compiler. Then
ever after, programs were written in this easier
language, and then translated into Instruction Code by
the compiler. With the original compiler, you could even
write a better compiler.

So in order for a computer language to exist, you need
two things, a set of words that make up the language
(another code,) and a compiler that compiles the written
language into computer instruction code.

The language that we have seen in this book has only
about 20 words in it. Each word correlates directly to
one of the instructions of which this computer is
capable. Each line you write results in one computer
instruction. When you write an 87 line program in this
language, the instruction code file that the compiler
generates will have 87 instructions in it.

Then someone invented a “higher level” language where
one line of the language could result in multiple
computer instructions. For example, our computer does
not have an instruction that does subtraction. But the
compiler could be designed so that it would recognize a
new word in the language like ‘SUB RA,RB’ and then
generate however many machine instructions were
necessary to make the subtraction happen. If you can
figure out how to do something fancy with 47
instructions, you can have a word in your language that
means that fancy thing.

Then someone invented an even higher level language
where the words that make up the language don’t even
resemble the CPU’s actual instructions. The compiler has
a lot more work to do, but still generates instruction
code that does the things that the words in that
language mean. A few lines from a higher level language
might look like this:

Balance = 2,000

Interest Rate = .034

Print “Hello Joe, your interest this year is: $”

Print Balance X Interest Rate
The compiler for this language would read this four-line
program, and generate a file that could easily contain

230

To use the file system, there will be some sort of rules
that the application program needs to follow. If you
want to write some bytes to the disk, you would need to
tell the 0OS the name of the file, the RAM address of the
bytes that you want to write, and how many bytes to
write. Typically, you would put all of this information
in a series of bytes somewhere in RAM, and then put the
RAM address of the first byte of this information in one
of the registers, and then execute a Jump instruction
that jumps to a routine within the Operating System that
writes files to the disk. All of the details are taken
care of by this routine, which is part of the OS.

If you ask the OS to look at your disk, it will show you
a list of all the file names, and usually their sizes
and the date and time when they were last written to.

You can store all sorts of things in files. Files
usually have names that are made up of two parts
separated by a period like “xxxx.yyy.” The part before
the period is some sort of a name like “letter to Jane,”
and the part after the dot is some sort of a type like
“doc” which is short for “document.” The part before the
period tells you something about what is in the file.
The part after the dot tells you what type of data is
contained in this file, in other words, what code it
uses.

The type of the file tells both you and the 0S what code
the data in the file uses. In one popular operating
system “.txt” means text, which means that the file
contains ASCII. A “.bmp” means BitMaP, which is a
picture. A “.exe” means executable, which means it is a
program and therefore contains Instruction Code.

If you ask the 0S what programs are available to
execute, it will show you a list of the files that end
with “.exe”. If you ask for a list of pictures that you
can look at, it will show you a list of files that end
with “.bmp”.

There are many possible file types, any program can
invent its own type, and use any code or combination of
codes.

Computer Diseases?

Another place where human characteristics get assigned
to computers is something called a computer virus. This
implies that computers can come down with a disease and
get sick. Are they going to start coughing and sneezing?
Will they catch a cold or the chicken pox? What exactly
is a computer virus?

A computer virus is a program written by someone who
wants to do something bad to you and your computer. It
is a program that will do some sort of mischief to your
computer when it runs. The motivation of people who
write virus programs ranges from the simple technical
challenge of seeing whether one is capable of doing it,
to a desire to bring down the economy of the whole
world. In any case, the people who do such things do not
have your best interests in mind.

How does a computer ‘catch’ a virus? A virus program has
to be placed in your RAM, and your computer has to jump
to the virus program and run it. When it runs, it
locates a file that is already on your hard disk, that
contains a program that gets run on a regular basis by
your computer, like some part of the operating system.
After the virus program locates this file, it copies the
virus program to the end of this file, and inserts a
jump instruction at the beginning of the file that
causes a jump to where the virus program is. Now your
computer has a virus.

When a computer with a virus is running, it does all of
the things it is supposed to do, but whenever it runs
the program that contains the virus, the inserted jump
instruction causes the virus program to be run instead.
Now the virus usually will do something simple, like
check for a predetermined date, and if it is not a
match, then the virus program will jump back to the
beginning of the file where the operating system program
still exists.

Thus, your computer will appear totally normal, there
are just a few extra instructions being executed during
its regular operations. The virus is considered dormant
at this point. But when that date arrives, and the virus

238

But that isn’t the end of the story. The ROM described
above had to be built that way at the factory. Over the
years, this idea was improved and made easier to use.

The next advance was when someone had the bright idea of
making ROM where every bit was set on at the factory,
but there was a way of writing to it with a lot of power
that could burn out individual connections, changing
individual bits to an off. Thus this ROM could be
programmed after leaving the factory. This was called
‘Programmable ROM’ or ‘PROM’ for short.

