Similarly Note: * As per thermodynamics pH has no unit, pH is difined as Where, a_{H*} is the hydrogen ion activity. The H* activity is obtained by multiplying [H*] by a suitable activity coefficient (y) based on thermodynamic measurements. They approach 1.0 for very dilute solutions but get smaller as concentration increases. * for concentrate solution pH values greater than 14 are possible for concentrated strong base and negative pH values are possible for concentrated strong acids. *pH of very dilute (~ 10⁻⁸M or Lower) acids (or bases) is nearly 7 (not simply—log[acid] etc. due to ionization of water. * At 25°C, if pH = 7, then solution is neutral, pH > 7 then solution is basic. ## **lonisation Constants** For dissociation of weak acids (eg. HCN), HCN + H₂O \rightleftharpoons H₃O⁺ + CN⁻ the equilibrium constant expression is written as $$K_a = \frac{[H_3O^+][CN^-]}{[HCN]}$$ * For the Polyprotic acids (e.g. H_3PO_4), successive ionisation constants are denoted by K_{a_1} , K_{a_2} , K_{a_3} etc. For HaPO4, $$K_{a_{4}} = \frac{[H_{3}O^{+}][H_{2}PO_{4}^{-}]}{[H_{3}PO_{4}]} ; \qquad K_{a_{2}} = \frac{[H_{3}O^{+}][HPO_{4}^{2-}]}{[H_{2}PO_{4}^{-}]} ; \qquad Similarly, K_{b} \text{ denotes basic dissociation of that art for a base.}$$ $$Also, pK_{b} = -log_{10}K_{b}, pK_{b} = -log_{10}K_{b}, pK_{b} = -log_{10}K_{b}$$ $$ALCOLAGON: -$$ A weak acic in water: if $$\alpha = \sqrt{\frac{K_a}{C}}$$ is < 0.05, then [H+] $\approx \sqrt{K_a C}$. General Expression: $[H^{+}] = 0.5(-K_a + \sqrt{K_a^2 + 4K_aC})$ Similarly for a weak base, substitute [OH-] and K_b instead of [H+] and K_a respectively in these expressions. Case (II) 16 A weak acid and a strong acid: [H+] is entirely due to dissociation of strong acid may be both depend on conditions. A weak base and a strong base: [OH] is entirely due to dissociation of strong base may be both depend Neglect the contribution of weak acid/base if α is negligiable. Gasa (Ni) Two (or more) weak acids If acids dissociate to a negligible extent, $[H^+] = \sqrt{K_aC_1 + K_{a_2}C_2}$