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ANIMAL BREEDING IN A NUTSHELL: 
 
WHERE TO GO? OBJECTIVES 

 
-What types of animals to breed for 
-Economic value of commercial traits 
 

HOW TO GET THERE? QUANTITATIVE GENETICS 
SELECTION THEORY 
CROSSING THEORY 
 
-Which animals to breed from 
 
Mate allocation 

GETTING THERE IMPLEMENTATION 
 
-Education 
 
-Industry structures 
 
-Business structures 
 

 
Overview of Breeding Objectives 
 
You should develop a feel for objectives in the Animal Production Lectures. The aim is to 
improve traits of commercial importance. We can aim at more than one trait by converting 
each to dollar value per head and making a total score. The objective is to find animals with 
the best breeding values for this overall score. An example of how to construct such an 
overall score (or an overall index) is shown with units: 
 
 
10 x Fleece Weight + -2 x Fibre Diameter + 1.25 x Body Weight 
 
KSh/kg. kg  + KSh/µ.µ.	
   	
   +	
   KSh/kg.	
  kg	
  	
  
 
 
Note that the overall units are Kenya Shillings. 
 
The economic value of improving fleece weight on sheep by 1kg is at KSh 10 (per animal ) 
and economic value of one unit fibre diameter has a cost of KSh 2. 
 
However, breeding objectives often involve pitfalls. For example. There is widespread effort 
to increase growth rate, and yet this tends to make animals larger at all stages of growth 
larger, faster growing animals eat more food. 
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GENERATION INTERVAL EXAMPLE: Fleece weight in sheep. 
 
Consider a 1000 ewe flock with an age structure typified by the numbers in the table below. 
Notice that, fairly typically, we keep rams 2 years, keep ewes 6 years, and drop first progeny 
at 2 years. Mating ratio is 1 ram to 50 ewes, and there is some mortality. 
 
The question is, what is the predicted response to selection per year 
 
 
Assume.  Heritability 0.3 
   Standard Deviation 0.4kg 
   Weaning rate 0.8 
 
Age at drop 
of progeny 

 
2 

 
3 

 
4 

 
5 

 
6 

 
7 

 
TOTAL 

No. of rams: 12 8     20 
No. of ewes: 250 200 180 150 120 100 1000 
 
 
 

Calculation of predicted response per year to selection 
 

Lm
12x2 8x3
12 8

= +
+

 = 2.4 years = average age of rams ‘dropping’ progeny 

 

Lf =
+ + + + +

+ + + + +
250x2 200x3 180x4 150x5 120x6 100x7

250 200 180 150 120 100
 = 3.99 years 

 
1000 ewes give 0.8 x 1000 = progeny, 400 male and 400 female 
 
pm = 12 young rams selected out of 400 available = 12/400 = 0.03 
 
From tables, pm =0.03 gives im = 2.268 
 
 
pf = 250/400 = 0.625 giving if = 0.607 
 

R i i
L L

2.268 0.607
2.4 3.99

0.3 x 0.4yr
m f

m f

= +
+

= +
+

h p
2σ = 0.054 kg 

 
Ryear = 0.054 kg increase in fleece weight predicted per year 
 
We have now tools to compare alternative selection programs! 
 
An alternative to the previous program is to cull older ewes and retain more young ones 
 
   Lower female selection intensity decreases Ryrear 
   Shorter generation interval  increases Ryear 
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USES OF REPEATABILITY 

1 As h2 = VA/Vp and r is as above, an estimate of repeatability can act as an upper estimate of 
repeatability. As a heritability estimate requires much more data, this id a useful feature 
 
2. Knowledge of repeatability tells the value of taking repeated measures, as shown next. 
 
 
VALUE OF TAKING REPAETED MEASURES - The variance of the mean of a number 
of measures on each animal has a lower phenotypic variance, as the influence of unwanted 
temporary environmental effects are diluted: 
 
Vp = VG +VEg + VEs    Vp with measurement per animal. 
 
 
Vp(n) = VG + VEg + VEs/n   Variance of mean of n measurements of  
      a trait on each animal 
 

VP(n) = r + 1− r
n

⎛
⎝⎜

⎞
⎠⎟VP     Showing the proportional reduction in VP 

 

σ P(n) = r + 1− r
n

⎛
⎝⎜

⎞
⎠⎟σ p    Showing the proportional reduction in σ P 

 
 
SELECTION STRATEGY. Take a number of measures on each animal, reducing the 
influence of unwanted temporary effects, to give a better prediction of each animal's 
'underlying phenotype'. Select animals on the mean of n measures. 
 
Effect on selection response  

 Response with one measure = R = ih2σ p = i V
V
A

P

σ P = i A

P
A

σ
σ

σ  

 

 Response with n measures = Rn = i A

P
A

n

σ
σ

σ  = ih2σ P

r + 1− r
n

⎛
⎝⎜

⎞
⎠⎟

 

 

   Which gives Rn = R P

Pn

σ
σ

 

 
So the proportional decrease in phenotypic standard deviation tells us the proportional 
increase in response. 
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REPEATABILITY EXAMPLES 
 

Fertility in cattle  r =0.2  Mean =0.8 σ p=0.4  Vp=0.16  
 Vp(2) =Vp = [0.2 + 0.8/2]	
  0.16	
  =	
  0.096	
  
 

VP(2) = r + 1− r
n

⎛
⎝⎜

⎞
⎠⎟VP = (0.2 + 0.8 / 2) = 0.096  

 

Rn = R P

Pn

σ
σ

 = R 0.16/0.096( ) = 1.29R    29% more response 

 
Body weight in cattle: 
 r = 0.95 Mean =300Kg  σ p=30kg Vp=900 
 

VP(2) = r + 1− r
2

⎛
⎝⎜

⎞
⎠⎟VP = (0.95 + 0.05 / 2) = 877.5  

 

Rn = R P

Pn

σ
σ

 = R 900/877.5( ) = 1.01R    1% more response. 

 
MESSAGE : If a trait is highly repeatable, then taking extra measures of it adds little 
information. However, lowly repeatable traits yield useful new information with each new 
measurement. 
 
 

GENOTYPE X ENVIRONMENT INTERACTION 
 

 
The mean performance of any one breed depends on 
the environment which it is farmed 
 

 
 
This is an effect of environment  

 
The mean performance of some breed is higher than 
that of others 
 

 
This is an effect of genotype. 

 
The ranking of breeds on performance can depend on 
environment . 
 

This is Genotype x environment 
interaction. 
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→ as VE decreases and both heritability h2= V
V V

A

A E+
and response increase. 

 
How do we account for identifiable environmental effects? 
 
Fixed effects e.g.: Birth type, herd, management group. 
 
Example: 
 

Birth Type Mean Weaning Weight 

Single 25 
Twin 23 
Triple 20 

 
Strategy: Express all phenotypes as deviations from their group means. 
  A 25kg. Twin is given a value of 25-23 =+2kg. 
  but a 25kg Triple is given a value of 25-20 = +5kKg 
 
 
 
Continuous effects e.g.: age of individual, lactation length. 
 
Example: 'Yearling' weight in cattle vs. age at weight: 
 

 
 
Strategy: express all phenotypes as deviations from the "age-corrected mean": 
 
Example: 
 
The 'yearling' of Alice (Animal A) is   280kg at 11 months of age, 
The 'yearling weight' of Bessy (Animal B) is  295kg at 13 months of age. 
 
Is Bessy better than Alice? 
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Correlated response 
 
When selection is for a given trait x, we can also expect an effect on trait y if y is correlated to 
x. The response in a trait correlated to a trait under direct selection, is termed correlated 
response. 
 
 Correlated Response (CRy) - Response in trait y due to selection on trait x  
 
If we knew animals' breeding values, we could draw the relationship between breeding values 
for two traits, say trait x = growth and y = fat depth. 
 

 

From the simple scatterplot of animals’ 
values, we could predict (ˆ) breeding value 
for fat depth (trait y) from breeding value 
for growth (trait x): 
 
A b Ay A X=  

 
Now if we selected on growth, then 
animals' breeding values for growth (Ax) 
would increase over time, and we would 
have a predicted response per generation: 
 
Rx = ix.h2

x.σpx  
 

 
 

The predicted increase in breeding values for fat depth (trait y) is then the correlated response. 
As the breeding value of y can be predicted from the BV of x, so can the Response for y 
(average of BV in selected group) be predicted from the response for x. 
 
   Hence, just as A b Ay A X=  then CRy = bA Rx . 
 
Now we can express this in terms we have already handled: 
 
Correlated Response = 

CR b R r Ry A A
Ay

Ax
x= =x

σ
σ

 as bA =
Cov(Ax,Ay )

σ Ax

2 and rA =
Cov(Ax,Ay )
σ Ax

σ Ay

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

 

CR r hy A x x
2

P=
σ
σ

σA

A

y

x

x
i   as CR b Ry A=  

 

CR r
h

h
i hy A

y P

x P
x x
2

P
y

x

x
=

σ
σ

σ  as hA Pσ σ=  
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We now have a basis to describe what proportion of GENES and GENOTYPES relatives 
share in common- to what extent they are genetically similar. Here are two more examples: 
 
  EXAMPLE- if X and Y are half sibs, consider one locus 
 
 Mum    Dad    Mum 
 M1M2    D1D2    M3M4 
 
 
 
 
   X    Y 
 
   D1M1    D1M3 
   D1M2    D1M4 
   D2M1    D2M3 
   D2M2    D2M4 
 
Pick a GENE. Chances of 2nd choice of animal having same gene is 0 (if a maternal 

gene had been picked) or ½ (if a paternal gene had been picked) 
averaging r = ¼. 

 
Pick a GENOTYPE, chances of 2nd choice of animal having same genotype is u = 0 
 
 
  EXAMPLE- if X and Y are parent and offspring… 
 
  Parent (X)     Mum 
 
  X1X2      M1M2 
     Y 
     X1M1 
     X1M2 
     X2M1 
     X2M2 
 
Pick a GENE in X,  chances of 2nd choice of animal (Y) having same gene is r = ½. 
 
Pick a GENE in Y, chances of 2nd choice of animal (X) having same gene is 0 (if a 

maternal gene had been picked) or 1 (if paternal gene had been picked) 
averaging r =½. 

 
Pick a GENOTYPE, chances of 2nd choice of animal having same genotype is u = 0. 
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To illustrate this for another example, consider 9 animal to be allocated to three groups. The 
animals have observed values of 1, 2 or 3 units - three animals of each value. The table shows 
three ways of allocating animals to groups: 
 
 
  Type of allocation to groups. 
 
  'Dead fair'   Random  Full Similarity 
Individual 1 1 1  2 2 1 1 2 3 
values  2 2 2  3 1 3 1 2 3 
  3 3 3  1 2 3 1 2 3 
 
Group  2 2 2  2.0 1.7 2.3 1 2 3  
Averages 
 
 
We can use knowledge of similarity (covariance) between group members to  
§ predict performance of relatives: we expect an animal to be good because its full sib was 

good 
§ determine the importance of the effects that cause similarity: common genetic effects to 

family members is the most important one for us, we want to know what extent difference 
that we observe are heritable. 

 
Genetic Covariance 
We can use genetic relationship among relatives to predict how much they 'look alike' 
phenotypically. For a quantitative trait, this is measured by covariance. 
 
As variance is an indication of the extend that unrelated individuals can be different from each 
other, covariance is a measure to what extend two individuals would have the same value. 
Suppose individual y has an extreme value, a covariance would tell us what extend another 
individual should also have a similar extreme value 
 
Note that covariance is used to indicate similarity between individuals (for the trait). Earlier, 
we used covariance to indicate similarity between traits (for the same individual). There is a 
parallel here: genetic correlations indicate to what extend the genes for two different trait are 
common. A genetic relationship indicates to what extend two individuals have genes in 
common. 
 
The genetic covariance between two individuals is equal to their genetic relationship times the 

genetic variance 
 
additive genetic covariance between individuals x and y: Cov(Ax,Ay)=axy VA 
 
dominance covariance between individuals x and y:  Cov(Dx,Dy)=dxy VD 
 
genetic covariance between individuals x and y:  Cov(Ax,Ay)+Cov(Dx,Dy) 
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3 x σ B
2 + σW

2

n
⎛
⎝⎜

⎞
⎠⎟
=σW

2 + 3σ B
2  

 
We can estimate the contribution of the variance of temporary effects within groups by taking all 
deviations within groups (we estimate the group mean and take the deviation of each record from each 
group mean). These deviations are called residual effects and if we square all these within group 
deviations, we obtain the residual sums of squares. If the residual sums of squares are divided by the 
number of residuals that we can compare (this is the degree of freedom for the residual) than we obtain 
an estimate of the residual variance: σ2

W for this example: 
 
Analysis of the variance example data set 
 
Effect  Degr. of Free  Sums of squares  Mean Squares  Expected mean  
 squares 
Mean 1  8640 
Group effect 4 192 48 σ2

w + 3σ2
B 

(Between groups ) 
Residual  10 18 1.8  σ2

w 
(Within groups) 
Total 15 8850 
 
Here is how these figures are calculated…. 
 
1) sums of squares due to means:  15 x 242 = 8640 
2) sums of squares due to differences: 
  3 x (212 + 252 + 292 + 192 + 262) = 8832 
  corrected for mean: 
  3 x ((21-24)2 + (25-24)2 + (29-24)2+(19+24)2(26-24)2) = 192 
  or directly: 8832 - 8640 = 192 
3) total sums of squares 
  212 + 222 +…<all individual weightings squared>…+26= 8850 
4) residual sums of squares 
 total SS-SS groups = 8850-8832 = 18 
 notice that also: (-1)2 + 0 + (-2)2 +….(2)2 = 18 
 
The estimated variance components for example data set 1: 
 Between groups   σ2

B = 15.4 
 Within groups   σ2

w = 1.8 
 Total variance is  σB

2 + σw
2 = 17.2 

 
Repeatability = intra-class correlation = 15.4/17.2 = 0.895 
 

Variance of the group means  σ σ
B
2 W

2

n
+ = + =154 18 3 16. . /  
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The heritability is estimated as 




 

h V
V

2 A

P

S
2

S
2

W
2= =

+
4σ

σ σ
 

or. h2= 4 x intraclass correlation between half sibs… 
 
Analysis of full-sib families 
A common structure of the data is that we have observation on full sib families, where each 
sire is mated to more dams, and each dam has more than one offspring. Hence, we have full 
sib families within half sib families and we can make groups of sire and dam groups, but 
dams are different for each sires. (This is called a Nested or Hierarchical design: dams are 
nested within sires). 
 
      S1 
 
 
 
 
  D  D  D  D 
 
 
 
   P P P P P P P P … 
 
 
In the analysis we don’t have two, but three variance components: the variance between sires, 
the variance between dams (within sires) and the variance within dams (within full sib 
families). This example gives the following table: 
 
SOURCE EXPCTED MEAN SQUARE 
Sires σw

2 +8σd
2 + 32σs

2 
Dams  σw

2 + 8σd
2 

Progeny  σw
2 

Note: 8 progeny per dam 
32 progeny per sire 

 
And the expected value of the variance components is: 
 

Variance due to Component Expectation/ interpretation 
Sires  σS

2 ¼VA 
Dams within sire  σd

2 ¼VA + ¼VD + VEc 
Progeny within dam  σW

2 ½VA + .75VD + VEW 
Total σp2 VA + VD +VEc + VEW 

Sires + dams σS
2 + σd

2 ½VA + ¼VD + VEc 
 VA = Additive genetic variance 
 VD = Dominance variance. 
 VEc = Common environmental variance for full sibs 
 VEw = Environmental variance specific for each individual 
 
The intraclass correlation between full sibs is the between group (full sib family) 
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tFS =
σ̂ s
2 + σ̂ d

2( )
σ̂ p
2 =

1
2 V̂A + 1

4 V̂D + V̂Ec
V̂P

≥ 1
2 h2    So h 2t2

FS≤  

 
Since full sibs have more in common that just genetic effects, their intra-class correlation will 
overestimate heritability. Only the half-sib correlation can give an unbiased estimate of 
heritability, since that contain genetic effects only. 
 
Assumptions in such ANOVA estimates of heritability: 
1.Randomly chosen sires: 

Since the estimate is based on the variance among sires. The variance among a 
selected group of sires will be smaller. An estimate of heritability based on progeny of 
selected sire will be biased downward. 

2.Randomly allocated dams 
3. Equal environment for each progeny group 
 
 
Estimation of Heritability - by Regression 
 
1. Regression of offspring on one parent 
 
What is the covariance between the performance of a sire, and the performance of its 
offspring? 
We expect there will be some covariance, because a sire and its offspring are genetically 
related. Of all the variation we observe between performances of sire (i.e. the phenotypic 
variance) we expect the sire only to transfer its genetic effects to its offspring. The random 
environmental effects of the sire and the offspring are assumed unrelated. Since the sire has 
only half of its genes in common with its offspring. Therefore, the theoretical expectation 
between performances of sires, and performances of their offspring is expected to be equal to 
half the additive genetic variance. The regression of the performances of offspring on 
performances of their parents is therefore. 
 
 

Regression of offspring on parent: bOP =
Cov parent,offspring( )

Var(parent)
=

1
2VA
VP

= 1
2 h2  

 
Therefore, if we calculate the regression of offspring on parents, we know that, based on our 
quantitative genetic model, this regression should be equal to ½h2. We can use this knowledge 
to estimate heritability based on data. We can also use it to predict differences between 
offspring of two parents. If the parents differ an amount of 40 (say in mature weight) we 
expect their offspring to differ an amount to ½h2* 40. 
 
The regression of performance of offspring on performance of parent is equal to ½h2 
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10 USE OF INFORMATION FROM RELATIVES 
 
Introduction 
If we want to select the best from individuals of a population in order to achieve genetic 
improvement, it is important that we are able to rank these individuals based on expected 
genetic merit. Such an estimation of breeding value can be based on individuals' own 
phenotype, as we saw in chapter 4. However, generally we have more information available. 
 
We expect a bull to be genetically good also if it is an offspring from a very good sire or dam 
(remember the expected value of progeny was equal to the average breeding value of the 
parents). In addition, if a bull has good performing sibs, or very good offspring, we tend to 
give more credit to its breeding value. In general, we can use information from genetically 
related animals to estimate breeding values. It is not instead of own phenotype, but additional 
information. 
 
The problem is then to determine how important a good own phenotype is in relation to good 
phenotypes of related animals. If a trait can be measured on one sex only, we can not use own 
information at all. Again, we can rely on sibs, but a common source of information about an 
animal's EBV is also to test a number of its progeny. 
 
In this chapter we will analyse when relatives' information can be important, and how it can 
be used in estimating breeding value. We will particularly consider information from sibs and 
information from progeny. 
 
Principle of estimation of breeding values 
 
We would like to rank and select animals on their true breeding values (TBV' or A) but we 
don’t have this perfect knowledge- we can not see genes and breeding values. Instead, we 
must use observed phenotypes to get estimated breeding values (EBV's or A), and accept a 
slower rate of selection response. 
 
ESTIMATED BREEDING VALUES-EBV's are estimating TRUE BREEDING 
VALUES using phenotypic information 
 
The most obvious piece of phenotypic information we can use to estimate an animal's 
breeding value is the animal's own phenotype. We saw in chapter 4: 
 
A h Pi

2=  Note that P (P P)i= − , a deviation. 
 
The principle of breeding value estimation is based on regression. We want to know how 
much better a breeding value is when we observe a certain phenotypic difference. If we 
regress the breeding values on phenotypic observation, the slope of the regression line tells us 
how much difference we have in breeding values per unit of difference in phenotype. This 
slope is equal to the heritability. Using quantitative genetic theory: 
 

b Cov(x,y)
var(y)xy = which is now equal to Cov(P,A)

Var(P)
Var(A)
Var(P)

h2= =  

 
recalling that cov(P,A) = cov(A + E,A) = cov(A,A) = var(A). 
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But by how much? 

In Flock 1, the reference sire’s progeny are worse than Flock 2 sire’s progeny by 
0.5 kg. Assuming many progeny, the reference sire’s breeding value inferiority 
must be twice this, because of the diluting effect of ewe mates of equal merit. So 
the reference sire is 1kg genetically inferior to Flock 1 sires, and by a similar 
argument, he must be 1kg genetically superior to Flock 2 sires. Thus, if the flock 
sires are representative of their flocks ( or if they are equally selected) then Flock 
1 is 2kg genetically superior to Flock 2. Given the observed average merit of the 
flocks, the flock 1 environmental effect must be 2.5kg below that of Flock 2. 

 
BLUP can both calculate and use this information automatically whenever there are 
such genetic linkages available – i.e. whenever relatives are spread across different 
groups. 
 

3. BLUP gives genetic trends. The approach used in the last example could be used to test the 
genetic differences between animals born in different years, instead of different flocks. 
This ability to compare the EBV’s of animals born and measured in different years 
means that a year mean EBV’s can be calculated and genetic trends reported. Here is an 
example from Ojango and Pollot (2001) for the Kenyan Holsteins. 

 

 
 

4. BLUP can handle unbalanced designs easily. A selection index using sib information 
faces the problem that each candidate does not have the same number of sibs (n):  

 
Index =  b P   +   b P   ...from lecture on using sib informationf f w w  

 
The weight for the family information (bf) depends, besides on heritability and the type 
of family, also on the number of individuals in the family. 
 
One solution is to construct an index for each number of sibs involved – but if progeny 
information is available the same problem exists … BLUP handles this imbalance 
automatically by constructing a custom selection index for each animal. BLUP only 
needs to report the EBV’s (Â’s) and not the index weights (b’s). 
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of a single additive genetic effect, two different models can be distinguished: sire model and animal 
model. In a sire model only the additive genetic effects of the sires of each individual are considered. 
With such a model breeding values for only sires can be estimated. With an animal model, breeding 
values for all individuals can be estimated.  
 
The model to describe the observations contains fixed effects for the environmental factors and 
random effects for the genetic effects. The model contains both fixed and random effects and is, 
therefore, referred to as a mixed model. In matrix notation, a mixed model can be expressed as 
follows: 
 
y = X b + Z g + e          
 
where, y vector with n observations (n*1), 
 b vector with f fixed effects (f*1), 
  g vector with s random effects (s*1),  
  e vector with error terms (n*1), 
  X incidence-matrix indicating for each observation the fixed effects by which it 
is influenced (n*f), 
 Z incidence-matrix indicating for each observation the random effects by which it is 
influenced (n*s). 
 
In brackets the size of the matrices and vectors is given where: 
 n= number of observations 
 f= number of fixed effect classes (sum over all factors) 
 s= number of animals for which breeding value has to be estimate. 
 
 Write down the set of so-called least squares equations corresponding to the model 
In setting up the least squares equations, all effects in the model (b and g) are treated as fixed effects. 
In matrix notation the least squares equations are: 
  

 
X Z

X Z
      =    

y

y
 

′ ′

′ ′
⎡
⎣⎢

⎤
⎦⎥
⎡

⎣
⎢

⎤

⎦
⎥

′

′

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

X X

Z Z

b

g

X

Z 	
   	
  
where X, Z, b, g and y are as defined above. 
 
Let us look at this expression in more detail. The matrix X relates each observation to fixed effect 
classes. In case we have only one fixed effect with several classes, the matrix X'X contains the number 
of observations in each class at the diagonal and zero elsewhere. With more than one fixed effect the 
diagonal element still contains the number of observations but the off-diagonal elements are no longer 
all equal to zero. They represent how observations for one class of a fixed effect are distributed over 
the classes for the other fixed effects. In other words, X'X contains information on number of 
observations for each fixed effect class. Z'Z is a diagonal matrix which contains information on the 
number of observations for each class of g. The matrix X'Z (and its transpose Z'X) contains the 
number of observations for all combinations of classes of b and g. 
 
The size of the matrices can be derived from the size of X and Z which are (n*f) and (n*s), where the 
first number represents the number of rows and the second the number of columns. Let us look at the 
size of X'Z: this is the product of a matrix (transpose of X) with f rows and n columns (f*n) with a 
(n*s) matrix. The result is a (f*n)x(n*s)=(f*s) matrix. (Note: matrices can only be multiplied when 
number of columns in first matrix is equal to number of rows in second matrix). The vector X'y 
contains the sum of the observations in each class in b and Z'y contains the sum of observations for 
each class in g. 
 
 Transform the least squares equations into mixed model equation   
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In the least squares equations we have not used information on the heritability of the trait or on genetic 
relationships between animals. To include this information, the part of the left-hand sides of the 
equations that relates to the genetic effects has to be modified. This modification, which involves 
adding an additional matrix, depends on: 
a) the model (animal or sire);  
b) whether or not relationships between animals have to be taken into consideration; 
c) heritability of the trait. 
 
For now we look at a sire model without relationships between sires. Later on the other options will be 
described. The mixed model equations for a sire model without relationships between sires is: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

′

′
⎥
⎦

⎤
⎢
⎣

⎡
⎥⎦
⎤

⎢⎣
⎡

′′

′′
	
  
y

y
	
  	
  	
  =	
  	
  	
  	
  	
  	
  

+ZX

ZX
	
  

Z

X

g

b

IZZ

XX

α
 	
  

  
where I is the identity matrix and α is 2

eσ /σs
2=(1-¼h²)/(¼h²). In words: from the least squares 

equations we can get the mixed model equations by adding α to the diagonal elements for the sires. 
The term α represents the variance ratio of the error in the model and the genetic effect in the model. 
The genetic effect in the sire model is the sire's transmitting ability (si) which is equal to half the 
additive genetic effect of the sire (ai). The half results from the fact that the sire only contributes 50% 
of the genes of the animals on which we have the observations. The variance of the sire effects is: σs

2

=var(si)=var(½ai)=¼var(ai)=¼ 2
aσ =¼h2 2

pσ Consequently, the variance of the error term in the model 

( 2
eσ ) is equal to: 2

pσ -σs
2= 2

pσ  - ¼ 2
aσ =(1-¼h2) 2

pσ . By adding αI to the Z'Z and solving the equation 
we get BLUP estimates for sires. In principle the effect of this modification is to change the estimate 
of a sire from a mean of daughter performances (adjusted for fixed effects) to a 'regressed' mean as is 
also the case with a selection index. In other words, adding α to the appropriate diagonal coefficients 
has an effect analogous to multiplying the mean of daughter performances (adjusted for fixed effects) 
by the appropriate selection index weighting factor. 
 
 4) Obtain estimates 
Estimates for all effects can be obtained by solving the mixed-model equations: 
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In this case of a sire model contains estimates for the genetic effect transmitted by the sire to its 
offspring, which is also referred to as estimated transmitting ability (ETA). The estimated transmitting 
ability is half the breeding value of the sire. With an animal model, breeding values (and not 
transmitting abilities) are estimated for all animals (sire, dams and offspring). 
Note: When there is more than one fixed effect in the model, restrictions have to be used to avoid that 
the matrix is singular, in which case the generalized inverse rather than inverse of the left hand sides 
should be used. 
 
 
Example: 
We have observation on milk production of cows measured on two different herds. All productions 
were observed in the same year and all cows had the same age. The cows were progeny of 3 different 
sires. The objective is to estimate the breeding value of these sires using a sire model. The following 
data are available: 
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Deviations from Hardy Weinberg in an inbred population (for single locus –2 allele model) 
Genotype HW-equilibrium (Non-inbred) Inbred population 
A1A1 P2 P2 + pqF 
A1 A2 2pq 2pq(1-F) 
A2 A2 q2 q2 + pqF 
Allele Frequency A1 p p 

 
An individual with an inbreeding coefficient F has therefore F % less heterozygosity. 
In the following paragraph we see that this has negative consequences, for example in case of 
genetic defects. 
§ Inbreeding is temporarily. It is a configuration of genotype frequencies that typically has 

more homozygotes (of either kind). However, as soon as different inbred strains cross, the 
inbreeding is completely disappeared. 

