

MODULE 1: ORGANIZATION AND ARCHITECTURE

UNIT 1: COMPUTER ORGANIZATION AND ARCHITECTURE

UNIT 2: INSTRUCTION SETS CHARACTERISTICS AND

FUNCTIONS

UNIT 3: TYPES OF OPERANDS

UNIT 1

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENTS

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE

3.2 STRUCTURE AND FUNCTION

3.3 COMPUTER COMPONENTS

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING

1.0 INTRODUCTION

In spite of the variety and pace of change in the computer field, certain

fundamental concepts apply consistently throughout. To be sure, the

application of these concepts depends on the current state of technology and

the price/ performance objectives of the designer.

Many computer manufacturers offer a family of computer models, all with the

same architecture but with differences in organization. In a class of computers

called microcomputers, the relationship between the architecture and

organization is very close. Changes in technology not only influence

organization but also result in the introduction of more powerful and more

complex architecture. However, because a computer organization must be

Preview from Notesale.co.uk

Page 6 of 186

designed o implement a particular architectural specification, a thorough

treatment of organization requires a detailed examination of architecture as

well.

2.0 OBJECTIVES

At the end of this unit you should be able to:

• Explain the operational units of a computer system.

• Outline types of operands and operations specific by machine

instruction.

• Explain opcodes, operands and addressing modes

3.0 MAIN CONTENT

3.1 COMPUTER ORGANIZATION AND ARCHITECTURE

Although it is difficult to give precise definition, a consensus exists about the

general area covered by it. Computer organization refers to the operational

units and their interconnection that realize the architectural specification.

Examples of architectural attributes include the instruction set, the number of

bit used to represent various data types (e. g numbers, characters), I/O

mechanism, and techniques for addressing memory. Organizational attributes

include those hardware details transparent to the programmer, such as control

signals; interfaces between the computer peripherals and memory technology

used.

3.2 STRUCTURE AND FUNCTION

A computer is a computer system, contemporary computers contain millions

of elementary electronic components.

• Structure: The way in which the components are interrelated.

• Function: The operation of each individual component as part of the

structure.

In term of description, there are two choices: starting at the bottom and

building up to a complete description, or beginning with a top view and

Preview from Notesale.co.uk

Page 7 of 186

decomposing the system into its subparts. Evidence from a number of fields

suggest that the top down approach is the clearest and most effective.

The approach taken is that the computer be described from the top down.

Both the structure and functioning of a computer are simple. Figure 1.1

depicts the basic functions that a computer can perform. In general terms,

there are only four:

- Data processing

- Data storage

- Data movement

- Control

The computer of course, must be able to process data. The data may take a

wide variety of forms, and the range of processing requirements id broad. It is

also essential that a computer store data. Even if the computer is processing

data on the fly (i.e data come in and get processed and the results go out

immediately) the computer must temporarily store at least. Those pieces of

data that are being worked on at any given moment. Files of data are stored on

the computer for subsequent retrieval and update.

 The computer must be able to move data between itself an outside

world. The computers operating environment consist of devices that serve as

either sources or destinations of data. When data are received from or

delivered to a device that is directly connected to the computer, the process is

known as input- output (I/O), and the device is referred to as a peripheral.

When data are moved over longer distances, to or form a remote device, the

process is known as data communications. Finally, there must be control of

these three functions. Ultimately, this control is exercised by the individuals

who provide the computer with instructions. Within the computer a control

unit manages the computers resources and orchestrates the performance of its

functional parts in response to those instructions.

There are four main structural components

Preview from Notesale.co.uk

Page 8 of 186

- Understand the way in which numbers are represented (the binary

format) and the algorithms used for the basic arithmetic operations (add,

subtract, multiply, divide) both to integer and floating point arithmetic.

3.1 THE ARITHMETIC AND LOGIC UNIT

The arithmetic and logic unit (ALU) is that part of the computer that actually

performs arithmetic and logical operations on data. All of the other elements

of the computer system- Control unit, registers memory, I/0- are there mainly

to bring into the ALU for it to process and then take the result back out.

An ALU and all electronic components in the computers are based on

the use of simple digital logic devices that can store binary digits and perform

simple Boolean logic operations.

