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ANIMAL BREEDING IN A NUTSHELL.:

WHERE TO GO? OBJECTIVES

-What types of animals to breed for
-Economic value of commercial traits

HOW TO GET THERE? QUANTITATIVE GENETICS
SELECTION THEORY
CROSSING THEORY

-Which animals to breed from

Mate allocation

GETTING THERE IMPLEMENTATION
-Education
-Industry structures

-Business structures

K
Overview of Breeding Objectives O -u
AL

You should develop a feel for objectives in ﬁx’ 1on Lectures. The aim is to
improve traits of commercial 1mp0rtanc at mo one trait by converting
7e is to find animals with

each to dollar value per head t@ total score {h
the best breeding ya é«q\q ﬁ erall s e of how to construct such an
overallﬁore @\{P\ a¥l index) is &h its:

10 x Fleece Weight + -2 x Fibre Diameter + 1.25 x Body Weight

KShkg. kg +  KSh/pp +  KSh/kg kg

Note that the overall units are Kenya Shillings.

The economic value of improving fleece weight on sheep by 1kg is at KSh 10 (per animal )
and economic value of one unit fibre diameter has a cost of KSh 2.

However, breeding objectives often involve pitfalls. For example. There is widespread effort

to increase growth rate, and yet this tends to make animals larger at all stages of growth
larger, faster growing animals eat more food.
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GENERATION INTERVAL EXAMPLE: Fleece weight in sheep.

Consider a 1000 ewe flock with an age structure typified by the numbers in the table below.
Notice that, fairly typically, we keep rams 2 years, keep ewes 6 years, and drop first progeny
at 2 years. Mating ratio is 1 ram to 50 ewes, and there is some mortality.

The question is, what is the predicted response to selection per year
Assume. Heritability 0.3

Standard Deviation 0.4kg
Weaning rate 0.8

Age at drop

of progeny 2 3 4 5 6 7 TOTAL
No. of rams: | 12 8 20

No. of ewes: | 250 200 180 150 120 100 1000

Calculation of predicted response per year to selection

12x2 +8x3 \)\A

L =———— =2.4 years = average age of rams ‘dropping’ p y CO
28 axe.

165
250x2 +200x3+180x4 +150x5+1

b= 250+200+180 + 5()@2\) € &’%
1000 e? fle\t \%0 = pro%rgﬁe d 400 female

oung rams selected but of 400 available = 12/400 = 0.03

Pm =1
From tables, pm =0.03 gives i, = 2.268
pr=250/400 = 0.625 giving if= 0.607

_ Imtig o :M0,3X0,4=0.054kg

L +L, 7 244399

Ryear = 0.054 kg increase in fleece weight predicted per year

We have now tools to compare alternative selection programs!
An alternative to the previous program is to cull older ewes and retain more young ones

Lower female selection intensity decreases Ryrear
Shorter generation interval increases Rycar
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USES OF REPEATABILITY
1 As h® = V/V, and r is as above, an estimate of repeatability can act as an upper estimate of
repeatability. As a heritability estimate requires much more data, this id a useful feature

2. Knowledge of repeatability tells the value of taking repeated measures, as shown next.

VALUE OF TAKING REPAETED MEASURES - The variance of the mean of a number
of measures on each animal has a lower phenotypic variance, as the influence of unwanted
temporary environmental effects are diluted:

Vo=V +Vgg + Vs Vp with measurement per animal.

Vpm) = VG + Vig+ Vid/n Variance of mean of n measurements of
a trait on each animal

1- ) . o
Vo = (r + —rij Showing the proportional reduction in Vp

Opmy = (r + E)O‘ Showing the proportional re ucetiotca -\)\A
xS

UL~

SELECTION STRATEGY. QMe of meaﬁe%@gh animal, reducing the
influence of unwan‘@ﬁ@p ffects,g%iv etler prediction of each animal's

'underlying Icct animalg gmth of n measures.
Y (% (5% e
Effect 0n selection responseP
O-A

. . .V ,
Response with one measure = R = ih’c p= 1V—A o,=1—=0,
P P

1.2
. .o ih“o
Response with n measures =R, = i—- 0, = L

n

Which gives R, = R 22
Op

n

So the proportional decrease in phenotypic standard deviation tells us the proportional
increase in response.
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REPEATABILITY EXAMPLES

