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1.0 INTRODUCTION 

In spite of the variety and pace of change in the computer field, certain 

fundamental concepts apply consistently throughout. To be sure, the 

application of these concepts depends on the current state of technology and 

the price/ performance objectives of the designer. 

Many computer manufacturers offer a family of computer models, all with the 

same architecture but with differences in organization. In a class of computers 

called microcomputers, the relationship between the architecture and 

organization is very close. Changes in technology not only influence 

organization but also result in the introduction of more powerful and more 

complex architecture. However, because a computer organization must be 
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designed o implement a particular architectural specification, a thorough 

treatment of organization requires a detailed examination of architecture as 

well. 

2.0 OBJECTIVES 

At the end of this unit you should be able to: 

• Explain the operational units of a computer system. 

• Outline types of operands and operations specific by machine 

instruction. 

• Explain opcodes, operands and addressing modes 

3.0 MAIN CONTENT 

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE 

Although it is difficult to give precise definition, a consensus exists about the 

general area covered by it. Computer organization refers to the operational 

units and their interconnection that realize the architectural specification. 

Examples of architectural attributes include the instruction set, the number of 

bit used to represent various data types (e. g numbers, characters), I/O 

mechanism, and techniques for addressing memory. Organizational attributes 

include those hardware details transparent to the programmer, such as control 

signals; interfaces between the computer peripherals and memory technology 

used. 

 

3.2 STRUCTURE AND FUNCTION 

A computer is a computer system, contemporary computers contain millions 

of elementary electronic components. 

• Structure:  The way in which the components are interrelated. 

• Function: The operation of each individual component as part of the 

structure. 

In term of description, there are two choices: starting at the bottom and 

building up to a complete description, or beginning with a top view and 
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decomposing the system into its subparts. Evidence from a number of fields 

suggest that the top down approach is the clearest and most effective. 

The approach taken is that the computer be described from the top down. 

 

Both the structure and functioning of a computer are simple. Figure 1.1 

depicts the basic functions that a computer can perform. In general terms, 

there are only four: 

- Data processing 

- Data storage 

- Data movement 

- Control 

The computer of course, must be able to process data. The data may take a 

wide variety of forms, and the range of processing requirements id broad. It is 

also essential that a computer store data. Even if the computer is processing 

data on the fly (i.e data come in and get processed and the results go out 

immediately) the computer must temporarily store at least. Those pieces of 

data that are being worked on at any given moment. Files of data are stored on 

the computer for subsequent retrieval and update. 

 The computer must be able to move data between itself an outside 

world. The computers operating environment consist of devices that serve as 

either sources or destinations of data. When data are received from or 

delivered to a device that is directly connected to the computer, the process is 

known as input- output (I/O), and the device is referred to as a peripheral. 

When data are moved over longer distances, to or form a remote device, the 

process is known as data communications. Finally, there must be control of 

these three functions. Ultimately, this control is exercised by the individuals 

who provide the computer with instructions. Within the computer a control 

unit manages the computers resources and orchestrates the performance of its 

functional parts in response to those instructions. 

There are four main structural components 
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- Understand the way in which numbers are represented (the binary 

format) and the algorithms used for the basic arithmetic operations (add, 

subtract, multiply, divide) both to integer and floating point arithmetic. 

 

3.1 THE ARITHMETIC AND LOGIC UNIT 

The arithmetic and logic unit (ALU) is that part of the computer that actually 

performs arithmetic and logical operations on data. All of the other elements 

of the computer system- Control unit, registers memory, I/0- are there mainly 

to bring into the ALU for it to process and then take the result back out. 

An ALU and all electronic components in the computers are based on 

the use of simple digital logic devices that can store binary digits and perform 

simple Boolean logic operations. 

Figure 3. 1. 1 indicates, in general terms, how the ALU is interconnected with 

the rest of the processor. Data are presented to the ALU in registers and the 

results of an operation are stored in registers. These registers are temporary 

storage locations within the processor that are connected by signal paths to the 

ALU. The ALU may also set flags as the result of an operation. For example, 

an overflow flag is set to 1 if the result of a computation exceeds the length of 

the register into which it is to be stored. The flag values are also stored in 

registers within the processor. The control unit provides signals that control 

the operation of th ALU and the movement of the data into and out of the 

ALU. 