Figure 3. 1. 1 indicates, in general terms, how the ALU is interconnected with

the rest of the processor. Data are presented to the ALU in registers and the

results of an operation are stored in registers. These registers are temporary

storage locations within the processor that are connected by signal paths to the

ALU. The ALU may also set flags as the result of an operation. For example,

an overflow flag is set to 1 if the result of a computation exceeds the length of

the register into which it is to be stored. The flag values are also stored in

registers within the processor. The control unit provides signals that control

the operation of th ALU and the movement of the data into and out of the

ALU.

3.2 INTEGER REPRESENTATION

 In the binary number, arbitrary numbers can be represented with just

the digits zero and one the minis sign and the period or radix point.

 -1101.01012= -13.312510

For purposes of computer storage and processing, however w do not have the

benefits of minus signs and periods. Only binary digits (0 and 1) may be used

Preview from Notesale.co.uk

Page 25 of 186

to represent numbers. If we are limited to non negative integers, the

representation is straight forward.

An 8 bit word can represent the numbers form 0 to 255, including

 00000000 = 0

 00000001 = 1

 00101001 = 41

 10000000 = 128

 11111111 = 255

In general, if an n- bit sequence of binary digits is interpreted as an

unsigned integer, A it value is

 A= n-1

 ΣΣΣΣ2i ai

 2=0

In going from the first to the second equation, we require that the least

significant n - 1 bits do not change between the two representations. Then we

get to .-next to last equation, which is only true if all of the bits in positions

throem 2 are 1. Therefore, the sign-extension rule works. .

Fixed-point representation

Finally, we mention that the representations discussed in this section are

sometime referred to as fixed point. This is because the radix point (binary

point) is fixed assumed to be to the right of the rightmost digit. The

programmer can use the representation for binary fractions by scaling the

numbers so that the binary poor implicitly positioned at some other location.

Negation

In sign-magnitude representation, the rule for forming the negation of an

integer is simple: invert the sign bit. In twos complement notation, the

negation of an integer can be formed with the following rules:

 Take the Boolean complement of each bit of the integer (including the sign

bit). That is, set each 1 to 0 and each 0 to 1.

Treating the result as an unsigned binary integer, add 1.

Preview from Notesale.co.uk

Page 26 of 186

(MAR) because this is only register connected to the address lines of the

system bus. The second step bring in the instruction. The desired address (in

the MAR) is placed on the ad c== -

Preview from Notesale.co.uk

Page 33 of 186

37

The IR is now in the same state as if indirect addressing had not been

use and it is ready for the execute cycle. We skip that cycle for a moment, to

consider t interrupt cycle.

At the completion of the execute cycle, a test is made to determine whether

any- :-_abled interrupts have occurred. If so, the interrupt cycle occurs. The

nature of cycle varies greatly from one machine to another. We present a very

simple sequeof events, as illustrated in Figure 12.8. We have

t1: MBR E- (PC)

t2: MAR F- Save Address PC F-

Routine Address t3: Memory E-

(MBR)

In the first step, the contents of the PC are transferred to the MBR, so that u-

can be saved for return from the interrupt. Then the MAR is loaded with the

add- .at which the contents of the PC are to be saved, and the PC is loaded

with the add to the MAR and PC, respectively. In any case, once this is done,

the final step is to store the MBR, which contains the old value of the PC, into

memory. The processor is now ready to begin the next instruction cycle.

The fetch, indirect, and interrupt cycles are simple and predictable. Each

involves a small, fixed sequence of micro-operations and, in each case, the

same micro-operations are repeated each time around.

This is not true of the execute cycle. Because of the variety opcodes, there

are a number of different sequences of micro-operations that can occur. Let us

consider several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following

sequence of micro-operations might occur:

We begin with the IR containing the ADD instruction. In the first step, the

address portion of the IR is loaded into the MAR. Then the referenced memory

Preview from Notesale.co.uk

Page 37 of 186

43

Preview from Notesale.co.uk

Page 43 of 186

47

Preview from Notesale.co.uk

Page 47 of 186

48

addressed memory module places the contents of the addressed memory

vocation on the address/data bus. The control unit sets the Read Control (RD)

signal to indicate a read, but it waits until T3 to copy the data from the bus. This

gives the memory module time to put the data on the bus and for the signal

levels to stabilize. The final state, T4, is a bus idle state during which the

processor decodes the instruction. The remaining machine cycles proceed in a

similar fashion.