Voo =Vp =[0.2 +0.8/2] 0.16 = 0.096

Vi = (r+1 r) V, =(02+0.8/2)=0.096
n

R, = R-Z2 = RJ(0.16/0.096) =1.29R

Fertility in cattle r =0.2 Mean =0.8 o ,=0.4 V,=0.16

29% more response

Vo = (r+1_7r)vp =(0.95+0.05/2)=877.5

R, = R-ZE = R\[(900/8775) =101R
o,

Oy
Body weight in cattle:
r=0.95 Mean =300Kg o ,=30kg V,=900

1% more response.

K

measurement. O

MESSAGE : If a trait is highly repeatable, then taking ex r@))f Yadds little
information. However, lowly repeatable traits yield usega%éorm

ation with each new

of 12°

GENOTYPE X EI\NM&XT INTERA(@O
\4

P ( U _
The mean performance of any one breed depends on
the environment which it is farmed

This is an effect of environment

The mean performance of some breed is higher than
that of others

This is an effect of genotype.

The ranking of breeds on performance can depend on
environment .

This is Genotype x environment
interaction.
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- \Y .
— as Vg decreases and both heritability h’= — 2 and response increase.

A+E

How do we account for identifiable environmental effects?

Fixed effects e.g.: Birth type, herd, management group.

Example:
Birth Type Mean Weaning Weight
Single 25
Twin 23
Triple 20
Strategy: Express all phenotypes as deviations from their group means.

A 25kg. Twin is given a value of 25-23 =

+2kg.

but a 25kg Triple is given a value of 25-20 = +5kKg

Continuous effects e.g.: age of individual, lactation length.

+ .age.corrected .l_nean'-7..

Despite its lighter
weight, A" has a
higher corrected
weight than ‘'B",

T '--ﬁninal‘h

NG s1ope ='b.= B.4Kg per day

Age —

Strategy: express all phenotypes as deviations from the "age-corrected mean":

Example:
The 'yearling' of Alice (Animal A) is 280kg at 11 months of age,
The 'yearling weight' of Bessy (Animal B) is 295kg at 13 months of age.

Is Bessy better than Alice?
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Correlated response

When selection is for a given trait X, we can also expect an effect on trait y if y is correlated to
x. The response in a trait correlated to a trait under direct selection, is termed correlated
response.

Correlated Response (CRy) - Response 1n trait y due to selection on trait x

If we knew animals' breeding values, we could draw the relationship between breeding values
for two traits, say trait x = growth and y = fat depth.

From the simple scatterplot of animals’
values, we could predict (") breeding value
for fat depth (trait y) from breeding value
for growth (trait x):

A

Now if we selected on growth, then
animals' breeding values for growth (Ay)
would increase over time, and ywe would

have a predicted response(swrﬁ tion:

“a\e C

The predicted uqu edlng Valu &pt tralt y) 1s then the correlated response.
e of y %é

As th ted from the BV of x, so can the Response for y
(avera V in selected g‘p edicted from the response for x.

Hence, just as Ay =b,A, then CRy,=ba R

Now we can express this in terms we have already handled:

Correlated Response =

o
CR,=b,R, =1, —*R,

Ax

Cov(A_A Cov(A_ A
[aSbA=7( - y)and =7( Ay
Oy 0,04,

CR, = asCR, =b,R
AX
o

CR,=r, — > i,hio, las 0, =ho, |
x 7 P,
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We now have a basis to describe what proportion of GENES and GENOTYPES relatives
share in common- to what extent they are genetically similar. Here are two more examples:

EXAMPLE- if X and Y are half sibs, consider one locus

Mum Dad Mum

MM, DD, M;M,
X Y
D]M] D1M3
DM, DM,
DzM] D2M3
DM, D,M,4

Pick a GENE. Chances of 2™ choice of animal having same gene is 0 (if a maternal

gene had been picked) or 2 (if a paternal gene had been picked)
averaging r = %a.

Pick a GENOTYPE, chances of 2™ choice of animal having san\ é o@@ u\)ﬂ

aoleo*

EXAMPLE- if X and “\p:\r‘&&ﬁ&' ?‘ffsg&tzg

Pree W age 2® 7

X1M1
XiM;
XoM;
XM,

Pick a GENE in X, chances of 2™ choice of animal (Y) having same gene is r = Y.
Pick a GENE in Y, chances of 2™ choice of animal (X) having same gene is 0 (if a
maternal gene had been picked) or 1 (if paternal gene had been picked)

averaging r =V5.

Pick a GENOTYPE, chances of 2™ choice of animal having same genotype is u = 0.
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To illustrate this for another example, consider 9 animal to be allocated to three groups. The
animals have observed values of 1, 2 or 3 units - three animals of each value. The table shows
three ways of allocating animals to groups:

Type of allocation to groups.

'Dead fair' Random Full Similarity
Individual 1 1 1 2 2 1 1 2 3
values 2 2 2 3 1 3 1 2 3
3 3 3 1 2 3 1 2 3
Group 2 2 2 2.0 1.7 23 1 2 3

Averages

We can use knowledge of similarity (covariance) between group members to

= predict performance of relatives: we expect an animal to be good because its full sib was
good

= determine the importance of the effects that cause similarity: common genetic effects to
family members is the most important one for us, we want to know what extent difference

that we observe are heritable. \)\A
cO-

Genetic Covariance

We can use genetic relationship among relatives g@&\wen‘mch they 'look alike'
v%‘:’i covari

phenotypically. For a quantitative trait, this is e.

As variance is an indicati t‘&*@mat u laﬁdﬁdi&zﬁ can be different from each
other, covariange § &re to what _gxt @0 tviduals would have the same value.
Suppo 1&@%«'1\/ as a ¢ e, a covariance would tell us what extend another
individ¥al should also have Aginfk

Note that covariance is used to indicate similarity between individuals (for the trait). Earlier,
we used covariance to indicate similarity between traits (for the same individual). There is a
parallel here: genetic correlations indicate to what extend the genes for two different trait are
common. A genetic relationship indicates to what extend two individuals have genes in
common.

The genetic covariance between two individuals is equal to their genetic relationship times the
genetic variance

additive genetic covariance between individuals x and y:  Cov(Ay,Ay)=axy Va
dominance covariance between individuals x and y: Cov(DyDy)=dyy Vb

genetic covariance between individuals x and y: Cov(Ax,Ay)+Cov(Dy,Dy)
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0_2
3x|o;+—2 |=0, +30,
n

We can estimate the contribution of the variance of temporary effects within groups by taking all
deviations within groups (we estimate the group mean and take the deviation of each record from each
group mean). These deviations are called residual effects and if we square all these within group
deviations, we obtain the residual sums of squares. If the residual sums of squares are divided by the
number of residuals that we can compare (this is the degree of freedom for the residual) than we obtain
an estimate of the residual variance: 6y for this example:

Analysis of the variance example data set

Effect Degr. of Free Sums of squares ~ Mean Squares  Expected mean
squares

Mean 1 8640

Group effect 4 192 48 o’y + 368

(Between groups )

Residual 10 18 1.8 o

(Within groups)

Total 15 8850

Here is how these figures are calculated....

1) sums of squares due to means: 15 x 24% = 8640 O \)K
2) sums of squares due to differences: C
3x (2174257 +29% + 19° + 26%) = 8832

corrected for mean:

2 2 te
i e Y 2@2@

3) total sums of.s

\Nall indivi aeemb% squared> .+26= 8850
'1 u u sofsquar @g

al'SS-SS groups =8
notice that also: (-1)* + 0 + (-2)* +....(2)* = 18

The estimated variance components for example data set 1:

Between groups o’s=15.4
Within groups ow=18
Total variance is op> + GW2 =172

Repeatability = intra-class correlation = 15.4/17.2 = 0.895

o2
Variance of the group means ()'123 +—Y=154+18/3=16
n
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A

)
The heritability is estimated as h* = YA = 40y

~2 22
V, oOy+0y

or. h’= 4 x intraclass correlation between half sibs. ..

Analysis of full-sib families

A common structure of the data is that we have observation on full sib families, where each
sire 1s mated to more dams, and each dam has more than one offspring. Hence, we have full
sib families within half sib families and we can make groups of sire and dam groups, but
dams are different for each sires. (This is called a Nested or Hierarchical design: dams are

nested within sires).

S1
D D D
PPPPPPPP.. \A
In the analysis we don’t have two, but three variance comp \ Qance between sires,

families). This example gives the follow

the variance between dams (within sires) ani %S

SOURCE EX ﬁnm SQU

y

Pro gen?r Ow

Sires JX % 320, 4O
Dams (3 ( e o+ 85 A
y e

And the expected value of the variance components is:

1th1n dams (within full sib

o ﬁg

Note: 8 progeny per dam
32 progeny per sire

Variance due to Component Expectation/ interpretation
Sires 032 ViV
Dams within sire o4 ViV + ¥iVp + Vi
Progeny within dam Gw2 YoV +.75Vp + Viw
Total op” Va+ Vp +Vge + Viw
Sires + dams 05"+ o4 2Va + YVp + Vi

VA = Additive genetic variance
VD = Dominance variance.

VEc = Common environmental variance for full sibs
VEw = Environmental variance specific for each individual

The intraclass correlation between full sibs is the between group (full sib family)
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A2 A2 A
o,+0 WV, + V+V A
tFS:( ‘6'2 d):A ’ f] EC>/h2 So hzsths
P

p

Since full sibs have more in common that just genetic effects, their intra-class correlation will
overestimate heritability. Only the half-sib correlation can give an unbiased estimate of
heritability, since that contain genetic effects only.

Assumptions in such ANOVA estimates of heritability:

1.Randomly chosen sires:
Since the estimate is based on the variance among sires. The variance among a
selected group of sires will be smaller. An estimate of heritability based on progeny of
selected sire will be biased downward.

2.Randomly allocated dams

3. Equal environment for each progeny group

Estimation of Heritability - by Regression
1. Regression of offspring on one parent

What is the covariance between the performance of a sire, and the performagcg of its
offspring? 1\(
We expect there will be some covariance, because a sire and ff r dre genetically
related. Of all the variation we observe between perfi \ ife (i.e. the phenotypic
variance) we expect the sire only to transfer é%ts to_its offspring. The random
environmental effects of the sire and fs re ass lated. Since the sire has
only half of its genes in c mﬁx offs r1n Lrvgp e theoretical expectation
between performar eﬁ\?\j d perfo 5@@ offsprlng is expected to be equal to
half t ,@X’%\, ic Varla ession of the performances of offspring on
th

perfo eir parent

Cov(parent,offspring) %4V,

= 4 h?

Regression of offspring on parent: b, = Var( ) v
ar(paren ,

Therefore, if we calculate the regression of offspring on parents, we know that, based on our
quantitative genetic model, this regression should be equal to sh>. We can use this knowledge
to estimate heritability based on data. We can also use it to predict differences between
offspring of two parents. If the parents differ an amount of 40 (say in mature weight) we
expect their offspring to differ an amount to “5h?* 40.

The regression of performance of offspring on performance of parent is equal to 'h?
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10 USE OF INFORMATION FROM RELATIVES

Introduction

If we want to select the best from individuals of a population in order to achieve genetic
improvement, it is important that we are able to rank these individuals based on expected
genetic merit. Such an estimation of breeding value can be based on individuals' own
phenotype, as we saw in chapter 4. However, generally we have more information available.

We expect a bull to be genetically good also if it is an offspring from a very good sire or dam
(remember the expected value of progeny was equal to the average breeding value of the
parents). In addition, if a bull has good performing sibs, or very good offspring, we tend to
give more credit to its breeding value. In general, we can use information from genetically
related animals to estimate breeding values. It is not instead of own phenotype, but additional
information.

The problem is then to determine how important a good own phenotype is in relation to good
phenotypes of related animals. If a trait can be measured on one sex only, we can not use own
information at all. Again, we can rely on sibs, but a common source of information about an
animal's EBV is also to test a number of its progeny.

In this chapter we will analyse when relatives' information can be important, and how it can

be used in estimating breeding value. We will particularly consider information frot\qbs and
information from progeny.

