6. Nuclear Chemistry

The branch of Chemistry that deals with the changes that occur in atomic nuclei is called nuclear chemistry.

7. Environmental Chemistry

The branch of Chemistry that deals with the chemicals and toxic substances that pollute the environment and their adverse effect on human beings is called environmental chemistry.

8. Analytical Chemistry

The branch of Chemistry that deals with the methods and instruments that determine the composition of matter is called Analytical Chemistry.

Differentiation between branches of Chemistry

Acetic acid chemical formula: CH₃COOH

Source: Vinegar which contain 5% acetic acid.

Smell: Vinegar like smell

Use: Used to flavor food.

Let's see how various types of studies on this compound can help us to differentiate between the above mentioned eight branches of chemistry.

- 1. Explanation of conversion of acetic acid from solid to liquid and liquid to pase us state and vice versa, the application of laws and theories to understand its structure i *christical chemistry*.
- 2. Since acetic acid is a carbon compound, the study of stream of preparation and study of its physical and chemical properties is a part of *organics treamstry*.
- 3. The component elements of pertoned are carbon hydragen and oxygen. The study of its component elements is included in *inorganic chemistry*
- 4. The study of a phynical reactions the acetic acid undergoes in the bodies of human beings is called to phynical reactions the acetic acid undergoes in the bodies of human beings is called
- 5. Use of technology and ways to obtain acetic acid on the large scale is a part of *industrial chemistry*.
- 6. The study of radioactive radiation or neutron on this compound is a part of *nuclear chemistry*.
- 7. The study of any adverse effects of the compound or the compounds that are derived from it, on the human is part of *environmental chemistry*.
- 8. The methods and instruments used to determine its percentage composition, melting and boiling points etc is *analytical chemistry*.

Example 1.4: Determining formula mass

1. Sodium Chloride, also called table salt is used to flavor food, preserve meat, and in the preparation of large number of compounds. Determine its formula mass.

Solution

Formula mass of NaCl = 1 (atomic mass of Na) + 1 (atomic mass of Cl) = 1 x 23 + 1 x 35.5 = 58.5 amu

2. Milk of magnesia which contains $Mg(OH)_2$ is used to treat acidity. Determine its formula mass.

Solution

Formula mass of $Mg(OH)_2 = 24 + 16 \times 2 + 1 \times 2$ = 24 + 32 + 2 = 58 amu

SELF ASSESSMENT EXERCISE 1.4

NaHCO₃ is heated car for dioxide is released, which is responsible for the rising of 2. When haking s cookies and bread. Determine the found masses of baking soda and carbon dioxide.

Solution

Formula mass of $NaHCO_3 = 23 + 1 + 12 + 3 \times 16$ = 23 + 1 + 12 + 48 = 84 amu

Formula mass of $CO_2 = 12 + 2 \times 16$ = 12 + 32= 44 amu

3. Following compounds are used as fertilizers. Determine their formula masses. (i) Urea, (NH₂)₂CO (ii) Ammonium nitrate, NH₄NO₃

Solution

Formula mass of urea = 2 [14 + 2(1)] + 12 + 16= 2(14) + 4(1) + 12 + 16= 28 + 4 + 12 + 16 = 60 amu

Formula mass of ammonium nitrate = 14 + 4(1) + 14 + 3(16)

= 14 + 4 + 14 + 48= 80 amu

(b) Mass of H_2O_2	= 30 g
Molar mass of H ₂ O ₂	= 34 g/ mol
Number of moles	$_$ mass of H_2O_2
	$-\frac{1}{molar mass of H_2O_2}$
	$=\frac{30}{34}$
	= 0.88 mol

2) A spoon of table salt, NaCl contains 12.5 grams of this salt. Calculate the number of moles it contains.

Example 1.10: Calculating the number of atoms in given moles

1) Zn is a silvery metal that is used to galvanize steel to prevent corrosion. How many atoms are there in 1.25 moles of Zn?

Solution

1 mole of Zn contains	= 6.022 x 10 ²³ atoms
Number of atoms	= No. of moles x Avogadro's number
1.25 moles of Zn contain	$= 1.25 \times 6.022 \times 10^{23}$
	= 7.53 x 10 ²³ Zn atoms

2) A thin foil of Aluminum (AI) is used as wrapper in food industries. How many atoms are present in a foil that contains 0.2 moles of Aluminium?

Solution

1 mole of Al contains	= 6.022 x 10 ²³ atoms
Number of atoms	= No. of moles x Avogadro's number
0.2 moles of Al contain	$= 0.2 \times 6.022 \times 10^{23}$
	= 1.2044 x 10 ²³ Zn atoms

Example 1.11: Calculating the number of molecules in given moles of a substance

1) Methane (CH₄) is the major component of natural gas. How many molecules are present in 0.5 moles of a pure sample of methane?