Finally, consider a subroutine call instruction. As an example, consider a

branchand-save-address instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in

location X, and execution continues at location X + I. The saved address will

later be uses for return. This is a straightforward technique for providing

subroutine calls. The fo=lowing micro-operations suffice:

t,: MAR E- (IR(address)) MBR ~-

(PC)

tz: PC <-- (IR(address)) Memory <--

(MBR) t3: PC <__ (PC) + I

The address in the PC at the start of the instruction is the address of the

nexinstruction in sequence. This is saved at the address designated in the IR.

The lateeaddress is also incremented to provide the address of the instruction

for the next it - struction cycle.

We have seen that each phase of the instruction cycle can be decomposed into a

sequence of elementary micro-operations. In our example, there is one sequence

eac= for the fetch, indirect, and interrupt cycles, and, for the execute cycle,

there is one sequence of micro-operations for each opcode.

To complete the picture, we need to tie sequences of micro-operations to-

gether, and this is done in Figure 15.3. We assume a new 2-bit register called

Preview from Notesale.co.uk

Page 48 of 186

49

the instruction cycle code (ICC). The ICC designates the state of the processor

in terms of which portion of the cycle it is in:

00: Fetch 01: Indirect

10: Execute 11:

Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The

indirect cycle is always followed by the execute cycle. The interrupt cycle is

always followed by the fetch cycle (see Figure 12.4). For both the fetch and

execute cycles, the next cycle depends on the state of the system.

Thus, the flowchart of Figure 15.3 defines the complete sequence of

microoperations, depending only on the instruction sequence and the interrupt

pattern. Of course, this is a simplified example. The flowchart for an actual

processor would be more complex. In any case, we have reached the point in

our discussion in whic?, the operation of the processor is defined as the

performance of a sequence of microoperations. We can now consider how the

control unit causes this sequence to occur.

of tbp ~~r of the interrupt-processing routine. These two actions may each be

- single micro-operation. However, because most processors provide

multiple tyr_ and/or levels of interrupts, it may take one or more additional

micro-operations obtain the Save Address and the Routine Address before

they can be transfer the events of any instruction cycle can be described as

a sequence of such micro operations. A simple example will be used. In the

remainder of this chapter, we then show how the concept of micro-

operations serves as a guide to the design of the control unit.

Preview from Notesale.co.uk

Page 49 of 186

50

THE FETCH CYCLE

We begin by looking at the fetch cycle, which occurs at the beginning of

each instruction cycle and causes an instruction to be fetched from

memory. Four registers are involved:

• Memory address register (MAR): Is connected to the address lines of

the system bus. It specifies the address in memory for a read or write

operation.

• Memory buffer register (MBR): Is connected to the data lines of the

system bus. It contains the value to be stored in memory or the last

value read from memory.

• Program counter (PC): Holds the address of the next instruction to be

fetched.

• Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the

point of view of its effect on the processor registers. An example appears

in Figure 3.1.2. At the beginning of the fetch cycle, the address of the

next instruction to be executed is in the program counter (PC); in this

case, the address is 1100100. The first step is to move that address to the

memory address register (MAR) because this is the only register

connected to the address lines of the system bus. The second step is to

bring in the instruction. The desired address (in the MAR) is placed on

the address

Preview from Notesale.co.uk

Page 50 of 186

56

3.2 CONTROL OF THE PROCESSOR

As a result of our analysis in the preceding section, we have decomposed the behavior or

functioning of the, processor into elementary operations, called micro-operations. By

reducing the operation of the processor to its most fundamental level, we are able to define

exactly what it is that the control unit must cause to happen. Thus, we can define the

functional requirements for the control unit: those functions that the control unit must

perform. A definition of these functional requirements is the basis for the design and

implementation of the control unit.

With the information at hand, the following three-step process leads to a char-

acterization of the control unit:

1. Define the basic elements of the processor.

2. Describe the micro-operations that the processor performs.

3. Determine the functions that the control unit must perform to cause the micro-

operations to be performed.

We have already performed steps 1 and 2. Let us summarize the results. First, the basic

functional elements of the processor are the following:

• ALU

• Registers

• Internal data paths External data

paths

• Control unit

Some thought should convince you that this is i complete list. The ALU is the

functional essence of the computer. Registers are used to store data internal to the

processor. Some registers contain status information needed to manage instruction

sequencing (e.g., a program status word). Others contain data that go to or come from the

ALU, memory, and I/O modules. Internal data paths are used to move data between

registers and between register and ALU. External data paths link registers to memory and

1/O modules, often by means of a system bus. The control unit causes operations to

happen within the processor.

Preview from Notesale.co.uk

Page 56 of 186

63

output would feed back to the input. Register Z provides temporary output storage.

