MODULE 1: ORGANIZATION AND ARCHITECTURE

UNIT 1: COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT 2: INSTRUCTION SETS CHARACTERISTICS AND
FUNCTIONS

UNIT 3: TYPES OF OPERANDS

UNIT 1
1.0INTRODUCTION
2.00BJECTIVES
3.0MAIN CONTENTS
3.1COMPUTER ORGANIZATION AND ARCHITECTURE
3.2STRUCTURE AND FUNCTION
3.3COMPUTER COMPONENTS
4.0CONCLUSION
5.0SUMMARY u\k
6.0TUTOR MARKED ASSIGNMENT \e ‘CO *

7.0REFERENCES/FURTHER READ étesa

1.0 INTRODUCT! r((Om A l%G
In spitegskf\e' lety and c%ch%ge in tbenputer field, certain
ta

fu@a I concepP@p consistently throughot. be sure, the
application of these concepts depends on the dustate of technology and
the price/ performance objectives of the designer.

Many computer manufacturers offer a family of cotapumodels, all with the
same architecture but with differences in orgaroratin a class of computers
called microcomputers, the relationship between #rehitecture and
organization is very close. Changes in technologt anly influence

organization but also result in the introductionnebre powerful and more
complex architecture. However, because a computgan@ation must be

designed o implement a particular architecturalcgjpation, a thorough
treatment of organization requires a detailed eration of architecture as
well.

2.0 OBJECTIVES

At the end of this unit you should be able to:

. Explain the operational units of a computer system.

. Outline types of operands and operations specific hbachine
instruction.

. Explain opcodes, operands and addressing modes

3.0 MAIN CONTENT

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE

Although it is difficult to give precise definitigra consensus exists about the
general area covered by it. Computer organizatefars to the operational
units and their interconnection that realize theh#ectural specification.
Examples of architectural attributes include th&rimction set, the numher of
bit used to represent various data types (e. g ewsnlchar \“O
mechanism, and techniques for addressing me gattrlbutes
include those hardware details trarﬁ &%mer such as control

signals; interfaces between tlﬁb@ en;ﬁ%@wemory technology

used.

e\N
P(S%\U,C\:TURE A a%ﬂON

A computer is a computer system, contemporary coenpicontain millions
of elementary electronic components.

. Structure: The way in which the components are interrelated.
. Function: The operation of each individual component as pathe
structure.

In term of description, there are two choices: tetgrat the bottom and
building up to a complete description, or beginningh a top view and

decomposing the system into its subparts. Evidémee a number of fields
suggest that the top down approach is the cleanesimost effective.
The approach taken is that the computer be descfiben the top down.

Both the structure and functioning of a computes ample. Figure 1.1

depicts the basic functions that a computer cafoper In general terms,

there are only four:

- Data processing

- Data storage

- Data movement

- Control

The computer of course, must be able to process dae data may take a
wide variety of forms, and the range of processeguirements id broad. It is
also essential that a computer store data. Evéreitomputer is processing
data on the fly (i.e data come in and get processwtlthe results go out
immediately) the computer must temporarily stordeast. Thos p@\‘,of
data that are being worked on at any given mon’n‘elﬁs\o@a Stored on
the computer for subsequent retrleval a

The computer must b ve ?lweeif #s outside
world. The compute 'ﬁKeQ &% evices that serve as
either \Nestlnan f data. When data raceived from or

@&e?to a device Qt%%y connectethtocomputer, the process is
known as input- output (I/0O), and the device ieredd to as a peripheral.
When data are moved over longer distances, toran Boremote device, the
process is known as data communications. Findllgret must be control of
these three functions. Ultimately, this controkisercised by the individuals
who provide the computer with instructions. Withihee computer a control
unit manages the computers resources and orclesstrat performance of its

functional parts in response to those instructions.
There are four main structural components

- Understand the way in which numbers are represe(itesl binary
format) and the algorithms used for the basic amittic operations (add,
subtract, multiply, divide) both to integer andailmg point arithmetic.

3.1THE ARITHMETIC AND LOGIC UNIT
The arithmetic and logic unit (ALU) is that part thle computer that actually
performs arithmetic and logical operations on dathof the other elements
of the computer system- Control unit, registers mmgml/0- are there mainly
to bring into the ALU for it to process and thekedhe result back out.

An ALU and all electronic components in the compsitere based on
the use of simple digital logic devices that caresbinary digits and perform
simple Boolean logic operations.

Figure 3. 1. 1 indicates, in general terms, howAh¥ is interconnected with
the rest of the processor. Data are presentecet@\lth) in registers and the
results of an operation are stored in register@sé&lregisters are temporary
storage locations within the processor that areeoted by signal khe
ALU. The ALU may also set flags as the result o rd I éxample,
an overflow flag is set to 1 if the resul{ o) ceeds the length of
the register into which it is t %&Q

Wre also stored in
registers within t }j\ﬁrﬁcﬁg he centr, &1& signals that control
th@ o%eéWr\e LU a@@ ment of theadato and out of the

3.2 INTEGER REPRESENTATION
In the binary number, arbitrary numbers can beesmted with just
the digits zero and one the minis sign and theogesr radix point.
-1101.010%=-13.3125¢
For purposes of computer storage and processiwgg\Ver w do not have the
benefits of minus signs and periods. Only binagitdi(0 and 1) may be used

to represent numbers. If we are limited to non tiegaintegers, the
representation is straight forward.
An 8 bit word can represent the numbers form 06, thcluding