Then someone figured out how to make a PROM that would
repair all of those broken connections if it were
exposed to ultraviolet light for a half an hour. This
was called an ‘Erasable PROM’, or ‘EPROM’ for short.

Then someone figured out how to build an EPROM that
could be erased by using extra power on a special wire
built into the EPROM. This was called ‘Electrically
Erasable PROM’, or ‘EEPROM’ for short. One particular
type of EEPROM has the name ‘Flash memory.’

So there is RAM, ROM, PROM, EPROM, EEPROM and Flash.
These are all types of computer memory. The thing they
have in common is that they all allow random access.
They all work the same way when it comes to addressing
bytes and reading out the data that is in them. The big
difference is that RAM loses its settings when the power
goes off. When the power comes back on, RAM is full of
all zeros. The rest of them all still have their data
after power off and back on.

You may ask then, “Why don’t computers use EEPROM for
their RAM? Then the program would stay in RAM when the
computer was off.” The answer is that it takes much
longer to write into EEPROM than RAM. It would slow the
computer down tremendously. If someone figures out how
to make an EEPROM that is as fast and as cheap and uses
the same or less power as RAM, I'm sure it will be done.

By the way, the word ROM has also come to be used to
mean any type of storage that is permanently set, such
as a pre recorded disk, as in ‘CD ROM,’ but its original
definition only applied to something that worked just
like RAM.

242

phonograph, radio, television, tape recorders and
videocassettes. Oddly enough though, one of the oldest
devices, the telegraph, was digital. Now that digital
technology has become highly developed and inexpensive,
the analog devices are being replaced one by one with
digital versions that accomplish the same things.

Sound 1is an analog thing. An old fashioned telephone is
an analog machine that converts analog sound into an
electrical pattern that is an analog of the sound, which
then travels through a wire to another phone. A new
digital telephone takes the analog sound, and converts
it into a digital code. Then the digital code travels to
another digital phone where the digital code is
converted back into analog sound.

Why would anyone go to the trouble of inventing a
digital phone when the analog phone worked just fine?
The answer, of course, is that although the analog phone
worked, it was not perfect. When an analog electrical
pattern travels over long distances, many things can
happen to it along the way. It gets smaller and smaller
as it travels, so it has to be amplified, which
introduces noise, and when it gets close to other
electrical equipment, some of the pattern from the other
equipment can get mixed in to the conversation. The
farther the sound goes, the more noise and distortion
are introduced. Every change to the analog of your voice
becomes a part of the sound that comes out at the other
end.

Enter digital technology to the rescue. When you send a
digital code over long distances, the individual bits
are subjected to the same types of distortion and noise,
and they do change slightly. However, it doesn’t matter
if a bit is only 97% on instead of 100%. A gate’s input
only needs to ‘know’ whether the bit is on or off, it
has to ‘decide’ between those two choices only. As long
as a bit is still more than half way on, the gate that
it goes into will act in exactly the same way as if the
bit had been fully on. Therefore, the digital pattern at
the end is just as good as it was at the beginning, and
when it is converted back to analog, there is no noise
or distortion at all, it sounds like the person is right
next-door.

247

I Lied - Sort of

There is one piece of hardware in a computer that is not
made completely out of NAND gates. This thing is not
really necessary to make a computer a computer, but most
computers have a few of them. They are used to change
from something that is analog to something that is
digital, or digital to analog.

Human eyes and ears respond to analog things. Things
that we hear can be loud or soft, things that we see can
be bright or dark and be any of a multitude of colors.

The computer display screen that we described above had
320 x 200 or 64,000 pixels. But each pixel only had one
bit to tell it what to do, to be on or off. This is fine
for displaying written language on the screen, or it
could be used to make line drawings, anything that only
has two levels of brightness. But we have all seen
photographs on computer screens.

First of all, there needs to be a way to put different
colors on the screen. If you get out a magnifying glass
and look at a color computer or television screen, you
will see that the screen is actually made up of little
dots of three different colors, blue, red, and green.
Each pixel has three parts to it, one for each color.
When the display adapter scans the screen, it selects
all three colors of each pixel at the same time.

For a computer to have a color screen, it needs to have
three bits for each pixel, so it would have to have
three times the RAM in order to be able to control the
three colors in each pixel individually. With three
bits, each color could be fully on or off, and each
pixel would therefore have eight possible states: black,
green, red, blue, green and red (yellow,) green and blue
(cyan,) blue and red (magenta) and green, blue and red
(white.)

But this is still not enough to display a photograph. To
do that, we need to be able to control the brightness of
each color throughout the range between fully on and
fully off. To do this, we need a new type of part that
we will describe shortly, and we need more bits in the
display RAM. Instead of one bit for each color in each

249

possibilities.

If the brain and the mind are the same thing, you might
not be able to build a synthetic person today, but as
time went on, eventually you could understand every
structure and function in the brain, and build something
of equal complexity that would generate true
consciousness, and that really should act just like any
other person.