With this arrangement, an operation to add a value from memory to the AC would

have the following steps:

 t1: MAR (IR (address))

 t2: MBR Memory

 t3: Y (MBR)

 t4: Z (AC) + (Y)

 t5: AC (Z)

Other organizations are possible, but, in general, some sort of internal bus or set

of internal buses is used. The use of common data paths simplifies the interconnection

layout and the control of the processor. Another practical reason for the use of an

internal bus is to save space.

To illustrate some of the concepts introduced thus far in this unit, let us consider the

Intel 8085. Its organization is shown in Figure 3.2.5. Several key components that may

not be self-explanatory are:

� Incremental decrementer address latch: Logic that can add 1 to or subtract 1

from the contents of the stack pointer or program counter. This saves time by

avoiding the use of the ALU for this purpose.

� Interrupt control: This module handles multiple levels of interrupt signals.

� Serial UO control: This module interfaces to devices that communicate 1 bit at

a time.

Table 15.2 describes the external signals into and out of the 8085. These are linked

to the external system bus. These signals are the interface between the 8085 processor

and the rest of the system (Figure 15.8).

Preview from Notesale.co.uk

Page 63 of 186

66

The control unit is identified as having two components labeled (1) instruction decoder

and machine cycle encoding and (2) timing and control. A discussion of the first

component is deferred until the next section. The essence of the control unit is the timing

and control module. This module includes a clock and accepts as inputs the current

instruction and some external control signals. Its output consists of control signals to the

other components of the processor plus control signals to the external system bus.

The timing of processor operations is synchronized by the clock and controlled by the

control unit with control signals. Each instruction cycle is divided into from one to five

machine cycles; each machine cycle is in turn divided into from three to five states. Each

state lasts one clock cycle. During a state, the processor performs one or a set of

simultaneous micro-operations as determined by the control signals.

The number of machine cycles is fixed for a given instruction but varies from one

instruction to accesses. Thus, the number of machine cycles for an instruction depends on t-

lie number of times the processor must communicate with external devices. For example, if

an instruction consists of two 8-bit portions, then two machine cycles are required to fetch

the instruction. If that instruction involves a 1-byte memory or I/O operation, then a third

machine cycle is required for execution.

Preview from Notesale.co.uk

Page 66 of 186

81

5.0 SUMMARY

In a parallel organization, multiple processing units cooperate to execute applications

whereas a superscalar process exploits opportunities for parallel execution at the instruction

level, a parallels processing organization looks for a grosser level of parallelism one that

enables work to be done in parallel and cooperatively by multiple processors

6.0 TUTOR- MARKED ASSIGNMENT

1. List and briefly define types of parallel processor system.

2. List the two most common multiple processor organizations

7.0 REFERENCES/FURTHER READING

 Catanzaro B. Multi processor system Architecture Mountain View CA, Sun sift pres

1994

UNIT 2: SYMMETRIC MULTI PROCESSOR

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Organizations

3.2 Multi processor operating system design considerations

3.3 A main frame SMP

4.0 Conclusion

5.0 Summary

6.0 Tutor marked assignment

7.0 References/further

1.0 Introduction

Virtually all single user personal computers and most work stations contained a single

generate purpose micro processors. As demand for performance increases and is the cost of

microprocessors continues to drop. Vendors have introduced system with and SMP

organization.

2.0 Objectives

At the end of this unit you should be able to

Preview from Notesale.co.uk

Page 81 of 186

86

- Memory has adapter (MBA): The MBA provides an interface to various types of

I/O channels. Traffic to/from the channels goes directly to the L2 cache.

- The microprocessor in the 2990 is relatively uncommon compared with other

modern processors because although. It is superscalar it executes instructions in strict

architectural order

4.0 CONCLUSION

 The term SMP refers to a computer hardware architecture and also to the operating

system behaviour that reflects that architecture. It can be defined as a stands alone

computer system with the following characteristics.

1. There are two or more similar processors of comparable capability.

2. These processors share the same main memory and I/O facilities and are

interconnected by a bus or other internal connection scheme such that memory aces time is

approximately the same for each process.