Solution		
1 mole of CH ₄ contains	= 6.022 x 10 ²³ molecules	
Number of moles	= 0.5 moles	
Number of molecules	=?	
Number of molecules	= No. of moles x Avogadro's number	
So, 0.5 moles of CH ₄ will contain= 0.5 x 6.022 x 10^{23}		
	= 3.011 x 10 ²³ molecules	

2) At high temperature hydrogen sulphide (H_2S) gas given off by a volcano is oxidized by air to sulphur dioxide (SO_2). Sulphur dioxide reacts with water to form acid rain. How many molecules are there in 0.25 moles of SO_2 ?

Titanium is corrosion resistant metal that is used in rockets, aircrafts and jet engines. Calculate the number of moles of this metal in a sample containing 3.011 x 10²³ Ti atoms.

Solution

1 mole of an element contains 6.022×10^{23} atoms. Number of atoms =3.011 x 10^{23} Number of moles =? Number of moles = $\frac{Number \ of \ atoms}{6.022 \ x \ 10^{23}}$ = 3.011 x 10^{23} / 6.022 x 10^{23} = 0.5 moles of Ti

Contact: ssva015@gmail.com

Some Important Points:-

- Volume of an object determines the volume of the liquid it displaces, when submerged in the liquid.
- Elements are the building blocks of all the substances that make up all the living and non-living things.
- Only noble gases exist as monoatomic molecules, other substances exist as polyatomic molecules.
- Water cover 70% of the earth's crust.
- Garlic contains more than 200 compounds. It lowers the chances of getting stomach cancer, prevents heart disease and stroke.
- Entire physical world is made up of mixture of elements and compounds. Most of its components are made up of molecules.
- Quantitative information about atomic masses came from the work of Dalton, Gay Lussac, Lavoisier, Avogadro and Berzelius.
- Glucose $(C_6H_{12}O_6)$ is known as blood sugar.
- Milk of magnesia which contains Mg(OH)₂ is used to treat acidity.
- Potassium Chlorate (KCIO₃) is used commonly for the laboratory preparation of O gas.
- Elements have atoms of same sizes and compounds have atoms of different sizes.
- All compounds are molecules; not all molecules are compounds.

Contact: ssva015@gmail.com

(vi) What is the number of molecules in 9.0 g of steam?

Ans: Mass in grams = 9.0 g steam (H_2O) Molar mass of $H_2O = 2(1) + 16$ = 18 g Number of molecules = ?

Number of molecules = $\frac{mass of H_2 0}{molar mass of H_2 0}$ x 6.022 x 10 Number of molecules = $\frac{9 g}{18 g} \times 6.022 \times 10^{23}$ Number of molecules = 3.011×10^{23}

(vii) What are the molar masses of uranium-238 and uranium-235?

Ans: The molar masses of U-238 is 238 g and U-235 is 235 g respectively, because atomic mass of any element expressed in grams is its molar mass.

(viii) Why one mole of hydrogen molecules and one mole of H-atoms have different masses?

Ans: One mole of hydrogen molecules and one mole of H-atoms have different masses because there are two Hatoms present in one molecule of hydrogen (H_2) . Hydrogen molecule is diatomic in nature.

e.co.uk Atomic mass of H-atom = 1.008 amu 1 mole of H-atom = 1.008 g

Molecular mass of $H_2 = 2 \times 1.0$ = 2.016 am

- 3. Define ion, molecular ion, formula unit, free adirat number, mass number, atomic mass unit? Ans: Se
- 4. Differentiate between (a) atom and ion, (b) molecular ion and free radical?

Ans: Difference between an atom and an ion:-

Atom	lon
It is the smallest particle of an element.	It is the smallest particle of an ionic substance.
It may or may not have independent existence.	It cannot exist independently and is surrounded by
	oppositely charged ions.
It is a neutral particle.	It has either positive or negative charge on it.

Difference between molecular ion and free radical:-

Molecular Ion	Free Radical
It is formed by gain or loss of electrons by a molecule.	It is an atom or group of atoms having an unpaired
	electron.
It has positive or negative charge on it.	It is electrically neutral.
Molecular ions are short lived species and only exist at	Sun light may produce free radicals.
high temperature.	
Molecular ions do not form ionic compounds.	It have tendency to complete its octet by gaining or
	losing electrons.
Examples: O_2^+ , N_2^+ or N_2^-	н́,; сі: Examples: