
i

C# TUTORIAL

Simply Easy Learning by tutorialspoint.com

tutorialspoint.com

Preview from Notesale.co.uk

Page 2 of 216

TUTORIALS POINT

Simply Easy Learning

C# Program Structure

Before we study basic building blocks of the C# programming language, let us look at a bare minimum C#

program structure so that we can take it as a reference in upcoming chapters.

C# Hello World Example
A C# program basically consists of the following parts:

 Namespace declaration

 A class

 Class methods

 Class attributes

 A Main method

 Statements & Expressions

 Comments

Let us look at a simple code that would print the words "Hello World":

using System;

namespace HelloWorldApplication

{

 class HelloWorld

 {

 static void Main(string[] args)

 {

 /* my first program in C# */

 Console.WriteLine("Hello World");

 Console.ReadKey();

 }

 }

}

CHAPTER

3

Preview from Notesale.co.uk

Page 16 of 216

TUTORIALS POINT

Simply Easy Learning

 r.Acceptdetails();

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

The using Keyword
The first statement in any C# program is

using System;

The using keyword is used for including the namespaces in the program. A program can include multiple using

statements.

The class Keyword
The class keyword is used for declaring a class.

Comments in C#
Comments are used for explaining code. Compilers ignore the comment entries. The multiline comments in C#
programs start with /* and terminates with the characters */ as shown below:

/* This program demonstrates
The basic syntax of C# programming
Language */

Single-line comments are indicated by the '//' symbol. For example,

}//end class Rectangle

Member Variables
Variables are attributes or data members of a class, used for storing data. In the preceding program,
the Rectangle class has two member variables named length and width.

Member Functions
Functions are set of statements that perform a specific task. The member functions of a class are declared within the
class. Our sample class Rectangle contains three member functions: AcceptDetails, GetArea and Display.

Instantiating a Class
In the preceding program, the class ExecuteRectangle is used as a class, which contains the Main() method and
instantiates the Rectangle class.

Preview from Notesale.co.uk

Page 20 of 216

TUTORIALS POINT

Simply Easy Learning

Identifiers
An identifier is a name used to identify a class, variable, function, or any other user-defined item. The basic rules for
naming classes in C# are as follows:

 A name must begin with a letter that could be followed by a sequence of letters, digits (0 - 9) or underscore. The
first character in an identifier cannot be a digit.

 It must not contain any embedded space or symbol like ? - +! @ # % ^ & * () [] { } . ; : " ' / and \. However, an
underscore (_) can be used.

 It should not be a C# keyword.

C# Keywords
Keywords are reserved words predefined to the C# compiler. These keywords cannot be used as identifiers; however,
if you want to use these keywords as identifiers, you may prefix the keyword with the @ character.

In C#, some identifiers have special meaning in context of code, such as get and set, these are called contextual
keywords.

The following table lists the reserved keywords and contextual keywords in C#:

Reserved Keywords

abstract As Base bool break byte case

catch Char checked class const continue decimal

default delegate do double else enum event

explicit extern false finally fixed float for

foreach Goto if implicit in
in (generic
modifier)

int

interface internal is lock long namespace new

null object operator out
out
(generic
modifier)

override params

private protected public readonly ref return sbyte

sealed short sizeof stackalloc static string struct

switch This throw true try typeof uint

ulong unchecked unsafe ushort using virtual void

volatile While

Contextual Keywords

add Alias ascending descending dynamic from get

Preview from Notesale.co.uk

Page 21 of 216

TUTORIALS POINT

Simply Easy Learning

short 16-bit signed integer type -32,768 to 32,767 0

uint 32-bit unsigned integer type 0 to 4,294,967,295 0

ulong 64-bit unsigned integer type 0 to 18,446,744,073,709,551,615 0

ushort 16-bit unsigned integer type 0 to 65,535 0

To get the exact size of a type or a variable on a particular platform, you can use the sizeof method. The
expression sizeof(type) yields the storage size of the object or type in bytes. Following is an example to get the size
of int type on any machine:

namespace DataTypeApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine("Size of int: {0}", sizeof(int));

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Size of int: 4

Reference Types
The reference types do not contain the actual data stored in a variable, but they contain a reference to the variables.

In other words, they refer to a memory location. Using more than one variable, the reference types can refer to a
memory location. If the data in the memory location is changed by one of the variables, the other variable automatically
reflects this change in value. Example of built-in reference types are: object, dynamic and string.

OBJECT TYPE
The Object Type is the ultimate base class for all data types in C# Common Type System (CTS). Object is an alias

for System.Object class. So object types can be assigned values of any other types, value types, reference types,
predefined or user-defined types. However, before assigning values, it needs type conversion.

When a value type is converted to object type, it is called boxing and on the other hand, when an object type is
converted to a value type, it is called unboxing.

object obj;

obj = 100; // this is boxing

DYNAMIC TYPE
You can store any type of value in the dynamic data type variable. Type checking for these types of variables takes
place at runtime.