Principle of estimation of breeding values tesa

We would like to rank and select a N rue bre, 21 ues (TBV' or A) but we

don’t have this perfect kno an no eeding values. Instead, we

must use observ eNBJ:V 0 get est1m 3&_ g Values (EBV's or A), and accept a
resp

slower@ef)@

ESTIMATED BREEDING VALUES-EBV's are estimating TRUE BREEDING
VALUES using phenotypic information

The most obvious piece of phenotypic information we can use to estimate an animal's
breeding value is the animal's own phenotype. We saw in chapter 4:

A, = h?P Note that P = (P, — P), a deviation.

The principle of breeding value estimation is based on regression. We want to know how
much better a breeding value is when we observe a certain phenotypic difference. If we
regress the breeding values on phenotypic observation, the slope of the regression line tells us
how much difference we have in breeding values per unit of difference in phenotype. This
slope is equal to the heritability. Using quantitative genetic theory:

v = Mwhich 1s now equal to Cov(P.A) _ Yard) _ h?
Y var(y) Var(P)  Var(P)

recalling that cov(P,A) = cov(A + E,A) = cov(A,A) = var(A).
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But by how much?

In Flock 1, the reference sire’s progeny are worse than Flock 2 sire’s progeny by
0.5 kg. Assuming many progeny, the reference sire’s breeding value inferiority
must be twice this, because of the diluting effect of ewe mates of equal merit. So
the reference sire is 1kg genetically inferior to Flock 1 sires, and by a similar
argument, he must be 1kg genetically superior to Flock 2 sires. Thus, if the flock
sires are representative of their flocks ( or if they are equally selected) then Flock
1 is 2kg genetically superior to Flock 2. Given the observed average merit of the
flocks, the flock 1 environmental effect must be 2.5kg below that of Flock 2.

BLUP can both calculate and use this information automatically whenever there are
such genetic linkages available — i.e. whenever relatives are spread across different
groups.

3. BLUP gives genetic trends. The approach used in the last example could be used to test the
genetic differences between animals born in different years, instead of different flocks.
This ability to compare the EBV’s of animals born and measured in different years
means that a year mean EBV’s can be calculated and genetic trends reported. Here is an
example from Ojango and Pollot (2001) for the Kenyan Holsteins.

150 _ \)\A

-150

Year l— — Linear trend‘

4. BLUP can handle unbalanced designs easily. A selection index using sib information
faces the problem that each candidate does not have the same number of sibs (n):

Index = b,P, + b, P, ...from lecture on using sib information

The weight for the family information (bf) depends, besides on heritability and the type
of family, also on the number of individuals in the family.

One solution is to construct an index for each number of sibs involved — but if progeny
information is available the same problem exists ... BLUP handles this imbalance
automatically by constructing a custom selection index for each animal. BLUP only
needs to report the EBV’s (A’s) and not the index weights (b’s).
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of a single additive genetic effect, two different models can be distinguished: sire model and animal
model. In a sire model only the additive genetic effects of the sires of each individual are considered.
With such a model breeding values for only sires can be estimated. With an animal model, breeding
values for all individuals can be estimated.

The model to describe the observations contains fixed effects for the environmental factors and
random effects for the genetic effects. The model contains both fixed and random effects and is,
therefore, referred to as a mixed model. In matrix notation, a mixed model can be expressed as
follows:

y=Xb+Zg+e

where, y vector with n observations (n*1),
b vector with f fixed effects (f*1),
g vector with s random effects (s*1),
e vector with error terms (n*1),
X incidence-matrix indicating for each observation the fixed effects by which it
is influenced (n*f),
Z incidence-matrix indicating for each observation the random effects by which it is

influenced (n*s).

In brackets the size of the matrices and vectors is given where:

n= number of observations
= number of fixed effect classes (sum over all factors) K
s= number of animals for which breeding value has to be estimate. O

Write down the set of so-called least squares equanons corres, @ Model
In setting up the least squares equations, all effec S é g) are treated as fixed effects.
In matrix notation the least squares equatl

2

Where . Z,b, g and y are as d ine above

Let us look at this expression in more detail. The matrix X relates each observation to fixed effect
classes. In case we have only one fixed effect with several classes, the matrix X'X contains the number
of observations in each class at the diagonal and zero elsewhere. With more than one fixed effect the
diagonal element still contains the number of observations but the off-diagonal elements are no longer
all equal to zero. They represent how observations for one class of a fixed effect are distributed over
the classes for the other fixed effects. In other words, X'X contains information on number of
observations for each fixed effect class. Z'Z is a diagonal matrix which contains information on the
number of observations for each class of g. The matrix X'Z (and its transpose Z'X) contains the
number of observations for all combinations of classes of b and g.