 

3.2 INTEGER REPRESENTATION 

 In the binary number, arbitrary numbers can be represented with just 

the digits zero and one the minis sign and the period or radix point. 

  -1101.01012= -13.312510 

For purposes of computer storage and processing, however w do not have the 

benefits of minus signs and periods. Only binary digits (0 and 1) may be used 
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to represent numbers. If we are limited to non negative integers, the 

representation is straight forward. 

An 8 bit word can represent the numbers form 0 to 255, including 

     00000000  = 0 

     00000001  = 1 

     00101001  = 41 

     10000000  = 128 

     11111111  = 255 

In general, if an n- bit sequence of binary digits             is interpreted as an 

unsigned integer, A it value is 

   A=  n-1   

      ΣΣΣΣ2i ai 

         2=0 

In going from the first to the second equation, we require that the least 

significant n - 1 bits do not change between the two representations. Then we 

get to .-next to last equation, which is only true if all of the bits in positions  

throem 2 are 1. Therefore, the sign-extension rule works. . 

Fixed-point representation 

Finally, we mention that the representations discussed in this section are 

sometime referred to as fixed point. This is because the radix point (binary 

point) is fixed assumed to be to the right of the rightmost digit. The 

programmer can use the representation for binary fractions by scaling the 

numbers so that the binary poor implicitly positioned at some other location. 

Negation 

In sign-magnitude representation, the rule for forming the negation of an 

integer is simple: invert the sign bit. In twos complement notation, the 

negation of an integer can be formed with the following rules: 

 Take the Boolean complement of each bit of the integer (including the sign 

bit). That is, set each 1 to 0 and each 0 to 1. 

Treating the result as an unsigned binary integer, add 1. 
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(MAR) because this is only register connected to the address lines of the 

system bus. The second step bring in the instruction. The desired address (in 

the MAR) is placed on the ad c== - 
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The IR is now in the same state as if indirect addressing had not been 

use and it is ready for the execute cycle. We skip that cycle for a moment, to 

consider t interrupt cycle. 

At the completion of the execute cycle, a test is made to determine whether 

any- :-_abled interrupts have occurred. If so, the interrupt cycle occurs. The 

nature of cycle varies greatly from one machine to another. We present a very 

simple sequeof events, as illustrated in Figure 12.8. We have 

t1: MBR E- (PC) 

t2: MAR F- Save Address PC F- 

Routine Address t3: Memory E- 

(MBR) 

In the first step, the contents of the PC are transferred to the MBR, so that u-

can be saved for return from the interrupt. Then the MAR is loaded with the 

add- .at which the contents of the PC are to be saved, and the PC is loaded 

with the add to the MAR and PC, respectively. In any case, once this is done, 

the final step is to store the MBR, which contains the old value of the PC, into 

memory. The processor is now ready to begin the next instruction cycle. 

The fetch, indirect, and interrupt cycles are simple and predictable. Each 

involves a small, fixed sequence of micro-operations and, in each case, the 

same micro-operations are repeated each time around. 

This is not true of the execute cycle. Because of the variety opcodes, there 

are a number of different sequences of micro-operations that can occur. Let us 

consider several hypothetical examples. 

First, consider an add instruction: 

ADD R1, X 

which adds the contents of the location X to register R1. The following 

sequence of micro-operations might occur: 

We begin with the IR containing the ADD instruction. In the first step, the 

address portion of the IR is loaded into the MAR. Then the referenced memory 
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addressed memory module places the contents of the addressed memory 

vocation on the address/data bus. The control unit sets the Read Control (RD) 

signal to indicate a read, but it waits until T3 to copy the data from the bus. This 

gives the memory module time to put the data on the bus and for the signal 

levels to stabilize. The final state, T4, is a bus idle state during which the 

processor decodes the instruction. The remaining machine cycles proceed in a 

similar fashion. 

 

Finally, consider a subroutine call instruction. As an example, consider a 

branchand-save-address instruction: 

BSA X 

The address of the instruction that follows the BSA instruction is saved in 

location X, and execution continues at location X + I. The saved address will 

later be uses for return. This is a straightforward technique for providing 

subroutine calls. The fo=lowing micro-operations suffice: 

t,: MAR E- (IR(address)) MBR ~- 

(PC) 

tz: PC <-- (IR(address)) Memory <-- 

(MBR) t3: PC <__ (PC) + I 

The address in the PC at the start of the instruction is the address of the 

nexinstruction in sequence. This is saved at the address designated in the IR. 