Syntax for declaring a dynamic type is:

dynamic <variable_name> = value;

Preview from Notesale.co.uk

Page 24 of 216

TUTORIALS POINT

Simply Easy Learning

 bool b = true;

 Console.WriteLine(i.ToString());

 Console.WriteLine(f.ToString());

 Console.WriteLine(d.ToString());

 Console.WriteLine(b.ToString());

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

75

53.005

2345.7652

True

Preview from Notesale.co.uk

Page 28 of 216

TUTORIALS POINT

Simply Easy Learning

When the above code is compiled and executed, it produces the following result:

Hello World

String Literals
String literals or constants are enclosed in double quotes "" or with @"". A string contains characters that are similar
to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating the parts using whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

@"hello dear"

Defining Constants
Constants are defined using the const keyword. Syntax for defining a constant is:

const <data_type> <constant_name> = value;

The following program demonstrates defining and using a constant in your program:

using System;

namespace DeclaringConstants

{

 class Program

 {

 static void Main(string[] args)

 {

 const double pi = 3.14159; // constant declaration

 double r;

 Console.WriteLine("Enter Radius: ");

 r = Convert.ToDouble(Console.ReadLine());

 double areaCircle = pi * r * r;

 Console.WriteLine("Radius: {0}, Area: {1}", r, areaCircle);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Enter Radius:

3

Radius: 3, Area: 28.27431

Preview from Notesale.co.uk

Page 34 of 216

TUTORIALS POINT

Simply Easy Learning

Misc Operators
There are few other important operators including sizeof, typeof and ? : supported by C#.

Operator Description Example

sizeof() Returns the size of a data type. sizeof(int), will return 4.

typeof() Returns the type of a class. typeof(StreamReader);

& Returns the address of an variable. &a; will give actual address of the variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression
If Condition is true ? Then value X : Otherwise
value Y

is Determines whether an object is of a certain type.
If(Ford is Car) // checks if Ford is an object of
the Car class.

As Cast without raising an exception if the cast fails.
Object obj = new StringReader("Hello");
StringReader r = obj as StringReader;

Example

using System;

namespace OperatorsAppl

{

 class Program

 {

 static void Main(string[] args)

 {

 /* example of sizeof operator */

 Console.WriteLine("The size of int is {0}", sizeof(int));

 Console.WriteLine("The size of short is {0}", sizeof(short));

 Console.WriteLine("The size of double is {0}", sizeof(double));

 /* example of ternary operator */

 int a, b;

 a = 10;

 b = (a == 1) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

 b = (a == 10) ? 20 : 30;

 Console.WriteLine("Value of b is {0}", b);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

The size of int is 4

The size of short is 2

The size of double is 8

Value of b is 30

Preview from Notesale.co.uk

Page 43 of 216

TUTORIALS POINT

Simply Easy Learning

The if...else if...else Statement
An if statement can be followed by an optional else if...else statement, which is very useful to test various conditions

using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind.

 An if can have zero or one else's and it must come after any else if's.

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax:
The syntax of an if...else if...else statement in C# is:

if(boolean_expression 1)

{

 /* Executes when the boolean expression 1 is true */

}

else if(boolean_expression 2)

{

 /* Executes when the boolean expression 2 is true */

}

else if(boolean_expression 3)

{

 /* Executes when the boolean expression 3 is true */

}

else

{

 /* executes when the none of the above condition is true */

}

Example:

using System;

namespace DecisionMaking

{

 class Program

 {

 static void Main(string[] args)

 {

 /* local variable definition */

 int a = 100;

 /* check the boolean condition */

 if (a == 10)

 {

 /* if condition is true then print the following */

 Console.WriteLine("Value of a is 10");

 }

 else if (a == 20)

 {

 /* if else if condition is true */

Preview from Notesale.co.uk

Page 50 of 216

TUTORIALS POINT

Simply Easy Learning

 /* check the boolean condition */

 if (a == 100)

 {

 /* if condition is true then check the following */

 if (b == 200)

 {

 /* if condition is true then print the following */

 Console.WriteLine("Value of a is 100 and b is 200");

 }

 }

 Console.WriteLine("Exact value of a is : {0}", a);

 Console.WriteLine("Exact value of b is : {0}", b);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

switch statement
A switch statement allows a variable to be tested for equality against a list of values. Each value is called a case, and
the variable being switched on is checked for each switch case.

Syntax:
The syntax for a switch statement in C# is as follows:

switch(expression){

 case constant-expression :

 statement(s);

 break; /* optional */

 case constant-expression :

 statement(s);

 break; /* optional */

 /* you can have any number of case statements */

 default : /* Optional */

 statement(s);

}

The following rules apply to a switch statement:

 The expression used in a switch statement must have an integral or enumerated type, or be of a class type in

which the class has a single conversion function to an integral or enumerated type.

 You can have any number of case statements within a switch. Each case is followed by the value to be compared
to and a colon.

 The constant-expression for a case must be the same data type as the variable in the switch, and it must be a

constant or a literal.

 When the variable being switched on is equal to a case, the statements following that case will execute until
a break statement is reached.

Preview from Notesale.co.uk

Page 52 of 216

TUTORIALS POINT

Simply Easy Learning

 When a break statement is reached, the switch terminates, and the flow of control jumps to the next line following

the switch statement.