00000000 = 0
00000001 = 1
00101001 = 41
10000000 = 128
11111111 = 255
In general, if an n- bit sequence of binary digits Is interpreted as an
unsigned integer, A it value is
A= n-1
22i ai
2=0

In going from the first to the second equation, meeguire that the least
significantn - 1 bits do not change between the two representatidimen we
get to .-next to last equation, which is only triiall of the bits 6pc€§|
throem2 are 1. Therefore, the sign-extension rule 50\

Fixed-point representation

Finally, we mention that th Mﬂons m this section are

sometime referre \1\!) al radix point (binary
pomt&ﬁ med é right of thghtmost digit. The
er can us gresentatlon for binagtibms by scaling the

numbers so that the binary poor implicitly posiBdrat some other location.
Negation

In sign-magnitude representation, the rule for fagnthe negation of an
integer is simple: invert the sign bit. In twos qdement notation, the
negation of an integer can be formed with the faihg rules:

Take the Boolean complement of each bit of theget (including the sign
bit). That is, set each 1 to 0 and each 0 to 1.

Treating the result as an unsigned binary intesy,1.

(MAR) because this is only register connected t® #ddress lines of the
system bus. The second step bring in the instmicibe desired address (in
the MAR) is placed on the ad c== -

The IR is now in the same state as if indirect agsing had not been
use and it is ready for the execute cycle. We giap cycle for a moment, to
consider t interrupt cycle.

At the completion of the execute cycle, a test alento determine whether
any :-_abled interrupts have occurred. If so, thernujgt cycle occurs. The
nature of cycle varies greatly from one machinanother. We present a very
simple sequeof events, as illustrated in Figur&.1\2/e have

t;: MBR E- (PC)

t,, MAR F- Save Address PC F-

Routine Address 3t Memory E-

(MBR)
In the first step, the contents of the PC are feared to the MBR, so that u-
can be saved for return from the interrupt. Then MAR is loaded with the
add- .at which the contents of the PC are to bedsaand the PC is loaded
with the add to the MAR and PC, respectively. Iy aase, once this is done
the final step is to store the MBR, which contdims old value of th
memory. The processor is now ready to begin thE|nebr é
The fetch, indirect, and interrupt cycl predlctable Each
involves a small, fixed seque %i “oper

e%@ each case, the
same micro- operat \&1 a‘e(r ted e aartl ‘%K

This i the ex Becaus@eiariety opcodes, there

lﬁer of differ @c@nces of micro-ojpersthat can occur. Let us

conS|der several hypothetlcal examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to regidRl. The following
sequence of micro-operations might occur:

We begin with the IR containing the ADD instructidn the first step, the
address portion of the IR is loaded into the MAReit the referenced memory

37

Tntel 8085 External Signals

\9(%.&

Address and Data Signals

High Address (A15-A8)
The high-order 8 bits of a 16-bit address.

Address/Data (AD7-AD0)
The lower-order & bifs of a 16-bit address or 8 bits of data. This multiplexing saves on pins.

Serial Input Data (SID)
A single-bit input to accommadate devices that transmit serially (one bit at a time).

Serial Untput Data (SOD)
A single-bit output to accommodate devices that receive serially.

Timing and Control Signals

CLK (OUT)
The, system clock. The CLK signal goes to peripheral chips and synchronizes their timing.

X1, X2 :
These signals come [rom an external crystal or other device Lo drive the internal clock generator.

Address Latch Enabled (ALE)
Oceurs during the first clock state of a machine cycle and causes pbrlpheral chips to store the address lines.
. Thig allows the address module (e.g.. memory, T/0) o recognize that it is being addressed.

btams {80, 81)
Control signals used to indicate whether a read or wrile operation is taking place. K

Used to enable either FO or memory modules for read and wrile ope t1 .

ﬁead Control (RD)

..... Indicates that the se}ected mMEemory or i/()ﬁb&@ﬁ;ﬁ !at the data bus is available for data

transfer. 6
Wﬂie Control (WR) Q 5 %
Indxcates thqa O x uﬁ‘m to be 3;1 1 sele memory or [/O location.

() Initiated Symbols

Requests the C R relinquish control and use of the external system bus. The CPU will complete

_ exceution of the instruction preseatly in the IR and then enter a hold state, during which no signals are
inserted by the CPU to the control, address, or data buses. During the hold state, the bus may be used for
DMA operations.

Hold Acknowledge (HOLDA)
This contral unit output signal acknowledges the HOLD signal and indicates that the bus is now
available.

READY

UJsed to synchronize the CPU with stower memeory or I/O devices. When an addressed device asserts
READY, the CPU may proaed with an input (DBIN) or output (WR) operation. Otherwise, the CPU enters
a wail state until the device is ready.

(Continued)

43

.
D.wawwﬁ 1010 S808 [31U] 10 WesFer(] SunuLy, §'ST 1150
(

e — aumndimg \l\Lﬁ\\\ pral AIOWRA r 013 UOTONNSU] ||\74

-
L)
0d <-—— ¥ MOZM | M Zeakapd T +0d 10Dd A) [fmy»ipast+od w0 3q |

S l : /I W/0L
=
O

/] \ Q,

\\|||||/ 1|/
7 L @
__/ _/ R
WNDOY Lgpmzbix arsiy Y-—-~ HISNI y-fp-----=-- 1SN - g H oV — Lav

NOd o1 Hog . LA S a VA sy _ Sy
r\l/(l\|/,|\|/ ,l\.) (|\|/ ,|\|/ ,l\l./ /||Q>,J|\|/ /l\l./ N 10 ZHIE

47

addressed memory module places the contents ofaddeessed memory

vocation on the address/data bus. The controlsaté the Read Control (RD)
signal to indicate a read, but it waits untiltd copy the data from the bus. This
gives the memory module time to put the data onbiie and for the signal

levels to stabilize. The final statey, Tis a busidle state during which the

processor decodes the instruction. The remaininchime cycles proceed in a
similar fashion.

Finally, consider a subroutine call instruction. #&s example, consider a

branchand-save-address instruction:

BSA X
The address of the instruction that follows the Bi@étruction is saved in
location X, and execution continues at location X ¥he saved address will
later be uses for return. This is a straightforwsedhnique for providing
subroutine calls. The fo=lowing micro-operationffisa: \.)

t, MAR E- (IR(address)) MBR ~- \e _CO *

(PC) esa

,; PC <-- (IR(ader <-- 86
(MBR) l

The SA((f the instmiags the address of the
nexetmgon in sequ a@ Is saved at tliresd designated in the IR.
The lateeaddress is also incremented to providexdideess of the instruction
for the next it - struction cycle.
We have seen that each phase of the instructida cgo be decomposed into a
sequence of elementary micro-operations. In oum@i&, there is one sequence
eac= for the fetch, indirect, and interrupt cyclasd, for the execute cycle,
there is one sequence of micro-operations for epchde.

To complete the picture, we need to tie sequenicesopno-operations to-
gether, and this is done in Figure 15.3. We assamew 2-bit register called

48

theinstruction cycle code (ICC). The ICC designates the state of the processor
in terms of which portion of the cycle it is in:

00: Fetch 01: Indirect

10: Execute 11:

Interrupt

At the end of each of the four cycles, the ICCdt appropriately. The
indirect cycle is always followed by the executeley The interrupt cycle is
always followed by the fetch cycle (see Figure L2Fbr both the fetch and
execute cycles, the next cycle depends on thedt#te system.

Thus, the flowchart of Figure 15.3 defines the clatep sequence of
microoperations, depending only on the instrucgequence and the interrupt
pattern. Of course, this is a simplified examplée Tlowchart for an actual
processor would be more complex. In any case, we teached the point in
our discussion in whic?, the operation of the pssoe is defined as the
performance of a sequence of microoperations. \Menoa consider how the

control unit causes this sequence to occur. O \.)\4

56-
of tbp ~~r of the mterrupt proc gNQe e ns may each be
- single mlcro 0 wever, %sthssors provide

multi Ievels 9 it ma;ke one or more additional

r@rig rations o @ave Address and thdif® Address before
they can be transfer the events of any instruatiarle can be described as
a sequence of such micro operations. A simple elamitl be used. In the
remainder of this chapter, we then show how theceph of micro-
operations serves as a guide to the design ofathieat unit.

49

THE FETCH CYCLE

We begin by looking at the fetch cycle, which oscat the beginning of
each instruction cycle and causes an instructiorbg¢ofetched from
memory. Four registers are involved:

* Memory address register (MAR): Is connected to the address lines of
the system bus. It specifies the address in meruorg read or write
operation.

* Memory buffer register (MBR): Is connected to the data lines of the
system bus. It contains the value to be stored emary or the last
value read from memory.

» Program counter (PC): Holds the address of the next instruction to be
fetched.

* Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetathe from the
point of view of its effect on the processor regjist An example appears
in Figure 3.1.2. At the beginning of the fetch eycthe a@s@

in this

next instruction to be executed is in the pro @r
case, the address is 1100100. TI?N that address to the
memory address regls

thy a@egister
connected to gf[a Ilnes g ég :r)mes s€cond step is to
ti

érﬁ ction. @@e address lim MAR) is placed on
ress

MAR MAR 0000001100100
MBR 7 MBR
PC| 0000000001100100 ¢ PC| 00000060001100100
IR R
AC AC
(a) Beginning (before t) (b) After first step
MAR | 0000000001100100 MAR | 0000000001100100

MBR | 0001006000100000 |
PC| 06000000601100101 | PC| 0000000001100101

MBR | 0001000000100000

R
AC

(c) After second step (d) After third step

50

3.2 CONTROL OF THE PROCESSOR
As a result of our analysis in the preceding sactize have decomposed the behavior or
functioning of the, processor into elementary op@na, called micro-operations. By
reducing the operation of the processor to its gtamental level, we are able to define
exactly what it is that the control unit must catisehappen. Thus, we can define the
functional requirements for the control unit: those functions that the cohunit must
perform. A definition of these functional requirem is the basis for the design and
implementation of the control unit.

With the information at hand, the following threefs process leads to a char-
acterization of the control unit:

1. Define the basic elements of the processor.
2. Describe the micro-operations that the processdopns.
3. Determine the functions that the control unit mpetform to cause the micro-

operations to be performed.
We have already performed steps 1 and 2. Let usnsuize the results. First, the basic
functional elements of the processor are the fotigw
. ALU

. Registers 5
o MO

. Internal data paths, E

paths . e\N "(ﬁWBB O“
ey eag®

Some thought sh I(a' ince you that this is i piete list. The ALU is the

functional essence of the computer. Registers aesl U0 store data internal to the
processor. Some registers contain status informatieeded to manage instruction
sequencing (e.g., a program status word). Othermirodata that go to or come from the
ALU, memory, and I/O modules. Internal data paths ased to move data between
registers and between register and ALU. Externt gdaths link registers to memory and
1/0 modules, often by means of a system bus. Tinkralounit causes operations to
happen within the processor.

56

output would feed back to the input. Register Zvptes temporary output storage.
With this arrangement, an operation to add a vélaemm memory to the AC would
have the following steps:

1t MAR <«— (IR (address))

2 MBR «— Memory

ta: Y «— (MBR)

b: VA — (AC) + (Y)

& AC «— (2)

Other organizations are possible, but, in gena@he sort of internal bus or set
of internal buses is used. The use of common daitaspsimplifies the interconnection
layout and the control of the processor. Anotheacpcal reason for the use of an
internal bus is to save space.

To illustrate some of the concepts introduced tfawsin this unit, let us consider the

Intel 8085. Its organization is shown in Figure.8.2Several key components that may
not be self-explanatory are:

X Incremental decrementer address IatchLogic t erlgdg)l'to or subtract 1
from the contents of the stack m:er. This saves time by

avoiding the use of the A ﬁrﬁrpose

Interrupt cont LW

§N e%‘g It| $ve|s of interruigtnsils.
éen%\u) o) Th|s @@ faces to devices that communidalbét at

X/
0.0

X/
0.0

Table 15.2 descrlbes the external signals intocaraf the 8085. These are linked
to the external system bus. These signals arentbeface between the 8085 processor
and the rest of the system (Figure 15.8).

63

ImerruptuRe'Eatéd’ Signals

TRAP _
Restart Interrupts (RST 7.5,6.5,5.5)

Interrupt Request (INTR) -
These five lines are used by an external device to interrupt the CPU. The CPU will not honor the request if
itisin the hold state or if the inlerrupt is disabled. An interrupt is honored only at the completion of an in-
' thcﬁ(m The mierrupts are in descending order of priority.

Interrupt Acknowledge
cnowledges an interrupt.

CPU Initialization
RESET IN . -
Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.
RESET OUT

Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Vtﬂ:tage and Ground

+5-volt power supply

The control unit is identified as having two compots labeled (1) instriggion decoder
and machine cycle encoding and (2) timing and Aﬁ%the first
component is deferred until the next section. T té) %‘@ ‘tontrol unit is the timing
and control module. This module in pts as inputs the current
instruction and some exte signals.o s of control signals to the
other compon g‘gasso @m the external system bus.

? Q‘Xroce éns Is synchronizgdhe clock and controlled by the
control unit with controls?gnals Each instructioycle is divided into from one to five
machine cycles; each machine cycle is in turn divided ifntom three to fivestates. Each
state lasts one clock cycle. During a state, thecqmsor performs one or a set of
simultaneous micro-operations as determined bgdnérol signals.

The number of machine cycles is fixed for a givestruction but varies from one
instruction to accesses. Thus, the number of maatynles for an instruction depends on t
lie number of times the processor must communiwéte external devices. For example, if
an instruction consists of two 8-bit portions, the machine cycles are required to fetch
the instruction. If that instruction involves a §t& memory or I/O operation, then a third
machine cycle is required for execution.

66

5.0 SUMMARY

In a parallel organization, multiple processingtsintooperate to execute applications
whereas a superscalar process exploits opportsifitigparallel execution at the instruction
level, a parallels processing organization looksaf@rosser level of parallelism one that
enables work to be done in parallel and coopergtive multiple processors

6.0 TUTOR- MARKED ASSIGNMENT
1. List and briefly define types of parallel pessor system.
2. List the two most common multiple processoraoigations

7.0 REFERENCES/FURTHER READING
Catanzaro B. Multi processor system Architectu@uktain View CA, Sun sift pres
1994

UNIT 2: SYMMETRIC MULTI PROCESSOR

1.0 Introduction _)\A
2.0 Objectives e .
3.0 Main content Otesa\

3.1 Organizations

3.2 Multi processor quef &Q&Q g@&n :&n%ati
3.3 \m

4.0 @mmn

5.0 Summary

6.0 Tutor marked assignment
7.0 References/further

1.0 Introduction

Virtually all single user personal computers andstmnwork stations contained a single
generate purpose micro processors. As demand ffmrpg@nce increases and is the cost of
microprocessors continues to drop. Vendors hawedoted system with and SMP
organization.

2.0 Objectives
At the end of this unit you should be able to

81

- Memory has adapter (MBA): The MBA provides an interface to various types of
I/O channels. Traffic to/from the channels goesdiy to the L2 cache.

- The microprocessor in the 2990 is relatively uncamntompared with other
modern processors because although. It is suparsitaéxecutes instructions in strict
architectural order

Multichip K
ceramic O u
.
I
‘e C

4.0 CONCLUSION

The term SMP refers to a computer hardware awthite and also to the operating
system behaviour that reflects that architectutecan be defined as a stands alone
computer system with the following characteristics.
1. There are two or more similar processors of conipareapability.
2. These processors share the same main memory andfabilities and are
interconnected by a bus or other internal conneaheme such that memory aces time is
approximately the same for each process.

86

7.0 References/ Further reading
Milenkovic, A. “Achieving High Performance in BusBased shared memory
multiprocessors” IEEE concurrency, July- Septen28€0

UNIT 3: MULTI THREADING AND CHIP MULTI PROCESSORS

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 IMPLICIT AND EXPLICIT MULTITHREADING

3.2 APPROACHES TO EXPLICIT MULTITHREADING
3.3 EXAMPLE SYSTEMS

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR- MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING _)\4

The most important measure of performance for ags®or is the rate at which it executes
instructions. This can be expressed as MIPS=zdta& IPC wheref is the processor clock
frequency, in MHz, and IPC (instructions per cyatejhe average number of instructions
executed per cycle. Accordingly, designers haveyrda the goal of increased performance
on two fronts: increasing clock frequency and iasieg the number of instructions
executed or, more properly, the number of instamgtithat complete during a processor
cycle.

An alternative approach, which allows for a highgide of instruction-level parallelism
without increasing circuit complexity or power cangption, is called multithreading. In
essence, the instruction stream is divided intesswsmaller streams, known as threads,
such that the threads can be executed in parallel.

88

Operation Cycles Operation Cycles
AR(D) * BR(T) - T1(J) 3 AR S VI i
AID = BII) — T2() 3 BR() —- V2D 1
T1(d) — T2(J) — CRJ) 3 V1) *v2) = V3QJ) 1
AR * B — T3 3 AI(D) — VA 1
AIJ) * BR() — T4() g BI(J) = V5() %
T3(I) + T4(J) - CI(N) Va() # V5(I) — V6() :
V3(I) — V6(I) —= VI(I) .
TOTAL 18 V7d) - CR{) 1
V1) *V5(1) — V8(J) 1
(a) Storage to storage VAT *V2(T) — Vo) 1
VB(I) + Vb = VO 1
Operation Cycles Vo) - CI(H
AR(I) g VI(J)‘ 1 TOTAL 12
XIE((;)) *BRU} : gggg } (b) Register to register
V3 * BI() — V4 1 < ——
V() — VA(T) — V5(1) % Operation Cycles
V5(I) = CR(J) .
VIJ) *BIJ) — V6 i ‘\“]R(J}* i = g(;) :
V4(I) * BR(J) — V7() . g(;) &) = v3(1) ,
b R 1 f\fz(u)) _ V30 BI) = vzﬁﬁ 1
Al =Sl va(D) 5 CR(J)
V1) * BID) — V4(I) :
TOTAL 10 V4Q) + V3() * BRA) = V5() !
(c) Storage to register V) = Clo)
Vi = Vector registers TOTAL 8
AR, BR, Al BI = Operands in memory
Ti = Temporary locations in memory.. (d) Compound instruction
This approach is also used on the Cray supercomp%mealternatlve a h, used on
Control Data machines, is to obtain operands dy Ory. The main
disadvantage of the use of vector reglsters [er or compiler must take
them into account for good perfor ;g%hat the length of the vector
registers is K and the Ie mln ce ors to be processedllis K.
In this case v @ must é hich the operation is performed on K
eleme@ga time and ? peat&ﬁ times. The main advantage of the vector

register approach is that the can be resumed fpemation is decoupled from slower main
memory and instead takes place primarily taken, mmarine with registers.

The speedup that can be achieved using registelsn®nstrated in F17.20. The
FORTRAN routine multiplies vector A by vector B psoduce C, where each vector
has a real part (AR, BR, CR) and an imaginary gArt Cl). The 3090 can perform
one main-storage access per processor, or clotiieferead or write); has registers
that can sustain two accesses for reading one fiting per cycle; and produces one
result per cycle in its arithmetic. Let us assuime @ise of instructions that can specify
two source operands resuRart a of the figure shows that, with memory-to-rnoeyn
instructions iteration of the computation 'requieetotal of 18 cycles.

96

Generalizing from the work of a number of researshthree elements emerge that, by
and large, characterize RISC architectures. Risst,a large number of registers or use a
compiler to optimize register usage. This is inwhdo optimize operand referencing.
The studies just discussed show that there araaleneferences per HLL instruction
and that there is a high proportion of move (assgmt) statements. This, coupled with
the locality and predominance of scalar referensaggests that performance can be
improved by reducing memory references at the esgpaf more register references.
Because of the locality of these references, aamdgd register set seems practical.
Second, careful attention needs to be paid toélseyd of instruction pipelines. Because
of the high proportion of conditional branch andogadure call instructions, a
straightforward instruction pipeline will be inaffent. This manifests itself as a high
proportion of instructions that are prefetchedteser executed.

Finally, a simplified (reduced) instruction setnsglicated. This point is not as obvious

as the others, but should become clearer in th@rensgiscussion.

4.0 CONCLUSION
Assignment statements predominate, suggesting ttteatsimple \\gh\éﬂt of data
should be optimized. There are also many IF and Qs which suggest
that the underlying sequence contral é&edbe optimized to permit
efficient pipelining. Studies o Q m}e’%ﬁ% ggest that it should be
den

possible to enhancwe Xr ce b6kie umber of operands in

regist \
BeNT oa0e

5.0 SUMMARY

The simple instruction set of a RISC lends itsel&fficient pipelining because there
are fewer and more predictable operations perfornpsat instruction. Other
instruction to improve pipeline efficiency.

6.0 Tutor marked assignment
1. What is a delayed branch?

7.0 REFERENCES/ FURTHER READING

Patterson, D “Reduced instruction set computers mamcations of the ACM,
January 1985.

101

UNIT 2: REDUCED INSTRUCTION SET ARCHITECTURE
CONTENT
1.0 INTRODUCTION
2.0 OBJECTIVES
3.0 MAIN CONTENT
3.1 WHY CISC
3.2 CHARACTERISTICS OF REDUCED INSTRUCTION SET
ARCHITECTURES
3.3 CISC VERSUS RISC CHARACTERISTICS
4.0 CONCLUSION
5.0 SUMMARY
6.0 TUTOR MARKED ASSIGNMENT
7.0 REFERENCES/ FURTHER READING

1.0 INTRODUCTION
This is the focus of this unit. The RISC architaetis a dramatic departure from
the historical trend in processor architecture. Ana %e RISC
architecture brings into focus many of theaw t;gnygies in computer

organization and architecture. NO 6
2.0 OBJECTIVES (Om A ’X‘%

ﬁiﬁ S unit, h%u@@ able to ensthnd the pitfalls in the CISC
approdqchn companlo @éet'

3.1 Why CISC

In this section, we look at some of the generalanttaristics of and the motivation for a
reduced instruction set architecture. Specific gdamwill be seen later in this chapter. We
begin with a discussion of motivations for contemgpy complex instruction set
architectures.

We have noted the trend to richer instruction setsich include a larger number of
instructions and more complex instructions. Twa@pal reasons have motivated this trend:
a desire to simplify compilers and a desire to meprperformance. Underlying both of these
reasons was the shift to HLLs on the part of pnognars; architects attempted to design
machines that provided better support for HLLSs.

102

It is not the intent of this chapter to say that @ISC designers took the wrong direction.
Indeed, because technology continues to evolve beaduse architectures exist along a
spectrum rather than in two neat categories, &idad-white assessment is unlikely ever to
emerge. Thus, the comments that follow are simmgamhto point out some of the potential
pitfalls in the CISC approach and to provide somdeustanding of the motivation of the
RISC adherents.
The first of the reasons cited, compiler simplifica, seems obvious. The task of the
compiler writer is to generate a sequence of macimstructions for each FILL statement. If
there are machine instructions that resemble Hittestents, this task is simplified. This
reasoning has been disputed by the RISC researhisIN82]. [RAIJI83], [PATT82b]).
They have found that complex machine instructioms aiten hard to exploit because the
compiler must find those cases that exactly fit th@struct. The task of optimizing the
generated code to minimize code size, reduce @tgiru execution count, and enhance
pipelining is much more difficult with a complexstnuction set. As evidence of this, studies
cited earlier in this chapter indicate that mosthaf instructions in a compiled program are
the relatively simple ones.

The other major reason cited is the expectationah@ISC will yi Io\j)é&ler. faster
programs. Let us examine both aspects of this Meﬁ@@(ﬁﬁ/ﬁl be smaller and
that they will execute faster. "65

There are two advantages omllmggran’%;ﬁxj@%the program takes up less
§£ reso y10

memory, there is a saying Wih day being so inexpensive, this

poten{laJ W\tﬁ&ﬁs o long qenp “Manpartant
)) ?[\
Y i \{A'lg ;]') [KATES3] [HEATS84]
11 C Programs 12 C Programs 5 C Programs

RISCT 1.0 1.0 1.0
VAX-11/780 0.8 0.67
M68000 0.9 0.9
78002 12 112
PDP-11/70 0.9 0.71

smaller programs should improve performance, aml whil happen in two ways. First,
fewer instructions means fewer instruction bytesbt fetched. Second, in a paging
environment, smaller programs occupy fewer pagekjaing page faults.

The problem with this line of reasoning is thasifar from certain that a CISC program will
be smaller than a corresponding RISC program. Imynsases, the CISC program, expressed
in symbolic machine language, may derter (i.e., fewer instructions), but the number of

103

An OS is a program that controls the execution pdliaation programs and acts as an
interface between the user of a computer and thguater hardware. It can be thought of
as having two objectives:

- Convenience:An OS makes a computer more convenient to use.
- Efficiency: An OS allows the computer system resources toskd in an efficient
manner.
Let us examine these two aspects of an OS in turn.

The operating system a as user/ computer interface

The hardware and software used in providing apipdina to a user can be viewed in a
layered or hierarchical fashion, as depicted iruFeég8.1. The user of those applications,
the end user, generally is not concerned with tmputer's architecture. Thus the end user
views a computer system in terms of an applicatidmat application row can used in a
programming language and is developed by an apigiicgorogramme. To develop an
application program as a set of processor instustithat is completely responsible for
controlling the computer hardware would be an oveiwingly c P\E@ ease this
task, a set of systems programs is provided. So‘rrtlaa1 g(ﬁg are referred to as

utilities. These implement frequently tsagsi program creation, the
management of files, and the ﬁgj devi er makes use of these
facilities in developi Qtlon @I@%ﬂﬁ/hne it is running, invokes the
utilitie nﬂ] fun zrnostpmntant system program is the OS. The
(0N mﬁ the detalls @&gﬁare from the progrer and provides the programmer
with a convenient interface for using the systetracts as mediator, making it easier for

the programmer and for application programs to ss&cand use those facilities and
services.

125

process some time in turn. Priority levels may &lsaised. Finally, there is an I/O queue for
each 1/0O device. More than one process may redhestise of the same 1/0O device. All
processes waiting to use each device are lined thfat device's queue.