Preview from Notesale.co.uk

Page 86 of 186

88

7.0 References/ Further reading

 Milenkovic, A. “Achieving High Performance in Bus- Based shared memory

multiprocessors” IEEE concurrency, July- September 2000

UNIT 3: MULTI THREADING AND CHIP MULTI PROCESSORS

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 IMPLICIT AND EXPLICIT MULTITHREADING

3.2 APPROACHES TO EXPLICIT MULTITHREADING

3.3 EXAMPLE SYSTEMS

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR- MARKED ASSIGNMENT

7.0 REFERENCES/FURTHER READING

1.0 INTRODUCTION

The most important measure of performance for a processor is the rate at which it executes

instructions. This can be expressed as MIPS rate = f x IPC where f is the processor clock

frequency, in MHz, and IPC (instructions per cycle) is the average number of instructions

executed per cycle. Accordingly, designers have pursued the goal of increased performance

on two fronts: increasing clock frequency and increasing the number of instructions

executed or, more properly, the number of instructions that complete during a processor

cycle.

An alternative approach, which allows for a high degree of instruction-level parallelism

without increasing circuit complexity or power consumption, is called multithreading. In

essence, the instruction stream is divided into several smaller streams, known as threads,

such that the threads can be executed in parallel.

Preview from Notesale.co.uk

Page 88 of 186

96

This approach is also used on the Cray supercomputer. An alternative approach, used on

Control Data machines, is to obtain operands directly from memory. The main

disadvantage of the use of vector registers is that the programmer or compiler must take

them into account for good performance. For example, suppose that the length of the vector

registers is K and the length of the a minor performance, vectors to be processed is N > K.

In this case, a vector loop must be performed, in which the operation is performed on K

elements at a time and the loop is repeated N/K times. The main advantage of the vector

register approach is that the can be resumed from operation is decoupled from slower main

memory and instead takes place primarily taken, in a marine with registers.

The speedup that can be achieved using registers is demonstrated in F17.20. The

FORTRAN routine multiplies vector A by vector B to produce C, where each vector

has a real part (AR, BR, CR) and an imaginary part (Ai. CI). The 3090 can perform

one main-storage access per processor, or clock.(either read or write); has registers

that can sustain two accesses for reading one for writing per cycle; and produces one

result per cycle in its arithmetic. Let us assume the use of instructions that can specify

two source operands result. Part a of the figure shows that, with memory-to-memory

instructions iteration of the computation 'requires a total of 18 cycles.

Preview from Notesale.co.uk

Page 96 of 186

101

Generalizing from the work of a number of researchers, three elements emerge that, by

and large, characterize RISC architectures. First, use a large number of registers or use a

compiler to optimize register usage. This is intended to optimize operand referencing.

The studies just discussed show that there are several references per HLL instruction

and that there is a high proportion of move (assignment) statements. This, coupled with

the locality and predominance of scalar references, suggests that performance can be

improved by reducing memory references at the expense of more register references.

Because of the locality of these references, an expanded register set seems practical.

Second, careful attention needs to be paid to the design of instruction pipelines. Because

of the high proportion of conditional branch and procedure call instructions, a

straightforward instruction pipeline will be inefficient. This manifests itself as a high

proportion of instructions that are prefetched but never executed.

Finally, a simplified (reduced) instruction set is indicated. This point is not as obvious

as the others, but should become clearer in the ensuing discussion.

4.0 CONCLUSION

Assignment statements predominate, suggesting that the simple movement of data

should be optimized. There are also many IF and LOOP instructions, which suggest

that the underlying sequence control mechanism needs to be optimized to permit

efficient pipelining. Studies of operand reference patterns suggest that it should be

possible to enhance, performance by keeping A moderate number of operands in

registers.

5.0 SUMMARY

The simple instruction set of a RISC lends itself to efficient pipelining because there

are fewer and more predictable operations performed per instruction. Other

instruction to improve pipeline efficiency.

6.0 Tutor marked assignment

1. What is a delayed branch?

7.0 REFERENCES/ FURTHER READING

Patterson, D “Reduced instruction set computers communications of the ACM,

January 1985.

Preview from Notesale.co.uk

Page 101 of 186

102

UNIT 2: REDUCED INSTRUCTION SET ARCHITECTURE

CONTENT

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTENT

3.1 WHY CISC

3.2 CHARACTERISTICS OF REDUCED INSTRUCTION SET

ARCHITECTURES

3.3 CISC VERSUS RISC CHARACTERISTICS

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES/ FURTHER READING

1.0 INTRODUCTION

This is the focus of this unit. The RISC architecture is a dramatic departure from

the historical trend in processor architecture. An analysis of the RISC

architecture brings into focus many of the important issues in computer

organization and architecture.