 Not every case needs to contain a break. If no break appears, the flow of control will fall throughto subsequent

cases until a break is reached.

 A switch statement can have an optional default case, which must appear at the end of the switch. The default
case can be used for performing a task when none of the cases is true. No break is needed in the default case.

Flow Diagram:

Example:

using System;

namespace DecisionMaking

{

 class Program

 {

 static void Main(string[] args)

 {

 /* local variable definition */

 char grade = 'B';

 switch (grade)

 {

 case 'A':

 Console.WriteLine("Excellent!");

 break;

Preview from Notesale.co.uk

Page 53 of 216

TUTORIALS POINT

Simply Easy Learning

 for (int a = 10; a < 20; a = a + 1)

 {

 Console.WriteLine("value of a: {0}", a);

 }

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

do…while loop
Unlike for and while loops, which test the loop condition at the top of the loop, the do...while loop checks its condition

at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute at least one time.

Syntax:
The syntax of a do...while loop in C# is:

do

{

 statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the loop execute once
before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop execute again. This
process repeats until the given condition becomes false.

Preview from Notesale.co.uk

Page 60 of 216

TUTORIALS POINT

Simply Easy Learning

 public double GetArea()

 {

 return length * width;

 }

 public void Display()

 {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle

 {

 static void Main(string[] args)

 {

 Rectangle r = new Rectangle();

 r.Acceptdetails();

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Enter Length:

4.4

Enter Width:

3.3

Length: 4.4

Width: 3.3

Area: 14.52

In the preceding example, the member variables length and width are declared private, so they cannot be accessed

from the function Main(). The member functions AcceptDetails() and Display() can access these variables. Since the
member functions AcceptDetails() and Display() are declared public, they can be accessed from Main() using an
instance of the Rectangle class, named r.

Protected Access Specifier
Protected access specifier allows a child class to access the member variables and member functions of its base
class. This way it helps in implementing inheritance. We will discuss this in more details in the inheritance chapter.

Internal Access Specifier
Internal access specifier allows a class to expose its member variables and member functions to other functions and
objects in the current assembly. In other words, any member with internal access specifier can be accessed from any
class or method defined within the application in which the member is defined.

The following program illustrates this:

using System;

namespace RectangleApplication

{

 class Rectangle

 {

 //member variables

 internal double length;

 internal double width;

Preview from Notesale.co.uk

Page 70 of 216

TUTORIALS POINT

Simply Easy Learning

 double GetArea()

 {

 return length * width;

 }

 public void Display()

 {

 Console.WriteLine("Length: {0}", length);

 Console.WriteLine("Width: {0}", width);

 Console.WriteLine("Area: {0}", GetArea());

 }

 }//end class Rectangle

 class ExecuteRectangle

 {

 static void Main(string[] args)

 {

 Rectangle r = new Rectangle();

 r.length = 4.5;

 r.width = 3.5;

 r.Display();

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Length: 4.5

Width: 3.5

Area: 15.75

In the preceding example, notice that the member function GetArea() is not declared with any access specifier. Then
what would be the default access specifier of a class member if we don't mention any? It is private.

Protected Internal Access Specifier
The protected internal access specifier allows a class to hide its member variables and member functions from other
class objects and functions, except a child class within the same application. This is also used while implementing
inheritance.

Preview from Notesale.co.uk

Page 71 of 216

TUTORIALS POINT

Simply Easy Learning

Output parameters
A return statement can be used for returning only one value from a function. However, using output parameters, you

can return two values from a function. Output parameters are like reference parameters, except that they transfer
data out of the method rather than into it.

The following example illustrates this:

using System;

namespace CalculatorApplication

{

 class NumberManipulator

 {

 public void getValue(out int x)

 {

 int temp = 5;

 x = temp;

 }

 static void Main(string[] args)

 {

 NumberManipulator n = new NumberManipulator();

 /* local variable definition */

 int a = 100;

 Console.WriteLine("Before method call, value of a : {0}", a);

 /* calling a function to get the value */

 n.getValue(out a);

 Console.WriteLine("After method call, value of a : {0}", a);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Before method call, value of a : 100

After method call, value of a : 5

The variable supplied for the output parameter need not be assigned a value the method call. Output parameters are
particularly useful when you need to return values from a method through the parameters without assigning an initial
value to the parameter. Look at the following example, to understand this:

using System;

namespace CalculatorApplication

{

 class NumberManipulator

 {

 public void getValues(out int x, out int y)

 {

 Console.WriteLine("Enter the first value: ");

 x = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("Enter the second value: ");

 y = Convert.ToInt32(Console.ReadLine());

 }

Preview from Notesale.co.uk

Page 78 of 216

TUTORIALS POINT

Simply Easy Learning

C# Nullables

C# provides a special data types, the nullable types, to which you can assign normal range of values as well

as null values.