§ Of course, if we had no 'other' lines, an inbred populations might fix its genes due to drift 
(or due to selection if selected), thereby loosing its genetic variation. In that case, 
inbreeding is not so temporarily. 

 
Consequences of Inbreeding 
 
Why is inbreeding bad? 
 
1) Increased frequency of affected individuals due to genetic defects' 
Inbreeding increases the frequency of homozygotes. This is a disadvantage, since many 
mutations that occur have a negative effect, but luckily they are usually recessive (otherwise 
they might not have survived).The effect of deleterious recessive alleles comes only to 
expression in homozygotes (carrying two copies of the recessive allele). 
 
This is applicable to genetic defects, which are usually due to recessive alleles in small 
frequencies. If the frequency of the recessive allele is q, than in a non-inbred population, the 
probability of being an affected individual is q2. An inbred individual would have a 
probability of q2+pqF. 
 
Let q be equal to 1 %. We have then 
                                      Probability of being affected 
Normal individual:                       1   in 10,000 
Inbred individual (F=0.125)         13.4 in 10,000 
                                  Hence a large increase! 
 
2) Inbreeding depression  
The effect of increased frequencies of individuals that are homozygous for negative recessive 
effects translates for quantitative traits, regulated by possibly many genes, into inbreeding 
depression. Increased homozygosity means most traits are depressed by between 2% and 7% 
per 10% increase in F. 
 
Since we observe the phenomena only for alleles that are recessive, we should observe 
inbreeding depression only for traits that show dominance. Those are typically traits that 
relate to fitness and reproduction. 
 
Inbreeding depression is a 'mirror image' of heterosis, the first is due to a shortage of 
heterozygotes, the second due to an excess of heterozygotes. Heterosis if more distant line or 
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ΔF
Ne

= 1
2

 

 
 

 
EXAMPLE 
           What is F after 20 years' breeding on the following structure? 
 

AGE 2 3 4 5 6 
RAMS 1 1    
EWES 20 20 20 20 20 

 
Lm =2.5  L =3.25 years 
Lf =4 
 
Nm =1 x 3.25 = 3.25 males entering the flock per generation. 
Nf =20 x 3.25 = 65 females entering the flock per generation. 

N 4N N
N N

845
68.25

12.38e
m f

m f

=
+

= =  

 
F20years = F20\3.25gens = 1- [1-1/(2x12.38)] 20\3.25 

 
F20years = 0.224     which is probably unacceptable – but you need to look at response to 

selection together with this when looking for the best overall strategy. 
Also, a flock is unlikely to remain fully closed for 20 years. 

 
Alternative strategy: Use only 4 new rams each year: 

AGE: 2 3 4 5 6 
RAMS 4     
EWES 20 20 20 20 20 
 
Lm =2  L =3 years 
Lf  =4 
 
Calculation  
Lm =2, Lf =4, L = 3 
Nm. = 4 x 3 = 12, Nf = 20 x 3 = 60, Ne = 40 
F20yrs = 0.0804 which is probably acceptable. 
 
NOTE: 

As Ft = 1− 1− 1
2Ne

⎡

⎣
⎢

⎤

⎦
⎥

t

 

Ft can only approach unity. For the previous example, F = 0.5 is reached in about 166 years.  

Please note: this prediction of inbreeding only holds for the case of no selection and 
random mating. In reality, there is selection going on in breeding programs and the 
inbreeding rate can be a multiple of the one predicted with the no-selection 
assumption. 
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 Heterosis expressed in established 
 rotations with n breeds 
 contributing equally is 
 

  2 2
2 1

n

n
−
−

 

 
 From this it can be shown that 
 rotational crosses express more 
 heterosis than synthetics which 
 use the number of breeds 
 
 
 
 
 
 
 
 
 
 
 
 
Calculating predicted merit in crossbreeding systems 
 
EXAMPLE: Yearling weight in cattle, three parental breeds: 1, 2 and 3. Hypothetical values 

of the following parameters: 
 
Direct additive effects Ad1, Ad2 and Ad3. The expression of this is equal to the proportion of 

genes from each breed. 
 
Maternal additive effects Am1, Am2 and Am3. These relate to dam genotype, and are probably 

caused by milk production and rearing ability. Note that these effects add to zero- they 
describe the relative maternal performance of each pure breed. 

 
Direct dominance effect Dd. this is the effect of heterosis in crossbred individuals, when fully 

expressed as in an F1 cross. 
 
Maternal dominance effect Dm. this is the effect of heterosis due to crossbreeding in the dam, 

when fully expressed as in an F1 dam. 
 