Figure 8.11 suggests how processes progress thtbeglomputer under the control of
the OS. Each process request (batch job, useredeiimeractive job) is placed in the long-
term queue. As resources become available, a groeqaest becomes a process and is then
placed in the ready state and put in the short-tpreue. The processor alternates between
executing OS instructions and executing user psesesWhile the OS is in control, it
decides which process in the short-term queue dhoeilexecuted next. When the OS has
finished its immediate tasks, it turns the processer to the chosen process.

As was mentioned earlier, a process being exeomi@g be suspended for a variety of
reasons. If it is suspended because the procesgstsql/O, then it is placed in the
appropriate I/O queue. If it is suspended becatisgimeout or because the OS must attend
to pressing business. then it is placed in theyrstate and put into the short-term queue.
Finally, we mention that the OS also manages ajileues. When an I/O operation is
completed, the OS removes the satisfied process fhat I/O queu s it in the
short-term queue. It then selects another waltlng:q:ss 1\)Gn S|gnals for the 1/10

device to satisfy that process's request. O‘e 6
UNIT 3: Memory System N %
o™) of)

1.0Introduction \N

2.00bj X) \© e 'L
3.0 MSS ntent a.g
3. 1Character|st|cs of memory systems

3.2The memory hierarchy
3.3 Error correction

1.0 Introduction
Computer memory is organized into a hierarchy. g highest level (closest to the
processor) are the processor registers. Next comeor more levels of cache, When
multiple levels are used, they are denoted L1,a02l so on.Error correction techniques
are commonly used in memory systems.

2.00bjectives
At the end of this unit, you should be able to

142

Table 4.1 Key Characteristics of Computer Memory Systems

Location . Performance

: Intumal (e.g. pma&s%or registers, main Access time

memory, cache) Cycle time

External (e,g. optical disks, magnehg
disks. [apu;)

 Capacity
Number of words

Transfer rale
Physical Type

Semiconductor

Number of bytes . Mag.nezig:
Unit ﬂf’I‘ransfer - Optical
. Word Magneto-optical
Block Ph)’siga! Characteristics
Aceess Method Volatiletnonvolatile
Seguential Erasable/nonerasable
Direct Organization
Random Memory modules

Associative

the form of registers (e.g., see Figure 2.3). Faurtas we shall see, the control unit portion of

the processor may also require its own internal argmVe will defer discussion of these

latter two types of internal memory to later chamteCache is another form of internal
memory. External memory consists of peripheralagferdevices, such as dlsvm tape, that
are accessible to the processor via I/O controllers

An obvious characteristic of memory is its c |ngfnal memory, this is
typically expressed in terms of bytes (1 & éﬁ Cqommon word lengths are 8,
16, and 32 bits. External memo ﬁ s% erms of bytes.

A related ince % Qtran fe %nemory, the unit of transfer is equal
to the écmcal in a&Authﬁ memory module. This may be equal to
the w?ingth buti |s r&@r such as &, b2 256 bits. To clarify this point, consider
three related concepts for internal memory:

* Word: The "natural” unit of organization of memory. Tkze of the word is
typically equal to the number of bits used to repret an integer and to the instruction
length. Unfortunately, there are many exceptioms. é&xample, th&€RAY C90 (an
older model CRAY supercomputer) has a 64-bit werdjth but uses a 46-bit integer
representation. The Intel x86 architecture has @dewiariety of instruction lengths,
expressed as multiples of bytes, and a word si32 bits.

* Addressing units: many systems allow addressing at the byte lemednly case, the
relationship between the length in bits A of anradd and the number N of
addressable units i$'2 N.

* Unit of transfer: For main memory, this is the number of bits reatia$ or written
into memory at a time. The unit of transfer neetlegual a word or an addressable

144

processor. It is a dace for staging the movement of data between mamany

and processor registers to improve performance.
The three forms of memory just described are, ajjyic volatile and employ
miconductor technology. The use of three leveldatgothe fact that semiconductor
memory comes in a variety of types, which diffespeed and cost. Data are stored
more permanently on external mass storage dewéeshich the most com on are
hard disk and removable media, such as removabimetia disk, tape, and optical
storage. External, nonvolatilie memory is also reférto as secondary memory
auxiliary memory. These are used to store prograchdata files and are usually
invisible to the programmer only in terms of filesd records, as opposed to
individual bytes or words. Disk is also used toyte an extension to main memory
own as virtual memory, which is discussed in Chate

Other forms of memory may be included in the higmgr For example, large 1
mainframes include a form of internal memory knaagnexpanded storage is uses a
semiconductor technology that is slower and lepersive than th@ou mory.
Strictly speaking, this memory does not fit inte thi @bglls a branch: Data
can be moved between main mem ea@g between expanded
storage and external meén Qﬂﬁ;ﬁns of s gﬂ$ ginclude optical and
magneto OptIC e positively added to the
P?Xl are Aég@ gﬁn memory daa used as a buffer to hold
mporanly th e read out to diskctBa techniquesometimes
referred to as a disk cachfémproves performance in two ways
4+ Disk writes are clustered. Instead of many smalhdfers of data, we have a
few large transfers of data. This improves diskfqgrerance and minimize
processor involvement.
+ Some data destined for write-out may be referermed program before the
next dump to disk. In that case, the data areenatd rapidly from the software
cache rather than slowly from the disk.

150

1.0Conclusion
As one goes down the memory hierarchy one findgedsmg cost bit,
increasing capacity, and slower access time. This focuses on internal
memory elements.