The lateeaddress is also incremented to provide the address of the instruction 

for the next it - struction cycle. 

We have seen that each phase of the instruction cycle can be decomposed into a 

sequence of elementary micro-operations. In our example, there is one sequence 

eac= for the fetch, indirect, and interrupt cycles, and, for the execute cycle, 

there is one sequence of micro-operations for each opcode. 

To complete the picture, we need to tie sequences of micro-operations to-

gether, and this is done in Figure 15.3. We assume a new 2-bit register called 
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the instruction cycle code (ICC). The ICC designates the state of the processor 

in terms of which portion of the cycle it is in: 

00: Fetch 01: Indirect 

10: Execute 11: 

Interrupt 

At the end of each of the four cycles, the ICC is set appropriately. The 

indirect cycle is always followed by the execute cycle. The interrupt cycle is 

always followed by the fetch cycle (see Figure 12.4). For both the fetch and 

execute cycles, the next cycle depends on the state of the system. 

Thus, the flowchart of Figure 15.3 defines the complete sequence of 

microoperations, depending only on the instruction sequence and the interrupt 

pattern. Of course, this is a simplified example. The flowchart for an actual 

processor would be more complex. In any case, we have reached the point in 

our discussion in whic?, the operation of the processor is defined as the 

performance of a sequence of microoperations. We can now consider how the 

control unit causes this sequence to occur. 

 

 

of tbp ~~r of the interrupt-processing routine. These two actions may each be 

- single micro-operation. However, because most processors provide 

multiple tyr_ and/or levels of interrupts, it may take one or more additional 

micro-operations obtain the Save Address and the Routine Address before 

they can be transfer the events of any instruction cycle can be described as 

a sequence of such micro operations. A simple example will be used. In the 

remainder of this chapter, we then show how the concept of micro-

operations serves as a guide to the design of the control unit. 
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THE FETCH CYCLE 

We begin by looking at the fetch cycle, which occurs at the beginning of 

each instruction cycle and causes an instruction to be fetched from 

memory. Four registers are involved: 

• Memory address register (MAR): Is connected to the address lines of 

the system bus. It specifies the address in memory for a read or write 

operation. 

• Memory buffer register (MBR):  Is connected to the data lines of the 

system bus. It contains the value to be stored in memory or the last 

value read from memory. 

• Program counter (PC): Holds the address of the next instruction to be 

fetched. 

• Instruction register (IR):  Holds the last instruction fetched. 

Let us look at the sequence of events for the fetch cycle from the 

point of view of its effect on the processor registers. An example appears 

in Figure 3.1.2. At the beginning of the fetch cycle, the address of the 

next instruction to be executed is in the program counter (PC); in this 

case, the address is 1100100. The first step is to move that address to the 

memory address register (MAR) because this is the only register 

connected to the address lines of the system bus. The second step is to 

bring in the instruction. The desired address (in the MAR) is placed on 

the address 
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3.2 CONTROL OF THE PROCESSOR 

As a result of our analysis in the preceding section, we have decomposed the behavior or 

functioning of the, processor into elementary operations, called micro-operations. By 

reducing the operation of the processor to its most fundamental level, we are able to define 

exactly what it is that the control unit must cause to happen. Thus, we can define the 

functional requirements for the control unit: those functions that the control unit must 

perform. A definition of these functional requirements is the basis for the design and 

implementation of the control unit. 

With the information at hand, the following three-step process leads to a char-

acterization of the control unit: 

1. Define the basic elements of the processor. 

2.  Describe the micro-operations that the processor performs. 

3.  Determine the functions that the control unit must perform to cause the micro-

operations to be performed. 

We have already performed steps 1 and 2. Let us summarize the results. First, the basic 

functional elements of the processor are the following: 

• ALU  

• Registers 

• Internal data paths External data 

paths  

• Control unit 

Some thought should convince you that this is i complete list. The ALU is the 

functional essence of the computer. Registers are used to store data internal to the 

processor. Some registers contain status information needed to manage instruction 

sequencing (e.g., a program status word). Others contain data that go to or come from the 

ALU, memory, and I/O modules. Internal data paths are used to move data between 

registers and between register and ALU. External data paths link registers to memory and 

1/O modules, often by means of a system bus. The control unit causes operations to 

happen within the processor. 
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output would feed back to the input. Register Z provides temporary output storage. 

With this arrangement, an operation to add a value from memory to the AC would 

have the following steps: 

                         t1:   MAR   (IR (address) ) 

    t2:   MBR   Memory 

    t3:   Y    (MBR) 

    t4:   Z    (AC) +  (Y) 

    t5:  AC    (Z) 

Other organizations are possible, but, in general, some sort of internal bus or set 

of internal buses is used. The use of common data paths simplifies the interconnection 

layout and the control of the processor. Another practical reason for the use of an 

internal bus is to save space. 

 

To illustrate some of the concepts introduced thus far in this unit, let us consider the 

Intel 8085. Its organization is shown in Figure 3.2.5. Several key components that may 

not be self-explanatory are: 

� Incremental decrementer address latch: Logic that can add 1 to or subtract 1 

from the contents of the stack pointer or program counter. This saves time by 

avoiding the use of the ALU for this purpose. 

� Interrupt control:  This module handles multiple levels of interrupt signals. 

� Serial UO control: This module interfaces to devices that communicate 1 bit at 

a time. 

Table 15.2 describes the external signals into and out of the 8085. These are linked 

to the external system bus. These signals are the interface between the 8085 processor 

and the rest of the system (Figure 15.8). 
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The control unit is identified as having two components labeled (1) instruction decoder 

and machine cycle encoding and (2) timing and control. A discussion of the first 

component is deferred until the next section. The essence of the control unit is the timing 

and control module. This module includes a clock and accepts as inputs the current 

instruction and some external control signals. Its output consists of control signals to the 

other components of the processor plus control signals to the external system bus. 

The timing of processor operations is synchronized by the clock and controlled by the 

control unit with control signals. Each instruction cycle is divided into from one to five 

machine cycles; each machine cycle is in turn divided into from three to five states. Each 

state lasts one clock cycle. During a state, the processor performs one or a set of 

simultaneous micro-operations as determined by the control signals. 

The number of machine cycles is fixed for a given instruction but varies from one 

instruction to accesses. Thus, the number of machine cycles for an instruction depends on t-

lie number of times the processor must communicate with external devices. For example, if 

an instruction consists of two 8-bit portions, then two machine cycles are required to fetch 

the instruction. If that instruction involves a 1-byte memory or I/O operation, then a third 

machine cycle is required for execution. 
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5.0 SUMMARY 

In a parallel organization, multiple processing units cooperate to execute applications 

whereas a superscalar process exploits opportunities for parallel execution at the instruction 

level, a parallels processing organization looks for a grosser level of parallelism one that 

enables work to be done in parallel and cooperatively by multiple processors 

 

6.0 TUTOR- MARKED ASSIGNMENT 

1.   List and briefly define types of parallel processor system. 

2.  List the two most common multiple processor organizations 
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1.0 Introduction 

Virtually all single user personal computers and most work stations contained a single 

generate purpose micro processors. As demand for performance increases and is the cost of 

microprocessors continues to drop. Vendors have introduced   system with and SMP 

organization. 

 

2.0 Objectives 

At the end of this unit you should be able to  
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- Memory has adapter (MBA): The MBA provides an interface to various types of 

I/O channels. Traffic to/from the channels goes directly to the L2 cache. 

- The microprocessor in the 2990 is relatively uncommon compared with other 

modern processors because although. It is superscalar it executes instructions in strict 

architectural order 

 

 

 
 

 

 

4.0 CONCLUSION 

 The term SMP refers to a computer hardware architecture and also to the operating 

system behaviour that reflects that architecture. It can be defined as a stands alone 

computer system with the following characteristics. 

1. There are two or more similar processors of comparable capability. 

2. These processors share the same main memory and I/O facilities and are 

interconnected by a bus or other internal connection scheme such that memory aces time is 

approximately the same for each process. 
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1.0 INTRODUCTION 

 

The most important measure of performance for a processor is the rate at which it executes 

instructions. This can be expressed as MIPS rate = f x IPC where f is the processor clock 

frequency, in MHz, and IPC (instructions per cycle) is the average number of instructions 

executed per cycle. Accordingly, designers have pursued the goal of increased performance 

on two fronts: increasing clock frequency and increasing the number of instructions 

executed or, more properly, the number of instructions that complete during a processor 

cycle.  

An alternative approach, which allows for a high degree of instruction-level parallelism 

without increasing circuit complexity or power consumption, is called multithreading. In 

essence, the instruction stream is divided into several smaller streams, known as threads, 

such that the threads can be executed in parallel. 
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This approach is also used on the Cray supercomputer. An alternative approach, used on 

Control Data machines, is to obtain operands directly from memory. The main 

disadvantage of the use of vector registers is that the programmer or compiler must take 

them into account for good performance. For example, suppose that the length of the vector 

registers is K and the length of the a minor performance, vectors to be processed is N > K. 

In this case, a vector loop  must  be performed, in which the operation is performed on K 

elements at a time and the loop is repeated N/K times. The main advantage of the vector 

register approach is that the can be resumed from operation is decoupled from slower main 

memory and instead takes place primarily taken, in a marine with registers.  

The speedup that can be achieved using registers is demonstrated in F17.20. The 

FORTRAN routine multiplies vector A by vector B to produce C, where each vector 

has a real part (AR, BR, CR) and an imaginary part (Ai. CI). The 3090 can perform 

one main-storage access per processor, or clock.(either read or write); has registers 

that can sustain two accesses for reading one for writing per cycle; and produces one 

result per cycle in its arithmetic. Let us assume the use of instructions that can specify 

two source operands result.  Part a of the figure shows that, with memory-to-memory 

instructions iteration of the computation 'requires a total of 18 cycles.  
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Generalizing from the work of a number of researchers, three elements emerge that, by 

and large, characterize RISC architectures. First, use a large number of registers or use a 

compiler to optimize register usage. This is intended to optimize operand referencing. 

The studies just discussed show that there are several references per HLL instruction 

and that there is a high proportion of move (assignment) statements. This, coupled with 

the locality and predominance of scalar references, suggests that performance can be 

improved by reducing memory references at the expense of more register references. 

Because of the locality of these references, an expanded register set seems practical. 

Second, careful attention needs to be paid to the design of instruction pipelines. Because 

of the high proportion of conditional branch and procedure call instructions, a 

straightforward instruction pipeline will be inefficient. This manifests itself as a high 

proportion of instructions that are prefetched but never executed. 

Finally, a simplified (reduced) instruction set is indicated. This point is not as obvious 

as the others, but should become clearer in the ensuing discussion. 

 

4.0 CONCLUSION 

Assignment statements predominate, suggesting that the simple movement of data 

should be optimized. There are also many IF and LOOP instructions, which suggest 

that the underlying sequence control mechanism needs to be optimized to permit 

efficient pipelining. Studies of operand reference patterns suggest that it should be 

possible to enhance, performance by keeping A moderate number of operands in 

registers. 

 

5.0 SUMMARY 

The simple instruction set of a RISC lends itself to efficient pipelining because there 

are fewer and more predictable operations performed per instruction. Other 

instruction to improve pipeline efficiency. 

 

6.0 Tutor marked assignment 

1. What is a delayed branch? 
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1.0 INTRODUCTION 

This is the focus of this unit. The RISC architecture is a dramatic departure from 

the historical trend in processor architecture. An analysis of the RISC 

architecture brings into focus many of the important issues in computer 

organization and architecture.  

 

2.0 OBJECTIVES 

 At the end of this unit, you should be able to understand the pitfalls in the CISC 

approach in companion to RISC. 

 

3.1 Why CISC 

In this section, we look at some of the general characteristics of and the motivation for a 

reduced instruction set architecture. Specific examples will be seen later in this chapter. We 

begin with a discussion of motivations for contemporary complex instruction set 

architectures. 

We have noted the trend to richer instruction sets, which include a larger number of 

instructions and more complex instructions. Two principal reasons have motivated this trend: 

a desire to simplify compilers and a desire to improve performance. Underlying both of these 

reasons was the shift to HLLs on the part of programmers; architects attempted to design 

machines that provided better support for HLLs. 
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It is not the intent of this chapter to say that the CISC designers took the wrong direction. 

Indeed, because technology continues to evolve and because architectures exist along a 

spectrum rather than in two neat categories, a black-and-white assessment is unlikely ever to 

emerge. Thus, the comments that follow are simply meant to point out some of the potential 

pitfalls in the CISC approach and to provide some understanding of the motivation of the 

RISC adherents. 

The first of the reasons cited, compiler simplification, seems obvious. The task of the 

compiler writer is to generate a sequence of machine instructions for each FILL statement. If 

there are machine instructions that resemble HLL statements, this task is simplified. This 

reasoning has been disputed by the RISC researchers ([HENN82]. [RAIJI83], [PATT82b]). 

They have found that complex machine instructions are often hard to exploit because the 

compiler must find those cases that exactly fit the construct. The task of optimizing the 

generated code to minimize code size, reduce instruction execution count, and enhance 

pipelining is much more difficult with a complex instruction set. As evidence of this, studies 

cited earlier in this chapter indicate that most of the instructions in a compiled program are 

the relatively simple ones. 

The other major reason cited is the expectation that a CISC will yield smaller. faster 

programs. Let us examine both aspects of this assertion: that programs will be smaller and 

that they will execute faster. 

There are two advantages to smaller programs. First, because the program takes up less 

memory, there is a savings in that resource. With memory today being so inexpensive, this 

potential advantage is no longer compelling. More important 

 
smaller programs should improve performance, and this will happen in two ways. First, 

fewer instructions means fewer instruction bytes to be fetched. Second, in a paging 

environment, smaller programs occupy fewer pages, reducing page faults. 

The problem with this line of reasoning is that it is far from certain that a CISC program will 

be smaller than a corresponding RISC program. In many cases, the CISC program, expressed 

in symbolic machine language, may be shorter (i.e., fewer instructions), but the number of 

Preview from Notesale.co.uk

Page 103 of 186



125 

 

An OS is a program that controls the execution of application programs and acts as an 

interface between the user of a computer and the computer hardware. It can be thought of 

as having two objectives: 

 

- Convenience: An OS makes a computer more convenient to use. 

- Efficiency: An OS allows the computer system resources to be used in an efficient 

manner. 

Let us examine these two aspects of an OS in turn. 

 

The operating system a as user/ computer interface 

The hardware and software used in providing applications to a user can be viewed in a 

layered or hierarchical fashion, as depicted in Figure 8.1. The user of those applications, 

the end user, generally is not concerned with the computer's architecture. Thus the end user 

views a computer system in terms of an application. That application row can used in a 

programming language and is developed by an application programme. To develop an 

application program as a set of processor instructions that is completely responsible for 

controlling the computer hardware would be an overwhelmingly complex task. To ease this 

task, a set of systems programs is provided. Some of these programs are referred to as 

utilities. These implement frequently used functions that assist in program creation, the 

management of files, and the control of I/O devices. A programmer makes use of these 

facilities in developing an application, and the application, while it is running, invokes the 

utilities to perform certain functions. The most important system program is the OS. The 

OS masks the details of the hardware from the programmer and provides the programmer 

with a convenient interface for using the system. It acts as mediator, making it easier for 

the programmer and for application programs to access and use those facilities and 

services. 
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process some time in turn. Priority levels may also be used. Finally, there is an I/O queue for 

each I/O device. More than one process may request the use of the same I/O device. All 

processes waiting to use each device are lined up in that device's queue. 

Figure 8.11 suggests how processes progress through the computer under the control of 

the OS. Each process request (batch job, user-defined interactive job) is placed in the long-

term queue. As resources become available, a process request becomes a process and is then 

placed in the ready state and put in the short-term queue. The processor alternates between 

executing OS instructions and executing user processes. While the OS is in control, it 

decides which process in the short-term queue should be executed next. When the OS has 

finished its immediate tasks, it turns the processor over to the chosen process. 

 

As was mentioned earlier, a process being executed may be suspended for a variety of 

reasons. If it is suspended because the process requests I/O, then it is placed in the 

appropriate I/O queue. If it is suspended because of a timeout or because the OS must attend 

to pressing business. then it is placed in the ready state and put into the short-term queue. 