 
 
 
 
 
 
 

A   x    B 
 
 
B    x      AB 
 
 
 
 A  x  A1/4 B3/4       
 
 
 
B  x   A5/8  B3/8 
 
 
 
A  x  A5/16  B11/16 
 
 
 
A  x     A1/3  B2/3 …giving 2/3 heterosis 
 
 
B  x     A2/3 B1/3       …giving 2/3 heterosis 
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3. If lower tiers buy from the average rams (and no ewes) from the tiers above, they will lag 
behind the tier above by 2 generations (about 7 years in sheep) of selection response 
(Bichard, 1971). 

 
Figure 2. Selection response in a 2-tier closed nucleus scheme. The base lags about 2 generations behind the 
nucleus. Any selection effort in the base needs to be maintained just to keep a non-increasing advantage. 
Opening the nucleus will give more sustained returns from selection in the base.  
 
Open nucleus breeding schemes 
Stock in the base tier(s) can have higher EBV’s than nucleus stock that would have otherwise 
been selected. This is most true for animals of low fecundity, such as ewes. 
 
These high- merit base ewes can be migrated up to be bred in the nucleus, giving an open 
nucleus scheme. This pushes the nucleus to progress more quickly and this benefits the whole 
scheme as the base will move as fast as the nucleus after things have settled down. Overall 
response in open 2-tier schemes is 10 – 15 % faster than in closed schemes when optimal 
design is applied: about 10% of the population in the nucleus and about 50% of nucleus mated 
ewes born in the base (James, 1977). 
 
Different measurement strategies in nucleus and base 
 
A major use of nucleus schemes is to avoid or reduce measurement costs in lower tiers. 
Increased (or decreased) accuracy can be got by measuring more (or less) traits as selection 
criteria for index or using more (or less) information from, relatives. As rAA  increases, σ A

 
increases (σ A

= rAA σ A ), and the distribution of EBV widen as shown in figure in the next 
page. 
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The classic approach to calculating economic weightings is economically rationale – it takes 
no account of genetic parameters.  This makes sense in that the value of making a unit change 
in a given trait should not be influenced by how difficult it is to generate this change.  These 
difficulties can be handled appropriately at the genetic evaluation phase.  In this setting, 
breeding objectives should reflect the costs and returns involved in a production system, and 
should not consider costs and gains generated in a breeding programme.  
 
A simple example 
A very simple breeding objective is presented here.  The reader is directed to Ponzoni (1988) 
for a comprehensive worked example.  The key tactical objective of a selection programme is 
to choose animals of high breeding value to be used as parents.  An animal’s breeding value 
(A) is the value of its genes to its progeny.  The breeding objective is simply a multi-trait 
breeding value, with each trait weighted by a relative economic weight, for example: 
 
Breeding objective:  6 x fleece weight  +  -1 x Fibre diameter 
Units = KSh    KSh /Kg.  Kg  +     KSh/µ . µ   
 
In order to combine different traits into such a single soccer they have to be converted to a 
common scale. This is generally dollars or some other monetary unit.   The economic weights 
in this simple example are taken to have been calculated from market prices of KSh 6 per 
kilogram of wool and - KSh1 per micron for an average fleece.  The units of expression are 
thus dollars [per unit (kg or u)] per head shown.  Note that these weights involved no 
consideration of genetic parameters. 
 
Units of expression  
All economic weightings in a breeding objective should have the same basis for units of 
expression, such as ‘KSh per head shorn’ as used above.  Choice of this basis can have an 
important influence on the consequences of using the breeding objective. 
 
A simple basis for unit of expression, such as dollars per head shown can be used for 
situations in which all traits are directly related to economic costs or returns, and thus 
excludes reproductive traits, whose effect is at least partly manifested through progeny. 
 
A less simple basis is ‘dollars per breeding ewe per year’, which accommodates both 
production and reproduction traits.  In all cases, each trait should use this same basis, such 
that an objective might be for example: 
 
KSh 7.20 per kg per breeding ewe per year x clean fleece weight 
+ KSh -120 per micron per breeding ewe per year  x Fibre diameter  
+ KSh 7.20 per lamb weaned per breeding ewe per year  x Number of lambs weaned 
 
This means that in a flock of 150 breeding ewes, a marginal increase of 1kg in clean fleece 
weight would increase profit by KSh7.20 x 150 = KSh1,080 per year.  This accommodates 
wool shorn form all classes of stock, through the way in which the economic weight is 
calculated.  The economic weight for an increase of one lamb weaned is more difficult to 
calculate, due to expression via progeny, but in this case it is the same as for clean fleece 
weight.  Delays in returns due to expression in progeny can be accommodated by considering 
the pattern of flow of genes through the population, and discounting future returns to give 
current values (McClintock and Cunningham, 1974). 
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