2.0 Summary
Although seemingly simple in concept, computer megmexhibits perhaps
the widest range of type, technology, organizatmerformance and cost of
any feature of computer system
The error correction technique involves adding retfunt bits that are a
function of the data bit to form an error correntmnde. If a bits error occurs,
the code will detect and usually correct the error.

3.0 Tutor Marked Assignment
1. What are the differences among direct mapping,cathoe ma Wand

set associative mapping? CO
2. What is a parity bit? \

3. How is the syndrome for the N}@%@b? @te

4.0 References/Furthecgga@
1. Ad % tion of \Qork Wiley 1991
CAC? E% ERIE ACM computing surveys Septerm1992

UNIT 4: CACHE

1.0INTRODUCTION

2.00BJECTIVES

3.0MAIN CONTEXT
3.1CACHE MEMORY PRINCIPLES
3.2ELEMENTS OF CACHE DESIGN
3.3PENTIUM 4 CACHE ORGANIZATION
3.4ARM CACHE ORGANIZATION

4.0CONCLUSION

5.0SUMMARY

6.0TUTOR MARKED ASSIGNMENT

7.0REFERENCES AND FURTHER READING

154

The first step is to con_ trLictt a table in whieach row corresponds to one of the
product terms of the expression. The terms arepgaaccording to the number of
complemented variables. | =:at is; eve start with term with no complements, if it
exists, then all terms with one complement, andrsoTable 20.5 shows the list for
our exampleexpression, with horizontal fines used to indicate the grouping. For

clarity,
cD cD
00 01 11 00 01 411y 10
oo 4 g ool i)
= el
oLk ol r:‘s(f\ 5__'{1
BRC {Z LA dA 4
S e v v
wf i ba gl wp | HaY
T
@W = AD + ABCD X - BD + BT + BCD
D cp
00 01 11 10 00 0 11 10
= : R 5 T : / =
s Y ool b T

i E R,) . "
Q1 ol . 0Lp3 : :
Hidididla iiadalale K
of b bala wpil lalal u

— — o .
{©)Y = AT + AcD @z =D e

00

pre'®

173

equal the value of the selected input gate. Using tegular organization, it is easy to
construct multiplexers of size 8-to-1,16-to-1, @odon.

Multiplexers are used in digital circuits to contstgnal and data routing. An example
is the loading of the program counter (PC). Thei@dab be loaded into the program counter
may come from one of several different sources:

A binary counter, if the PC is to be incrementedtii@ next instruction

Do —m_—j{“)
2
2 _._,,_1

i
|

T

52 81
Flemre 2012 4-to-1 Multiplexer \)K
Representation CO .

i
o

. The instruction register, if a branch instructicing a direct address has just been
executed
. The output of the AT U, if the branch instructiopesifies the address using a

displacement mode
These various inputs could be connected to thetilpes of a mulltiplexer, with the PC
connected to the output line. The select linesrdetee which value is loaded into the PC.
Because the PC contains multiple bits, multipletipléxers are used, one per bit. Figure

20.14 illustrates this for 16-bit addresses.

177

VI YV

G0G
D

01

100

jit31

gro 2,15 Decoder with 3 Inputs and 2° = § Qutputs

; 1 otest e

AT

Enable

somre 20016 Address Decoding
Each chip requires 8 address lines, and theseuamied by the lower-order 8 bits of

the address. The higher-order 2 bits of the 1@hiiress are used to select one of the four
RAM chips. For this purpose, a 2-to-4 decoder edushose output enables one of the four
chips, as shown in Figure 20.16.

With an additional input line, a decoder can beduss a demultiplexer. The
demultiplexer performs the inverse function of altiplexer; it connects a single input to
one of several outputs. This is shown in Figurel20As before, n inputs are decoded to
produce a single one of 2" outputs. All of the 2itput lines are ANDed with a data input

179

Ag By Ag By - Bo

A73 Bzz Al(Blr’v Als 15"‘

A3y Bay--- An By

.20.21 Construction of a 32-Bit Adder Using 8-Bit Adders

Thus we have the necessary logic to implement diptetbit adder such as shown in
Figure 20.21. Note that because the output fronh ealder depends on the carry from the
previous adder, there is an increasing delay fioenld¢ast significant to the most significant
bit. Each single-bit adder experiences a certainuahof gate dela gate delay
accumulates. For larger adders, the accumulatey dah chptably high.

If the carry values could be detﬁﬁt@ hgvto ripple through all the
previous stages, then each s ndently, and delay would
not accumulate. Th| aézye\d n@t riown as carrjookahead. Let us
look a der tQ %u% applo

\ﬁ&ould I|ke to @ with an expression thacHjes the carry input to any
stage of the adder W|thout reference to previouns/calues. We have

Co = AoBo (20.4)
C = AB; + AAB, + BAGBo (20.5)
Co = AoBq (20.4)
G = AB; + AABy + BAGBo (20.5)

C2 = A2B2 + AAB; + A,A/AGB, + A;B/AB, + B2ACB1 + BA;A¢B, + B2BjAOBO

This process can be repeated for arbitrarily loshdeas. Each carry term can be expressed in
SOP form as a function only of the original inpwtsth no dependence on the carries. Thus,
only two levels of gate delay occur regardlesseflength of the adder.

For long numbers, this approach becomes excessoatyplicated. Evaluating the
expression for the most significant bit of an n-kdider requires an OR gate with n - 1

184