For example, you can store any value from -2,147,483,648 to 2,147,483,647 or null in a Nullable< Int32 > variable.
Similarly, you can assign true, false or null in a Nullable< bool > variable. Syntax for declaring a nullable type is as

follows:

< data_type> ? <variable_name> = null;

The following example demonstrates use of nullable data types:

using System;

namespace CalculatorApplication

{

 class NullablesAtShow

 {

 static void Main(string[] args)

 {

 int? num1 = null;

 int? num2 = 45;

 double? num3 = new double?();

 double? num4 = 3.14157;

 bool? boolval = new bool?();

 // display the values

 Console.WriteLine("Nullables at Show: {0}, {1}, {2}, {3}",

 num1, num2, num3, num4);

 Console.WriteLine("A Nullable boolean value: {0}", boolval);

 Console.ReadLine();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Nullables at Show: , 45, , 3.14157

A Nullable boolean value:

CHAPTER

14

Preview from Notesale.co.uk

Page 80 of 216

TUTORIALS POINT

Simply Easy Learning

C# Arrays

An array stores a fixed-size sequential collection of elements of the same type. An array is used to store a

collection of data, but it is often more useful to think of an array as a collection of variables of the same type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you declare one array
variable such as numbers and use numbers[0], numbers[1], and ..., numbers[99] to represent individual variables. A
specific element in an array is accessed by an index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first element and the highest
address to the last element.

Declaring Arrays
To declare an array in C#, you can use the following syntax:

datatype[] arrayName;

where,

 datatype is used to specify the type of elements to be stored in the array.

 [] specifies the rank of the array. The rank specifies the size of the array.

 arrayName specifies the name of the array.

For example,

double[] balance;

Initializing an Array
Declaring an array does not initialize the array in the memory. When the array variable is initialized, you can assign
values to the array.

Array is a reference type, so you need to use the new keyword to create an instance of the array.

CHAPTER

15

Preview from Notesale.co.uk

Page 82 of 216

TUTORIALS POINT

Simply Easy Learning

Thus, every element in array a is identified by an element name of the form a[i , j], where a is the name of the array,
and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays
Multidimensional arrays may be initialized by specifying bracketed values for each row. Following is an array with 3
rows and each row has 4 columns.

int [,] a = int [3,4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

Accessing Two-Dimensional Array Elements
An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and column index of the array.
For example:

int val = a[2,3];

The above statement will take 4th element from the 3rd row of the array. You can verify it in the above diagram. Let
us check below program where we have used nested loop to handle a two dimensional array:

using System;

namespace ArrayApplication

{

 class MyArray

 {

 static void Main(string[] args)

 {

 /* an array with 5 rows and 2 columns*/

 int[,] a = new int[5, 2] {{0,0}, {1,2}, {2,4}, {3,6}, {4,8} };

 int i, j;

 /* output each array element's value */

 for (i = 0; i < 5; i++)

 {

 for (j = 0; j < 2; j++)

 {

 Console.WriteLine("a[{0},{1}] = {2}", i, j, a[i,j]);

 }

 }

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Preview from Notesale.co.uk

Page 86 of 216

TUTORIALS POINT

Simply Easy Learning

2
IsReadOnly

Gets a value indicating whether the Array is read-only.

3
Length

Gets a 32-bit integer that represents the total number of elements in all the dimensions of the Array.

4
LongLength

Gets a 64-bit integer that represents the total number of elements in all the dimensions of the Array.

5
Rank

Gets the rank (number of dimensions) of the Array.

Methods of the Array Class
The following table provides some of the most commonly used properties of the Array class:

S.N Method Name & Description

1
Clear

Sets a range of elements in the Array to zero, to false, or to null, depending on the element type.

2

Copy(Array, Array, Int32)

Copies a range of elements from an Array starting at the first element and pastes them into another Array
starting at the first element. The length is specified as a 32-bit integer.

3

CopyTo(Array, Int32)

Copies all the elements of the current one-dimensional Array to the specified one-dimensional Array starting
at the specified destination Array index. The index is specified as a 32-bit integer.

4
GetLength

Gets a 32-bit integer that represents the number of elements in the specified dimension of the Array.

5
GetLongLength

Gets a 64-bit integer that represents the number of elements in the specified dimension of the Array.

6
GetLowerBound

Gets the lower bound of the specified dimension in the Array.

7
GetType

Gets the Type of the current instance. (Inherited from Object.)

8
GetUpperBound

Gets the upper bound of the specified dimension in the Array.

9

GetValue(Int32)

Gets the value at the specified position in the one-dimensional Array. The index is specified as a 32-bit
integer.

10

IndexOf(Array, Object)

Searches for the specified object and returns the index of the first occurrence within the entire one-
dimensional Array.

11
Reverse(Array)

Reverses the sequence of the elements in the entire one-dimensional Array.

12

SetValue(Object, Int32)

Sets a value to the element at the specified position in the one-dimensional Array. The index is specified as a
32-bit integer.

Preview from Notesale.co.uk

Page 90 of 216

TUTORIALS POINT

Simply Easy Learning

C# Strings

In C#, you can use strings as array of characters, however, more common practice is to use the string keyword

to declare a string variable. The string keyword is an alias for the System.String class.