Finally, we mention that the OS also manages the I/O queues. When an I/O operation is 

completed, the OS removes the satisfied process from that I/O queue and places it in the 

short-term queue. It then selects another waiting process (if any) and signals for the I/O 

device to satisfy that process's request. 

UNIT 3: Memory System  

1.0 Introduction 

2.0 Objectives 

3.0 Main content 

3.1 Characteristics of memory systems 

3.2 The memory hierarchy 

3.3 Error correction 

 

1.0 Introduction 

Computer memory is organized into a hierarchy. At the highest level (closest to the 

processor) are the processor registers. Next comes one or more levels of cache, When 

multiple levels are used, they are denoted L1, L2, and so on.Error correction techniques 

are commonly used in memory systems. 

 

2.0 objectives 

At the end of this unit, you should be able to 
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the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit portion of 

the processor may also require its own internal memory. We will defer discussion of these 

latter two types of internal memory to later chapters. Cache is another form of internal 

memory. External memory consists of peripheral storage devices, such as disk and tape, that 

are accessible to the processor via I/O controllers. 

An obvious characteristic of memory is its capacity. For internal memory, this is 

typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths are 8, 

16, and 32 bits. External memory capacity is typically expressed in terms of bytes. 

A related incept is the unit of transfer. For internal memory, the unit of transfer is equal 

to the number of electrical lines into and out of the memory module. This may be equal to 

the word length, but is often larger, such as 64,128, or 256 bits. To clarify this point, consider 

three related concepts for internal memory: 

 Word:  The "natural" unit of organization of memory. The size of the word is 

typically equal to the number of bits used to represent an integer and to the instruction 

length. Unfortunately, there are many exceptions. For example, the CRAY C90 (an 

older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit integer 

representation. The Intel x86 architecture has a wide variety of instruction lengths, 

expressed as multiples of bytes, and a word size of 32 bits. 

 Addressing units:  many systems allow addressing at the byte level. In any case, the 

relationship between the length in bits A of an address and the number N of 

addressable units is 2A = N. 

 Unit of transfer:  For main memory, this is the number of bits read out of or written 

into memory at a time. The unit of transfer need not equal a word or an addressable 
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processor. It is a de-.-ice for staging the movement of data between main memory 

and processor registers to improve performance. 

The three forms of memory just described are, typically, volatile and employ 

miconductor technology. The use of three levels exploits the fact that semiconductor 

memory comes in a variety of types, which differ in speed and cost. Data are stored 

more permanently on external mass storage devices, of which the most com on are 

hard disk and removable media, such as removable magnetic disk, tape, and optical 

storage. External, nonvolatile memory is also referred to as secondary memory 

auxiliary memory. These are used to store program and data files and are usually 

invisible to the programmer only in terms of files and records, as opposed to 

individual bytes or words. Disk is also used to provide an extension to main memory 

own as virtual memory, which is discussed in Chapter 8. 

 

Other forms of memory may be included in the hierarchy. For example, large 1 

mainframes include a form of internal memory known as expanded storage is uses a 

semiconductor technology that is slower and less expensive than that of in memory. 

Strictly speaking, this memory does not fit into the hierarchy but is a branch: Data 

can be moved between main memory and expanded storage but between expanded 

storage and external memory. Other forms of secondary memory include optical and 

magneto-optical disks. Finally, additional levels can be positively added to the 

hierarchy in software. A portion of main memory can be used as a buffer to hold 

data temporarily that is to be read out to disk. Such a technique, sometimes 

referred to as a disk cache, 2 improves performance in two ways 

 Disk writes are clustered. Instead of many small transfers of data, we have a 

few large transfers of data. This improves disk performance and minimize 

processor involvement. 

 Some data destined for write-out may be referenced by a program before the 

next dump to disk. In that case, the data are retrieved rapidly from the software 

cache rather than slowly from the disk. 
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1.0 Conclusion 

As one goes down the memory hierarchy one finds decreasing cost bit, 

increasing capacity, and slower access time. This unit focuses on internal 

memory elements. 

2.0 Summary 

Although seemingly simple in concept, computer memory exhibits perhaps 

the widest range of type, technology, organization, performance and cost of 

any feature of computer system 

The error correction technique involves adding redundant bits that are a 

function of the data bit to form an error correction code. If a bits error occurs, 

the code will detect and usually correct the error. 