The size of the matrices can be derived from the size of X and Z which are (n*f) and (n*s), where the
first number represents the number of rows and the second the number of columns. Let us look at the
size of X'Z: this is the product of a matrix (transpose of X) with f rows and n columns (f*n) with a
(n*s) matrix. The result is a (f*n)x(n*s)=(f*s) matrix. (Note: matrices can only be multiplied when
number of columns in first matrix is equal to number of rows in second matrix). The vector X'y
contains the sum of the observations in each class in b and Z'y contains the sum of observations for
each class in g.

Transform the least squares equations into mixed model equation
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In the least squares equations we have not used information on the heritability of the trait or on genetic
relationships between animals. To include this information, the part of the left-hand sides of the
equations that relates to the genetic effects has to be modified. This modification, which involves
adding an additional matrix, depends on:

a) the model (animal or sire);

b) whether or not relationships between animals have to be taken into consideration;

c) heritability of the trait.

For now we look at a sire model without relationships between sires. Later on the other options will be
described. The mixed model equations for a sire model without relationships between sires is:

{ X'X X'z } bl [ XYy
Z’X 27+ o ]| 8 Zy
where I is the identity matrix and o is (52/052=(1-%h2)/(%h2). In words: from the least squares

equations we can get the mixed model equations by adding o to the diagonal elements for the sires.
The term o represents the variance ratio of the error in the model and the genetic effect in the model.
The genetic effect in the sire model is the sire's transmitting ability (s;) which is equal to half the
additive genetic effect of the sire (a;). The half results from the fact that the sire only contributes 50%
of the genes of the animals on which we have the observations. The variance of the sire effects is: G,

=Var(si)=var(1/2a,~)=%var(ai)=% (52=%h2 (52 Consequently, the variance of the error term in the model

(o 2) is equal to: G 2.0l=0% - (5 =(1-Y%h?) (5 . By adding ol to the Z'Z and solving tPKc:uation
we get BLUP estimates for sires. In principle the effect of this modlﬁcatlon 1s to timate
of a sire from a mean of daughter performances (adjusted for fixed ef s’sed‘ mean as is
also the case with a selection index. In other words, addin é.% fate dlagonal coefficients

has an effect analogous to multiplying the mean Qf a@ mances (adjusted for fixed effects)
by the appropriate selection index Welghtl

4) Obtain estimates . "( O “ lfz

Estlmates for aég ﬂ(\ obtame Vij @ 1xed model equations:
g 7’X 77+ 0(1

In this case of a sire model contains estimates for the genetic effect transmitted by the sire to its
offspring, which is also referred to as estimated transmitting ability (ETA). The estimated transmitting
ability is half the breeding value of the sire. With an animal model, breeding values (and not
transmitting abilities) are estimated for all animals (sire, dams and offspring).

Note: When there is more than one fixed effect in the model, restrictions have to be used to avoid that
the matrix is singular, in which case the generalized inverse rather than inverse of the left hand sides
should be used.

Example:

We have observation on milk production of cows measured on two different herds. All productions
were observed in the same year and all cows had the same age. The cows were progeny of 3 different
sires. The objective is to estimate the breeding value of these sires using a sire model. The following
data are available:
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Deviations from Hardy Weinberg in an inbred population (for single locus —2 allele model)

Genotype HW-equilibrium (Non-inbred) Inbred population
ALA, p’ P’ + pqF

Al A, 2pq 2pq(1-F)

Ay A, q q’+pqF

Allele Frequency A p p

An individual with an inbreeding coefficient F has therefore F % less heterozygosity.

In the following paragraph we see that this has negative consequences, for example in case of

genetic defects.

= Inbreeding is temporarily. It is a configuration of genotype frequencies that typically has
more homozygotes (of either kind). However, as soon as different inbred strains cross, the
inbreeding is completely disappeared.