Creating a String Object
You can create string object using one of the following methods:

 By assigning a string literal to a String variable

 By using a String class constructor

 By using the string concatenation operator (+)

 By retrieving a property or calling a method that returns a string

 By calling a formatting method to convert a value or object to its string representation

The following example demonstrates this:

using System;

namespace StringApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 //from string literal and string concatenation

 string fname, lname;

 fname = "Rowan";

 lname = "Atkinson";

 string fullname = fname + lname;

 Console.WriteLine("Full Name: {0}", fullname);

 //by using string constructor

 char[] letters = { 'H', 'e', 'l', 'l','o' };

 string greetings = new string(letters);

 Console.WriteLine("Greetings: {0}", greetings);

CHAPTER

16

Preview from Notesale.co.uk

Page 93 of 216

TUTORIALS POINT

Simply Easy Learning

C# Inheritance

One of the most important concepts in object-oriented programming is that of inheritance. Inheritance allows

us to define a class in terms of another class, which makes it easier to create and maintain an application. This also
provides an opportunity to reuse the code functionality and fast implementation time.

When creating a class, instead of writing completely new data members and member functions, the programmer can
designate that the new class should inherit the members of an existing class. This existing class is called
the base class, and the new class is referred to as the derived class.

The idea of inheritance implements the IS-A relationship. For example, mammal IS A animal, dog IS-Amammal hence
dog IS-A animal as well and so on.

Base and Derived Classes
A class can be derived from more than one class or interface, which means that it can inherit data and functions from
multiple base class or interface.

The syntax used in C# for creating derived classes is as follows:

<acess-specifier> class <base_class>

{

 ...

}

class <derived_class> : <base_class>

{

 ...

}

Consider a base class Shape and its derived class Rectangle:

using System;

namespace InheritanceApplication

{

 class Shape

 {

 public void setWidth(int w)

 {

 width = w;

 }

 public void setHeight(int h)

 {

CHAPTER

20

Preview from Notesale.co.uk

Page 112 of 216

TUTORIALS POINT

Simply Easy Learning

 public class Transaction : ITransactions

 {

 private string tCode;

 private string date;

 private double amount;

 public Transaction()

 {

 tCode = " ";

 date = " ";

 amount = 0.0;

 }

 public Transaction(string c, string d, double a)

 {

 tCode = c;

 date = d;

 amount = a;

 }

 public double getAmount()

 {

 return amount;

 }

 public void showTransaction()

 {

 Console.WriteLine("Transaction: {0}", tCode);

 Console.WriteLine("Date: {0}", date);

 Console.WriteLine("Amount: {0}", getAmount());

 }

 }

 class Tester

 {

 static void Main(string[] args)

 {

 Transaction t1 = new Transaction("001", "8/10/2012", 78900.00);

 Transaction t2 = new Transaction("002", "9/10/2012", 451900.00);

 t1.showTransaction();

 t2.showTransaction();

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Transaction: 001

Date: 8/10/2012

Amount: 78900

Transaction: 002

Date: 9/10/2012

Amount: 451900

Preview from Notesale.co.uk

Page 127 of 216

TUTORIALS POINT

Simply Easy Learning

C# Preprocessor Directives

The preprocessors directives give instruction to the compiler to preprocess the information before actual

compilation starts.

All preprocessor directives begin with #, and only white-space characters may appear before a preprocessor directive
on a line. Preprocessor directives are not statements, so they do not end with a semicolon (;).

C# compiler does not have a separate preprocessor; however, the directives are processed as if there was one. In
C# the preprocessor directives are used to help in conditional compilation. Unlike C and C++ directives, they are not
used to create macros. A preprocessor directive must be the only instruction on a line.

List of Preprocessor Directives in C#
The following table lists the preprocessor directives available in C#:

Preprocessor
Directive

Description.

#define It defines a sequence of characters, called symbol.

#undef It allows you to undefine a symbol.

#if It allows testing a symbol or symbols to see if they evaluate to true.

#else It allows to create a compound conditional directive, along with #if.

#elif It allows creating a compound conditional directive.

#endif Specifies the end of a conditional directive.

#line
It lets you modify the compiler's line number and (optionally) the file name output for errors and
warnings.

#error It allows generating an error from a specific location in your code.

#warning It allows generating a level one warning from a specific location in your code.

#region
It lets you specify a block of code that you can expand or collapse when using the outlining
feature of the Visual Studio Code Editor.

#endregion It marks the end of a #region block.

CHAPTER

25

Preview from Notesale.co.uk

Page 132 of 216

TUTORIALS POINT

Simply Easy Learning

C# Regular Expressions

A regular expression is a pattern that could be matched against an input text. The .Net framework provides

a regular expression engine that allows such matching. A pattern consists of one or more character literals, operators,
or constructs.

Constructs for Defining Regular Expressions
There are various categories of characters, operators, and constructs that lets you to define regular expressions. Click
the follwoing links to find these constructs.

 Character escapes

 Character classes

 Anchors

 Grouping constructs

 Quantifiers

 Backreference constructs

 Alternation constructs

 Substitutions

 Miscellaneous constructs

Character escapes

These are basically the special characters or escape characters. The backslash character (\) in a regular expression
indicates that the character that follows it either is a special character or should be interpreted literally.