2.0 OBJECTIVES

 At the end of this unit, you should be able to understand the pitfalls in the CISC

approach in companion to RISC.

3.1 Why CISC

In this section, we look at some of the general characteristics of and the motivation for a

reduced instruction set architecture. Specific examples will be seen later in this chapter. We

begin with a discussion of motivations for contemporary complex instruction set

architectures.

We have noted the trend to richer instruction sets, which include a larger number of

instructions and more complex instructions. Two principal reasons have motivated this trend:

a desire to simplify compilers and a desire to improve performance. Underlying both of these

reasons was the shift to HLLs on the part of programmers; architects attempted to design

machines that provided better support for HLLs.

Preview from Notesale.co.uk

Page 102 of 186

103

It is not the intent of this chapter to say that the CISC designers took the wrong direction.

Indeed, because technology continues to evolve and because architectures exist along a

spectrum rather than in two neat categories, a black-and-white assessment is unlikely ever to

emerge. Thus, the comments that follow are simply meant to point out some of the potential

pitfalls in the CISC approach and to provide some understanding of the motivation of the

RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious. The task of the

compiler writer is to generate a sequence of machine instructions for each FILL statement. If

there are machine instructions that resemble HLL statements, this task is simplified. This

reasoning has been disputed by the RISC researchers ([HENN82]. [RAIJI83], [PATT82b]).

They have found that complex machine instructions are often hard to exploit because the

compiler must find those cases that exactly fit the construct. The task of optimizing the

generated code to minimize code size, reduce instruction execution count, and enhance

pipelining is much more difficult with a complex instruction set. As evidence of this, studies

cited earlier in this chapter indicate that most of the instructions in a compiled program are

the relatively simple ones.

The other major reason cited is the expectation that a CISC will yield smaller. faster

programs. Let us examine both aspects of this assertion: that programs will be smaller and

that they will execute faster.

There are two advantages to smaller programs. First, because the program takes up less

memory, there is a savings in that resource. With memory today being so inexpensive, this

potential advantage is no longer compelling. More important

smaller programs should improve performance, and this will happen in two ways. First,

fewer instructions means fewer instruction bytes to be fetched. Second, in a paging

environment, smaller programs occupy fewer pages, reducing page faults.

The problem with this line of reasoning is that it is far from certain that a CISC program will

be smaller than a corresponding RISC program. In many cases, the CISC program, expressed

in symbolic machine language, may be shorter (i.e., fewer instructions), but the number of

Preview from Notesale.co.uk

Page 103 of 186

125

An OS is a program that controls the execution of application programs and acts as an

interface between the user of a computer and the computer hardware. It can be thought of

as having two objectives:

- Convenience: An OS makes a computer more convenient to use.

- Efficiency: An OS allows the computer system resources to be used in an efficient

manner.

Let us examine these two aspects of an OS in turn.

The operating system a as user/ computer interface

The hardware and software used in providing applications to a user can be viewed in a

layered or hierarchical fashion, as depicted in Figure 8.1. The user of those applications,

the end user, generally is not concerned with the computer's architecture. Thus the end user

views a computer system in terms of an application. That application row can used in a

programming language and is developed by an application programme. To develop an

application program as a set of processor instructions that is completely responsible for

controlling the computer hardware would be an overwhelmingly complex task. To ease this

task, a set of systems programs is provided. Some of these programs are referred to as

utilities. These implement frequently used functions that assist in program creation, the

management of files, and the control of I/O devices. A programmer makes use of these

facilities in developing an application, and the application, while it is running, invokes the

utilities to perform certain functions. The most important system program is the OS. The

OS masks the details of the hardware from the programmer and provides the programmer

with a convenient interface for using the system. It acts as mediator, making it easier for

the programmer and for application programs to access and use those facilities and

services.

Preview from Notesale.co.uk

Page 125 of 186

142

process some time in turn. Priority levels may also be used. Finally, there is an I/O queue for

each I/O device. More than one process may request the use of the same I/O device. All

processes waiting to use each device are lined up in that device's queue.

Figure 8.11 suggests how processes progress through the computer under the control of

the OS. Each process request (batch job, user-defined interactive job) is placed in the long-

term queue. As resources become available, a process request becomes a process and is then

placed in the ready state and put in the short-term queue. The processor alternates between

executing OS instructions and executing user processes. While the OS is in control, it

decides which process in the short-term queue should be executed next. When the OS has

finished its immediate tasks, it turns the processor over to the chosen process.

