James Chadwick

- Neutrons-account for extra mass in nucleus
 - No charge (n^0)
 - Mass= 1.67x10⁻²⁴g

Neils Bohr

- Nucleus contains p+ and n⁰
- Electrons travel around nucleus in circular orbits (fixed energies)
- # of protons determines type of element
 - (atomic #) = # of P+
 - For neutral atoms: # of e- = # of p+
 - # of neutrons varies

Atomic notation

• Mass #: (# of p+) + (# of n⁰)

Isotopes

• Atoms of the same element w/ different # of neutrons

Ex.

1 atomic mass unit (amu)= 1/12 the mass of ⁶₆C atom

• Atomic masses on the periodi (t) the are weighted are age of all naturally occurring isotopes

Isotopes of carbon	Mass(amu)	Abundance(%)
12C	090	98.89%
ΨC	13.003	1.11%

Assume 100 atoms:

Current atomic model

- Dense atomic nucleus contains p+ and n⁰
- Electrons exist as "waves" surrounding the nucleus in the shape of orbitals
 - Each orbital has a specific shape/energy
 - Describe by <u>quantum numbers</u> (integers)
- •