The following table lists the escape characters:

Escaped
character

Description Pattern Matches

\a Matches a bell character, \u0007. \a
"\u0007" in "Warning!" +
'\u0007'

\b In a character class, matches a backspace, \u0008. [\b]{3,} "\b\b\b\b" in "\b\b\b\b"

\t Matches a tab, \u0009. (\w+)\t
"Name\t", "Addr\t" in
"Name\tAddr\t"

\r
Matches a carriage return, \u000D. (\r is not equivalent
to the newline character, \n.)

\r\n(\w+)
"\r\nHello" in
"\r\Hello\nWorld."

CHAPTER

26

Preview from Notesale.co.uk

Page 135 of 216

TUTORIALS POINT

Simply Easy Learning

$`
Substitutes all the text of
the input string before the
match.

B+ $` "AABBCC" "AAAACC"

$'
Substitutes all the text of
the input string after the
match.

B+ $' "AABBCC" "AACCCC"

$+
Substitutes the last group
that was captured.

B+(C+) $+ "AABBCCDD" AACCDD

$_
Substitutes the entire
input string.

B+ $_ "AABBCC" "AAAABBCCCC"

Miscellaneous constructs
Following are various miscellaneous constructs:

Construct Definition Example

(?imnsx-imnsx)
Sets or disables options such as case insensitivity in
the middle of a pattern.

\bA(?i)b\w+\b matches "ABA", "Able" in
"ABA Able Act"

(?#comment)
Inline comment. The comment ends at the first closing
parenthesis.

\bA(?#Matches words starting with
A)\w+\b

[to end of line]
X-mode comment. The comment starts at an
unescaped # and continues to the end of the line.

(?x)\bA\w+\b#Matches words starting
with A

The Regex Class

The Regex class is used for representing a regular expression.

The Regex class has the following commonly used methods:

S.N Methods & Description

1

public bool IsMatch(string input)

Indicates whether the regular expression specified in the Regex constructor finds a match in a specified input
string.

2

public bool IsMatch(string input, int startat)

Indicates whether the regular expression specified in the Regex constructor finds a match in the specified input
string, beginning at the specified starting position in the string.

3
public static bool IsMatch(string input, string pattern)

Indicates whether the specified regular expression finds a match in the specified input string.

4
public MatchCollection Matches(string input)

Searches the specified input string for all occurrences of a regular expression.

5

public string Replace(string input, string replacement)

In a specified input string, replaces all strings that match a regular expression pattern with a specified
replacement string.

6

public string[] Split(string input)

Splits an input string into an array of substrings at the positions defined by a regular expression pattern
specified in the Regex constructor.

Preview from Notesale.co.uk

Page 140 of 216

TUTORIALS POINT

Simply Easy Learning

C# File I/O

A file is a collection of data stored in a disk with a specific name and a directory path. When a file

is opened for reading or writing, it becomes a stream.
The stream is basically the sequence of bytes passing through the communication path. There are two
main streams: the input stream and the output stream. The input stream is used for reading data from
file (read operation) and the output stream is used for writing into the file (write operation).

C# I/O Classes
The System.IO namespace has various class that are used for performing various operation with files,
like creating and deleting files, reading from or writing to a file, closing a file etc.

The following table shows some commonly used non-abstract classes in the System.IO namespace:

I/O Class Description

BinaryReader Reads primitive data from a binary stream.

BinaryWriter Writes primitive data in binary format.

BufferedStream A temporary storage for a stream of bytes.

Directory Helps in manipulating a directory structure.

DirectoryInfo Used for performing operations on directories.

DriveInfo Provides information for the drives.

File Helps in manipulating files.

FileInfo Used for performing operations on files.

FileStream Used to read from and write to any location in a file.

MemoryStream Used for random access to streamed data stored in memory.

Path Performs operations on path information.

StreamReader Used for reading characters from a byte stream.

CHAPTER

28

Preview from Notesale.co.uk

Page 147 of 216

TUTORIALS POINT

Simply Easy Learning

S.N Method Name & Purpose

1

public override void Close()

It closes the StreamReader object and the underlying stream, and releases any system resources associated
with the reader.

2
public override int Peek()

Returns the next available character but does not consume it.

3
public override int Read()

Reads the next character from the input stream and advances the character position by one character.

Example:
The following example demonstrates reading a text file named Jamaica.txt. The file reads:

Down the way where the nights are gay

And the sun shines daily on the mountain top

I took a trip on a sailing ship

And when I reached Jamaica

I made a stop

using System;

using System.IO;

namespace FileApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 try

 {

 // Create an instance of StreamReader to read from a file.

 // The using statement also closes the StreamReader.

 using (StreamReader sr = new StreamReader("c:/jamaica.txt"))

 {

 string line;

 // Read and display lines from the file until

 // the end of the file is reached.

 while ((line = sr.ReadLine()) != null)

 {

 Console.WriteLine(line);

 }

 }

 }

 catch (Exception e)

 {

 // Let the user know what went wrong.

 Console.WriteLine("The file could not be read:");

 Console.WriteLine(e.Message);

 }

 Console.ReadKey();

 }

 }

}

Guess what it displays when you compile and run the program!