As was mentioned earlier, a process being executed may be suspended for a variety of

reasons. If it is suspended because the process requests I/O, then it is placed in the

appropriate I/O queue. If it is suspended because of a timeout or because the OS must attend

to pressing business. then it is placed in the ready state and put into the short-term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O operation is

completed, the OS removes the satisfied process from that I/O queue and places it in the

short-term queue. It then selects another waiting process (if any) and signals for the I/O

device to satisfy that process's request.

UNIT 3: Memory System

1.0 Introduction

2.0 Objectives

3.0 Main content

3.1 Characteristics of memory systems

3.2 The memory hierarchy

3.3 Error correction

1.0 Introduction

Computer memory is organized into a hierarchy. At the highest level (closest to the

processor) are the processor registers. Next comes one or more levels of cache, When

multiple levels are used, they are denoted L1, L2, and so on.Error correction techniques

are commonly used in memory systems.

2.0 objectives

At the end of this unit, you should be able to

Preview from Notesale.co.uk

Page 142 of 186

144

the form of registers (e.g., see Figure 2.3). Further, as we shall see, the control unit portion of

the processor may also require its own internal memory. We will defer discussion of these

latter two types of internal memory to later chapters. Cache is another form of internal

memory. External memory consists of peripheral storage devices, such as disk and tape, that

are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is

typically expressed in terms of bytes (1 byte = 8 bits) or words. Common word lengths are 8,

16, and 32 bits. External memory capacity is typically expressed in terms of bytes.

A related incept is the unit of transfer. For internal memory, the unit of transfer is equal

to the number of electrical lines into and out of the memory module. This may be equal to

the word length, but is often larger, such as 64,128, or 256 bits. To clarify this point, consider

three related concepts for internal memory:

 Word: The "natural" unit of organization of memory. The size of the word is

typically equal to the number of bits used to represent an integer and to the instruction

length. Unfortunately, there are many exceptions. For example, the CRAY C90 (an

older model CRAY supercomputer) has a 64-bit word length but uses a 46-bit integer

representation. The Intel x86 architecture has a wide variety of instruction lengths,

expressed as multiples of bytes, and a word size of 32 bits.

 Addressing units: many systems allow addressing at the byte level. In any case, the

relationship between the length in bits A of an address and the number N of

addressable units is 2A = N.

 Unit of transfer: For main memory, this is the number of bits read out of or written

into memory at a time. The unit of transfer need not equal a word or an addressable

Preview from Notesale.co.uk

Page 144 of 186

150

processor. It is a de-.-ice for staging the movement of data between main memory

and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ

miconductor technology. The use of three levels exploits the fact that semiconductor

memory comes in a variety of types, which differ in speed and cost. Data are stored

more permanently on external mass storage devices, of which the most com on are

hard disk and removable media, such as removable magnetic disk, tape, and optical

storage. External, nonvolatile memory is also referred to as secondary memory

auxiliary memory. These are used to store program and data files and are usually

invisible to the programmer only in terms of files and records, as opposed to

individual bytes or words. Disk is also used to provide an extension to main memory

own as virtual memory, which is discussed in Chapter 8.

Other forms of memory may be included in the hierarchy. For example, large 1

mainframes include a form of internal memory known as expanded storage is uses a

semiconductor technology that is slower and less expensive than that of in memory.

Strictly speaking, this memory does not fit into the hierarchy but is a branch: Data

can be moved between main memory and expanded storage but between expanded

storage and external memory. Other forms of secondary memory include optical and

magneto-optical disks. Finally, additional levels can be positively added to the

hierarchy in software. A portion of main memory can be used as a buffer to hold

data temporarily that is to be read out to disk. Such a technique, sometimes

referred to as a disk cache, 2 improves performance in two ways

 Disk writes are clustered. Instead of many small transfers of data, we have a

few large transfers of data. This improves disk performance and minimize

processor involvement.

 Some data destined for write-out may be referenced by a program before the

next dump to disk. In that case, the data are retrieved rapidly from the software

cache rather than slowly from the disk.

Preview from Notesale.co.uk

Page 150 of 186

154

1.0 Conclusion

As one goes down the memory hierarchy one finds decreasing cost bit,

increasing capacity, and slower access time. This unit focuses on internal

memory elements.

2.0 Summary

Although seemingly simple in concept, computer memory exhibits perhaps

the widest range of type, technology, organization, performance and cost of

any feature of computer system

The error correction technique involves adding redundant bits that are a

function of the data bit to form an error correction code. If a bits error occurs,

the code will detect and usually correct the error.