If the brain and the mind are not the same thing, then
building a robot buddy will always be about simulating
humanity, not building something of equal quality and
value.

Restating the question doesn’t make it any easier to
answer, but this idea of separating what we know about
minds from what we know about brains may be useful.
Early on, we said that we were going to show how
computers work so that we could see what they were
capable of doing, and also what they were not capable of
doing. We are going to take what we know about brains
and what we know about minds and compare each
individually to our new knowledge about computers. In
doing so we can look for differences and similarities,
and we may be able to answer a few less controversial
questions.

Computers do certain things with great ease, such as
adding up columns of numbers. A computer can do millions
of additions in a single second. The mind can barely
remember two numbers at the same time, never mind adding
them up without a pencil and paper.

The mind seems to have the ability to look at and
consider relatively large amounts of data at the same
time. When I think of my favorite cat, I can re-
experience seeing what he looks like, hearing the sounds
of his purring and mewing, feeling the softness of his
fur and his weight when picked up. These are some of the
ways that I know my pet.

What would it mean for our computer to think about a
cat? It could have pictures of the cat and sounds of the
cat encoded in files on a spinning disk or in RAM. Is

257

vastly better at math, but the mind is better at dealing
with faces and voices, and can contemplate the entirety
of some entity that it has previously experienced.

Science fiction books and movies are full of machines
that read minds or implant ideas into them, space ships
with built-in talking computers and lifelike robots and
androids. These machines have varying capabilities and
some of the plots deal with the robot wrestling with
consciousness, self-realization, emotions, etc. These
machines seem to feel less than complete because they
are just machines, and want desperately to become fully
human. It’s sort of a grown-up version of the children’s
classic “Pinocchio,” the story about a marionette who
wants to become a real boy.

But would it be possible to build such machines with a
vastly expanded version of the technology that we used
to build our simple computer?

Optimism is a great thing, and it should not be
squashed, but a problem will not be susceptible to
solution if you are using a methodology or technology
that doesn’t measure up to that problem. In the field of
medicine, some diseases have been wiped out by
antibiotics, others can be prevented by inoculations,
but others still plague humanity despite the best of
care and decades of research. And let’s not even look
into subjects like politics. Maybe more time is all
that’s needed, but you also have to look at the
possibility that these problems either are unsolvable,
or that the research has been looking in the wrong
places for the answer.

As an example, many visions of the future have included
people traveling around in flying cars. Actually,
several types of flying cars have been built. But they
are expensive, inefficient, noisy and very dangerous.
They work on the same basic principles as helicopters.
If two flying cars have any sort of a minor accident,
everyone will die when both cars crash to the Earth. So
today’s aviation technology just won’t result in a
satisfactory flying car. Unless and until someone
invents a cheap and reliable anti-gravity device, there
will not be a mass market for flying cars and traffic on
the roads will not be relieved.

262

So it appears that whichever way we look at it, neither
the brain nor the mind work on the same principles as
computers as we know them. I say ‘as we know them’
because some other type of computer may be invented in
the future. But all of the computers we have today come
under the definition of ‘Stored Program Digital
Computers,’ and all of the principles on which they
operate have been presented in this book.

Still, none of this ‘proves’ that a synthetic human
could never be built, it only means that the computer
principles as presented in this book are not sufficient
for the job. Some completely different type of device
that operates on some completely different set of
principles might be able to do it. But we can’t comment
on such a device until someone invents one.

Going back to a simpler question, do you remember Joe
and the Thermos bottle? He thought that the Thermos had
some kind of a temperature sensor, and a heater and
cooler inside. But even if it had had all of that
machinery in it, it still wouldn’t “know” what to do, it
would just be a mechanical device that turned on the
heater or cooler depending on the temperature of the
beverage placed in it.

A pair of scissors is a device that performs a function
when made to do so. You put a finger and thumb in the
holes and squeeze. The blades at the other end of the
scissors move together and cut some paper or cloth or
whatever it is that you have placed in their way. Do the
scissors “know” how to cut shapes out of paper or how to
make a dress out of cloth? Of course not, they just do
what they’re told.

Similarly, NAND gates don’t “know” what they are doing,

they just react to the electricity or lack of it placed

on their inputs. If one gate doesn’t know anything, then
it doesn’t matter how many of them you connect together,
if one of them knows absolutely zero, a million of them
will also know zero.

We use a lot of words that give human characteristics to
our computers. We say that it “knows” things. We say it
“remembers” things. We say that it “sees,” and
“understands.” Even something as simple as a device
adapter “listens” for its address to appear on the I/O

265

bus, or a jump instruction “decides” what to do. There
is nothing wrong with this as long as we know the truth
of the matter.

Now that we know what is in a computer, and how it
works, I think it is fairly obvious that the answer to
the question “But How do it Know?” is simply “It doesn’t
know anything!”