Preview from Notesale.co.uk

Page 150 of 216

TUTORIALS POINT

Simply Easy Learning

C# Indexers

An indexer allows an object to be indexed like an array. When you define an indexer for a class, this class

behaves like a virtual array. You can then access the instance of this class using the array access operator ([]).

Syntax
A one dimensional indexer has the following syntax:

element-type this[int index]

{

 // The get accessor.

 get

 {

 // return the value specified by index

 }

 // The set accessor.

 set

 {

 // set the value specified by index

 }

}

Use of Indexers
Declaration of behavior of an indexer is to some extent similar to a property. Like properties, you use
get and set accessors for defining an indexer. However, properties return or set a specific data member, whereas

indexers returns or sets a particular value from the object instance. In other words, it breaks the instance data into
smaller parts and indexes each part, gets or sets each part.

Defining a property involves providing a property name. Indexers are not defined with names, but with
the this keyword, which refers to the object instance. The following example demonstrates the concept:

using System;

namespace IndexerApplication

{

 class IndexedNames

 {

 private string[] namelist = new string[size];

 static public int size = 10;

 public IndexedNames()

CHAPTER

32

Preview from Notesale.co.uk

Page 174 of 216

TUTORIALS POINT

Simply Easy Learning

C# Delegates

C# delegates are similar to pointers to functions in C or C++. A delegate is a reference type variable that

holds the reference to a method. The reference can be changed at runtime.
Delegates are especially used for implementing events and the call-back methods. All delegates are implicitly derived
from the System.Delegate class.

Declaring Delegates
Delegate declaration determines the methods that can be referenced by the delegate. A delegate can refer to a
method, which have the same signature as that of the delegate.

For example, consider a delegate:

public delegate int MyDelegate (string s);

The preceding delegate can be used to reference any method that has a single string parameter and returns an int type
variable.

Syntax for delegate declaration is:

delegate <return type> <delegate-name> <parameter list>

Instantiating Delegates
Once a delegate type has been declared, a delegate object must be created with the new keyword and be associated
with a particular method. When creating a delegate, the argument passed to the new expression is written like a

method call, but without the arguments to the method. For example:

public delegate void printString(string s);

...

printString ps1 = new printString(WriteToScreen);

printString ps2 = new printString(WriteToFile);

Following example demonstrates declaration, instantiation and use of a delegate that can be used to reference
methods that take an integer parameter and returns an integer value.

using System;

delegate int NumberChanger(int n);

namespace DelegateAppl

{

CHAPTER

33

Preview from Notesale.co.uk

Page 178 of 216

TUTORIALS POINT

Simply Easy Learning

 public delegate void NumManipulationHandler();

 public event NumManipulationHandler ChangeNum;

 protected virtual void OnNumChanged()

 {

 if (ChangeNum != null)

 {

 ChangeNum();

 }

 else

 {

 Console.WriteLine("Event fired!");

 }

 }

 public EventTest(int n)

 {

 SetValue(n);

 }

 public void SetValue(int n)

 {

 if (value != n)

 {

 value = n;

 OnNumChanged();

 }

 }

 }

 public class MainClass

 {

 public static void Main()

 {

 EventTest e = new EventTest(5);

 e.SetValue(7);

 e.SetValue(11);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Event Fired!

Event Fired!

Event Fired!

Example 2:
This example provides a simple application for troubleshooting for a hot water boiler system. When the maintenance
engineer inspects the boiler, the boiler temperature and pressure is automatically recorded into a log file along with
the remarks of the maintenance engineer.

using System;

using System.IO;

namespace BoilerEventAppl

{

 // boiler class

Preview from Notesale.co.uk

Page 183 of 216

TUTORIALS POINT

Simply Easy Learning

2
public virtual bool Contains(object obj);

Determines whether an element is in the Queue.

3
public virtual object Dequeue();

Removes and returns the object at the beginning of the Queue.

4
public virtual void Enqueue(object obj);

Adds an object to the end of the Queue.

5
public virtual object[] ToArray();

Copies the Queue to a new array.

6
public virtual void TrimToSize();

Sets the capacity to the actual number of elements in the Queue.

Example:
The following example demonstrates use of Stack:

using System;

using System.Collections;

namespace CollectionsApplication

{

 class Program

 {

 static void Main(string[] args)

 {

 Queue q = new Queue();

 q.Enqueue('A');

 q.Enqueue('M');

 q.Enqueue('G');

 q.Enqueue('W');

 Console.WriteLine("Current queue: ");

 foreach (char c in q)

 Console.Write(c + " ");

 Console.WriteLine();

 q.Enqueue('V');

 q.Enqueue('H');

 Console.WriteLine("Current queue: ");

 foreach (char c in q)

 Console.Write(c + " ");

 Console.WriteLine();

 Console.WriteLine("Removing some values ");

 char ch = (char)q.Dequeue();

 Console.WriteLine("The removed value: {0}", ch);

 ch = (char)q.Dequeue();

 Console.WriteLine("The removed value: {0}", ch);

 Console.ReadKey();

 }

 }

}

When the above code is compiled and executed, it produces the following result:

Current queue:

A M G W

Current queue:

A M G W V H

Preview from Notesale.co.uk

Page 195 of 216

TUTORIALS POINT

Simply Easy Learning

C# Generics

Generics allow you to delay the specification of the data type of programming elements in a class or a method

until it is actually used in the program. In other words, generics allow you to write a class or method that can work
with any data type.