= Of course, if we had no 'other' lines, an inbred populations might fix its genes due to drift
(or due to selection if selected), thereby loosing its genetic variation. In that case,
inbreeding is not so temporarily.

Consequences of Inbreeding
Why is inbreeding bad?

1) Increased frequency of affected individuals due to genetic defects’

Inbreeding increases the frequency of homozygotes. This is a disadvan \s)Mmany
mutations that occur have a negative effect, but luckily they are 6srve (otherwise
they might not have survived).The effect of deleterloug ‘é eles comes only to

expression in homozygotes (carrying two copﬂttj

This is applicable to genetlc.§{ ch are u d r299ecess1ve alleles in small
e recessi

frequencies. If the f ,%than in a non-inbred population, the

prob I@y()ﬁ affected @@u r5’q2 An inbred individual would have a
proba +pgF.

Let q be equal to 1 %. We have then

¢ allele).

Probability of being affected
Normal individual: 1 1n 10,000
Inbred individual (F=0.125) 13.4 in 10,000
Hence a large increase!

2) Inbreeding depression

The effect of increased frequencies of individuals that are homozygous for negative recessive
effects translates for quantitative traits, regulated by possibly many genes, into inbreeding
depression. Increased homozygosity means most traits are depressed by between 2% and 7%
per 10% increase in F.

Since we observe the phenomena only for alleles that are recessive, we should observe
inbreeding depression only for traits that show dominance. Those are typically traits that
relate to fitness and reproduction.

Inbreeding depression is a 'mirror image' of heterosis, the first is due to a shortage of
heterozygotes, the second due to an excess of heterozygotes. Heterosis if more distant line or
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Please note: this prediction of inbreeding only holds for the case of no selection and
random mating. In reality, there is selection going on in breeding programs and the
inbreeding rate can be a multiple of the omne predicted with the no-selection
assumption.

EXAMPLE
What is F after 20 years' breeding on the following structure?

AGE 2 3 4 5 6
RAMS 1 1
EWES 20 20 20 20 20
Ln=2.5 L =3.25 years
Li=4
Nm=1 x3.25 = 3.25 males entering the flock per generation.
Nr=20 x 3.25 = 65 females entering the flock per generation. \A

A8
a\e o
m f : O es

Faoyears = F203.250ens = 1- [1-1 (27€j€'v\20VA _‘ ’szg

onyears @dﬂx 1S probab ab — but you need to look at response to
elect] 1s when looking for the best overall strategy.
Also l1kely to remain fully closed for 20 years.

Alternative strategy: Use only 4 new rams each year:

AGE: 2 3 4 5 6
RAMS 4
EWES 20 20 20 20 20
Ln=2 L =3 years

Ly =4

Calculation

Ln=2,L=4,L=3
Nm =4x3=12,N¢=20x 3 =60, N, =40
Faoyrs = 0.0804 which is probably acceptable.
NOTE:
t
As F=1-|1- L
2N,

F; can only approach unity. For the previous example, F = 0.5 is reached in about 166 years.
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\ Heterosis expressed in established
B x AB rotations with n breeds
contributing equally is

2" =2
A x Al/4B3/4 2" -1
<
\ From this it can be shown that
rotational crosses express more
B x A5/8 B3/8 heterosis than synthetics which

\ use the number of breeds

A x Al/3 B2/3 ...giving 2/3 heterosis

. "

B x A2/3B1/3 ...giving 2/3 heterosis CO .
& .

sa
9

Calculating predicted merit in crossbreediw@
EXAMPLE: Yearling wei t" , three r%al@ s: T, 2 and 3. Hypothetical values
é Qi @ paramet@ : l@

Directh ive effects A,”Pdargﬁldg. The expression of this is equal to the proportion of
genes from each breed.

Maternal additive effects A1, Amz and A,3. These relate to dam genotype, and are probably
caused by milk production and rearing ability. Note that these effects add to zero- they
describe the relative maternal performance of each pure breed.

Direct dominance effect D,. this is the effect of heterosis in crossbred individuals, when fully
expressed as in an F; cross.