3.0 Tutor Marked Assignment 

1. What are the differences among direct mapping, associative mapping and 

set associative mapping? 

2. What is a parity bit? 

3. How is the syndrome for the hamming code interpreted? 

4.0 References/Further reading 

1. Adamck, J. Foundation of coding New York Wiley 1991 

2. Smith,a CACHE MEMORIES ACM computing surveys September 1992 

UNIT 4: CACHE MEMORY 

1.0 INTRODUCTION 

2.0 OBJECTIVES 

3.0 MAIN CONTEXT 

3.1 CACHE MEMORY PRINCIPLES 

3.2 ELEMENTS OF CACHE DESIGN 

3.3 PENTIUM 4 CACHE ORGANIZATION 

3.4 ARM CACHE ORGANIZATION 

4.0 CONCLUSION 

5.0 SUMMARY 

6.0 TUTOR MARKED ASSIGNMENT 

7.0 REFERENCES AND FURTHER READING 
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The first step is to con_ trLictt a table in which each row corresponds to one of the 

product terms of the expression. The terms are grouped according to the number of 

complemented variables. I =:at is; eve start with the term with no complements, if it 

exists, then all terms with one complement, and so on. Table 20.5 shows the list for 

our example expression, with horizontal fines used to indicate the grouping. For 

clarity, 
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equal the value of the selected input gate. Using this regular organization, it is easy to 

construct multiplexers of size 8-to-1,16-to-1, and so on. 

Multiplexers are used in digital circuits to control signal and data routing. An example 

is the loading of the program counter (PC). The value to be loaded into the program counter 

may come from one of several different sources: 

A binary counter, if the PC is to be incremented for the next instruction 

 

 
 

 
 

• The instruction register, if a branch instruction using a direct address has just been 

executed 

• The output of the AT U, if the branch instruction specifies the address using a 

displacement mode 

These various inputs could be connected to the input lines of a mulltiplexer, with the PC 

connected to the output line. The select lines determine which value is loaded into the PC. 

Because the PC contains multiple bits, multiple multiplexers are used, one per bit. Figure 

20.14 illustrates this for 16-bit addresses. 
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Each chip requires 8 address lines, and these are supplied by the lower-order 8 bits of 

the address. The higher-order 2 bits of the 10-bit address are used to select one of the four 

RAM chips. For this purpose, a 2-to-4 decoder is used whose output enables one of the four 

chips, as shown in Figure 20.16. 

With an additional input line, a decoder can be used as a demultiplexer. The 

demultiplexer performs the inverse function of a multiplexer; it connects a single input to 

one of several outputs. This is shown in Figure 20.17. As before, n inputs are decoded to 

produce a single one of 2" outputs. All of the 2" output lines are ANDed with a data input 
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Thus we have the necessary logic to implement a multiple-bit adder such as shown in 

Figure 20.21. Note that because the output from each adder depends on the carry from the 

previous adder, there is an increasing delay from the least significant to the most significant 

bit. Each single-bit adder experiences a certain amount of gate delay, and this gate delay 

accumulates. For larger adders, the accumulated delay can become unacceptably high. 

If the carry values could be determined without having to ripple through all the 

previous stages, then each single-bit adder could function independently, and delay would 

not accumulate. This can be achieved with an approach known as carry lookahead. Let us 

look again at the 4-bit adder to explain this approach. 

We would like to come up with an expression that specifies the carry input to any 

stage of the adder without reference to previous carry values. We have 

Co = AOBQ (20.4) 

Ci = AjBj + AjA0B0 + BIAGBO (20.5) 

Co = AOBQ (20.4) 

Ci = AjBj + AjA0B0 + BIAGBO (20.5) 

C2 = A2B2 + A2A jBi + A2A jA0Bo + A2BjA0Bo + B2ACB1 + B2A jA0Bo + B2BjA0Bo 

 

This process can be repeated for arbitrarily long adders. Each carry term can be expressed in 

SOP form as a function only of the original inputs, with no dependence on the carries. Thus, 

only two levels of gate delay occur regardless of the length of the adder. 

For long numbers, this approach becomes excessively complicated. Evaluating the 

expression for the most significant bit of an n-bit adder requires an OR gate with n - 1 
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