You write the specifications for the class or the method, with substitute parameters for data types. When the compiler
encounters a constructor for the class or a function call for the method, it generates code to handle the specific data
type. A simple example would help understanding the concept:

using System;

using System.Collections.Generic;

namespace GenericApplication

{

 public class MyGenericArray<T>

 {

 private T[] array;

 public MyGenericArray(int size)

 {

 array = new T[size + 1];

 }

 public T getItem(int index)

 {

 return array[index];

 }

 public void setItem(int index, T value)

 {

 array[index] = value;

 }

 }

 class Tester

 {

 static void Main(string[] args)

 {

 //declaring an int array

 MyGenericArray<int> intArray = new MyGenericArray<int>(5);

 //setting values

 for (int c = 0; c < 5; c++)

 {

 intArray.setItem(c, c*5);

 }

CHAPTER

36

Preview from Notesale.co.uk

Page 199 of 216

TUTORIALS POINT

Simply Easy Learning

C# Unsafe Codes

C# allows using pointer variables in a function of code block when it is marked by the unsafe modifier.

The unsafe code or the unmanaged code is a code block that uses a pointer variable.

Pointer Variables
A pointer is a variable whose value is the address of another variable i.e., the direct address of the memory location.

Like any variable or constant, you must declare a pointer before you can use it to store any variable address.

The general form of a pointer variable declaration is:

type *var-name;

Following are valid pointer declarations:

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The following example illustrates use of pointers in C#, using the unsafe modifier:

using System;

namespace UnsafeCodeApplication

{

 class Program

 {

 static unsafe void Main(string[] args)

 {

 int var = 20;

 int* p = &var;

 Console.WriteLine("Data is: {0} ", var);

CHAPTER

38

Preview from Notesale.co.uk

Page 205 of 216

TUTORIALS POINT

Simply Easy Learning

 Console.WriteLine("Address is: {0}", (int)p);

 Console.ReadKey();

 }

 }

}

When the above code wass compiled and executed, it produces the following result:

Data is: 20

Address is: 99215364

Instead of declaring an entire method as unsafe, you can also declare a part of the code as unsafe. The example in
the following section shows this.

Retrieving the Data Value Using a Pointer
You can retrieve the data stored at the located referenced by the pointer variable, using the ToString()method.

Following example demonstrates this:

using System;

namespace UnsafeCodeApplication

{

 class Program

 {

 public static void Main()

 {

 unsafe

 {

 int var = 20;

 int* p = &var;

 Console.WriteLine("Data is: {0} " , var);

 Console.WriteLine("Data is: {0} " , p->ToString());

 Console.WriteLine("Address is: {0} " , (int)p);

 }

 Console.ReadKey();

 }

 }

}

When the above code was compiled and executed, it produces the following result:

Preview from Notesale.co.uk

Page 206 of 216

TUTORIALS POINT

Simply Easy Learning

When the above code is compiled and executed, it produces the following result:

Before Swap: var1: 10, var2: 20

After Swap: var1: 20, var2: 10

Accessing Array Elements Using a Pointer
In C#, an array name and a pointer to a data type same as the array data, are not the same variable type. For example,
int *p and int[] p, are not same type. You can increment the pointer variable p because it is not fixed in memory but
an array address is fixed in memory, and you can't increment that.

Therefore, if you need to access an array data using a pointer variable, as we traditionally do in C, or C++ (please
check: C Pointers), you need to fix the pointer using the fixed keyword.

The following example demonstrates this:

using System;

namespace UnsafeCodeApplication

{

 class TestPointer

 {

 public unsafe static void Main()

 {

 int[] list = {10, 100, 200};

 fixed(int *ptr = list)

 /* let us have array address in pointer */

 for (int i = 0; i < 3; i++)

 {

 Console.WriteLine("Address of list[{0}]={1}",i,(int)(ptr + i));

 Console.WriteLine("Value of list[{0}]={1}", i, *(ptr + i));

 }

 Console.ReadKey();

 }

 }

}

When the above code was compiled and executed, it produces the following result:

Address of list[0] = 31627168

Value of list[0] = 10

Address of list[1] = 31627172

Value of list[1] = 100

Address of list[2] = 31627176

Preview from Notesale.co.uk

Page 208 of 216

TUTORIALS POINT

Simply Easy Learning

Value of list[2] = 200

Compiling Unsafe Code
For compiling unsafe code, you have to specify the /unsafe command-line switch with command-line compiler.

For example, to compile a program named prog1.cs containing unsafe code, from command line, give the command:

csc /unsafe prog1.cs

If you are using Visual Studio IDE then you need to enable use of unsafe code in the project properties.

To do this:

 Open project properties by double clicking the properties node in the Solution Explorer.

 Click on the Build tab.

 Select the option "Allow unsafe code".

Preview from Notesale.co.uk

Page 209 of 216