Maternal dominance effect D, this is the effect of heterosis due to crossbreeding in the dam,
when fully expressed as in an F; dam.
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3. If lower tiers buy from the average rams (and no ewes) from the tiers above, they will lag
behind the tier above by 2 generations (about 7 years in sheep) of selection response
(Bichard, 1971).

oo
. S
. 2 generation lag oF
Genetic
merit
Stop selection in base
Maintain selection in base
~— Start selection in base
01 23 456 7 8 910
Generation

Figure 2. Selection response in a 2-tier closed nucleus scheme. The base lags about 2 generations behind the
nucleus. Any selection effort in the base needs to be maintained just to keep a non-increasi vantage.
Opening the nucleus will give more sustained returns from selection in the base CO
Open nucleus breeding schemes %
Stock in the base tier(s) can have higher EB ﬁ@ stoc would have otherwise
been selected. This is most true for 6m ecund
These high- merlt s can be m1gr ’lto b red in the nucleus, giving an open
nucle TQ} shes t ogress more quickly and this benefits the whole
schem g ase will as the nucleus after things have settled down. Overall

response in open 2-tier s emes 1s 10 — 15 % faster than in closed schemes when optimal
design is applied: about 10% of the population in the nucleus and about 50% of nucleus mated
ewes born in the base (James, 1977).

Different measurement strategies in nucleus and base

A major use of nucleus schemes is to avoid or reduce measurement costs in lower tiers.
Increased (or decreased) accuracy can be got by measuring more (or less) traits as selection
criteria for index or using more (or less) information from, relatives. As r,  increases, o,

increases (0 ,=r;, 0,), and the distribution of EBV widen as shown in figure in the next
page.
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The classic approach to calculating economic weightings is economically rationale — it takes
no account of genetic parameters. This makes sense in that the value of making a unit change
in a given trait should not be influenced by how difficult it is to generate this change. These
difficulties can be handled appropriately at the genetic evaluation phase. In this setting,
breeding objectives should reflect the costs and returns involved in a production system, and
should not consider costs and gains generated in a breeding programme.

A simple example

A very simple breeding objective is presented here. The reader is directed to Ponzoni (1988)
for a comprehensive worked example. The key tactical objective of a selection programme is
to choose animals of high breeding value to be used as parents. An animal’s breeding value
(A) is the value of its genes to its progeny. The breeding objective is simply a multi-trait
breeding value, with each trait weighted by a relative economic weight, for example:

Breeding objective: 6 x fleece weight + -1 x Fibre diameter
Units = KSh KSh /Kg. Kg + KSh/u. u

In order to combine different traits into such a single soccer they have to be converted to a
common scale. This is generally dollars or some other monetary unit. The economic weights
in this simple example are taken to have been calculated from market prices of KSh 6 per
kilogram of wool and - KSh1 per micron for an average fleece. The units of expression are
thus dollars [per unit (kg or u)] per head shown. Note that these welghts involved (\A
consideration of genetic parameters. \3

Units of expression %
All economic weightings in a breeding obj p&@ ave ame basis for units of
abov

expression, such as ‘KSh per ead g’\ this basis can have an
important 1nﬂuence on f usi gtz ‘ ectlve

(‘ unlt of.¢e @, :)m as dollars per head shown can be used for
s1tuat S 1 Wthh all tr ﬁ ectly related to economic costs or returns, and thus
excludes reproductive traits, whose effect is at least partly manifested through progeny.

A less simple basis is ‘dollars per breeding ewe per year’, which accommodates both
production and reproduction traits. In all cases, each trait should use this same basis, such
that an objective might be for example:

KSh 7.20 per kg per breeding ewe per year x clean fleece weight
+ KSh -120 per micron per breeding ewe per year x Fibre diameter
+ KSh 7.20 per lamb weaned per breeding ewe per year ~ x Number of lambs weaned

This means that in a flock of 150 breeding ewes, a marginal increase of l1kg in clean fleece
weight would increase profit by KSh7.20 x 150 = KSh1,080 per year. This accommodates
wool shorn form all classes of stock, through the way in which the economic weight is
calculated. The economic weight for an increase of one lamb weaned is more difficult to
calculate, due to expression via progeny, but in this case it is the same as for clean fleece
weight. Delays in returns due to expression in progeny can be accommodated by considering
the pattern of flow of genes through the population, and discounting future returns to give
current values (McClintock and Cunningham, 1974).
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