3.0 Tutor Marked Assignment

1. What are the differences among direct mapping, associative mapping and

set associative mapping?

2. What is a parity bit?

3. How is the syndrome for the hamming code interpreted?

4.0 References/Further reading

1. Adamck, J. Foundation of coding New York Wiley 1991

2. Smith,a CACHE MEMORIES ACM computing surveys September 1992

UNIT 4: CACHE MEMORY

1.0 INTRODUCTION

2.0 OBJECTIVES

3.0 MAIN CONTEXT

3.1 CACHE MEMORY PRINCIPLES

3.2 ELEMENTS OF CACHE DESIGN

3.3 PENTIUM 4 CACHE ORGANIZATION

3.4 ARM CACHE ORGANIZATION

4.0 CONCLUSION

5.0 SUMMARY

6.0 TUTOR MARKED ASSIGNMENT

7.0 REFERENCES AND FURTHER READING

Preview from Notesale.co.uk

Page 154 of 186

173

The first step is to con_ trLictt a table in which each row corresponds to one of the

product terms of the expression. The terms are grouped according to the number of

complemented variables. I =:at is; eve start with the term with no complements, if it

exists, then all terms with one complement, and so on. Table 20.5 shows the list for

our example expression, with horizontal fines used to indicate the grouping. For

clarity,

Preview from Notesale.co.uk

Page 173 of 186

177

equal the value of the selected input gate. Using this regular organization, it is easy to

construct multiplexers of size 8-to-1,16-to-1, and so on.

Multiplexers are used in digital circuits to control signal and data routing. An example

is the loading of the program counter (PC). The value to be loaded into the program counter

may come from one of several different sources:

A binary counter, if the PC is to be incremented for the next instruction

• The instruction register, if a branch instruction using a direct address has just been

executed

• The output of the AT U, if the branch instruction specifies the address using a

displacement mode

These various inputs could be connected to the input lines of a mulltiplexer, with the PC

connected to the output line. The select lines determine which value is loaded into the PC.

Because the PC contains multiple bits, multiple multiplexers are used, one per bit. Figure

20.14 illustrates this for 16-bit addresses.

Preview from Notesale.co.uk

Page 177 of 186

179

Each chip requires 8 address lines, and these are supplied by the lower-order 8 bits of

the address. The higher-order 2 bits of the 10-bit address are used to select one of the four

RAM chips. For this purpose, a 2-to-4 decoder is used whose output enables one of the four

chips, as shown in Figure 20.16.

With an additional input line, a decoder can be used as a demultiplexer. The

demultiplexer performs the inverse function of a multiplexer; it connects a single input to

one of several outputs. This is shown in Figure 20.17. As before, n inputs are decoded to

produce a single one of 2" outputs. All of the 2" output lines are ANDed with a data input

Preview from Notesale.co.uk

Page 179 of 186

184

Thus we have the necessary logic to implement a multiple-bit adder such as shown in

Figure 20.21. Note that because the output from each adder depends on the carry from the

previous adder, there is an increasing delay from the least significant to the most significant

bit. Each single-bit adder experiences a certain amount of gate delay, and this gate delay

accumulates. For larger adders, the accumulated delay can become unacceptably high.

If the carry values could be determined without having to ripple through all the

previous stages, then each single-bit adder could function independently, and delay would

not accumulate. This can be achieved with an approach known as carry lookahead. Let us

look again at the 4-bit adder to explain this approach.

We would like to come up with an expression that specifies the carry input to any

stage of the adder without reference to previous carry values. We have

Co = AOBQ (20.4)

Ci = AjBj + AjA0B0 + BIAGBO (20.5)

Co = AOBQ (20.4)

Ci = AjBj + AjA0B0 + BIAGBO (20.5)

C2 = A2B2 + A2A jBi + A2A jA0Bo + A2BjA0Bo + B2ACB1 + B2A jA0Bo + B2BjA0Bo

This process can be repeated for arbitrarily long adders. Each carry term can be expressed in

SOP form as a function only of the original inputs, with no dependence on the carries. Thus,

only two levels of gate delay occur regardless of the length of the adder.

For long numbers, this approach becomes excessively complicated. Evaluating the

expression for the most significant bit of an n-bit adder requires an OR gate with n - 1

Preview from Notesale.co.uk

Page 184 of 186

