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2 Planck’s constant in action Chap. 1

h h
p=5 and e:%’, (1.1)

where \ is the wavelength of the electromagnetic radiation. In comparison with
macroscopic standards, the momentum and energy of a photon are tiny. For
example, the momentum and energy of a visible photon with wavelength
N = 663 nm are

p=10"7Js and e=3x10""1.

We note that an electronvolt, 1eV = 1.602 x 10717, is a useful unit for the
energy of a photon: visible photons have energies of the order of an eV and
X-ray photons have energies of the order of 10keV.

The evidence for the existence of photons emerged during the early y O \
of the twentieth century. In 1923 the evidence became comp G
A. H. Compton showed that the wavelength of an X -1 Wﬂ *it is
scattered by an atomic electron. This effect, Qﬁ the Compton

effect, can be understood by assumin 1ng pr oton—

electron collision in which e @men um are co rve trated

in Fig. 1.1, the incid fers m ary electron SO

that the SC has a lowe &l hence a longer wave-
r

ough an angle 0 by a stationary

PP 0n8
of mass m,, the ingTea! avelength is given by

AN =

(1.2)

We note that the magnitude of this increase in wavelength is set by

Fig. 1.1 A photon-¢lectron collision in which a photon is scattered by a stationary
electron through an angle 0. Because the electron recoils with momentum P, the
magnitude of the photon momentum decreases from p; to py and the photon wavelength
increases.
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by crystal lattices. Indeed, the first experiments to demonstrate the wave
properties of electrons were crystal diffraction experiments by C. J. Davisson
and L. H. Germer and by G. P. Thomson in 1927. Davisson’s experiment
involved electrons with energy around 54eV and wavelength 0.17 nm which
were diffracted by the regular array of atoms on the surface of a crystal of
nickel. In Thomson’s experiment, electrons with energy around 40keV and
wavelength 0.006 nm were passed through a polycrystalline target and dif-
fracted by randomly orientated microcrystals. These experiments showed
beyond doubt that electrons can behave like waves with a wavelength given
by the de Broglie relation Eq. (1.3).

Since 1927, many experiments have shown that protons, neutrons, atoms and
molecules also have wave-like properties. However, the conceptual implications
of these properties are best explored by reconsidering the two-slit interference
experiment illustrated in Fig. 1.2. We recall that a photon passing through two \
slits gives rise to wave-like disturbances which interfere constru ti O *
destructively when the photon is detected on a screen iAd the
slits. Particles of matter behave in a 51m11ar W bs matter, like a

photon, gives rise to wave- 11ke disturb er ere cQ s ly and
destructively when the par Qm on a screen, ’2 ofc)and more
particles pass throuss 'Qj terfere on the obser-
vation screm a able behav ? n Fig. 1.3.

P g, tterns fa et of partlcles passing through two

¢ been observed e F or example, two-slit interference pat-
terns formed by electrons have been observed by A. Tonomura, J. Endo,
T. Matsuda, T. Kawasaki and H. Exawa (Admerican Journal of Physics, vol. 57,
p- 117(1989)). They also demonstrated that a pattern still emerges even when the
source is so weak that only one electron is in transit at any one time, confirming
that each electron seems to pass through both slits in a wave-like way before
detection at a random point on the observation screen. Two-slit interference
experiments have been carried out using neutrons by R. Géhler and A. Zeilinger
(American Journal of Physics, vol. 59, p. 316 (1991)), and using atoms by
O. Carnal and J. Mlynek (Physical Review Letters, vol. 66, p. 2689 (1991)).
Even molecules as complicated as Cgy molecules have been observed to exhibit
similar interference effects as seen by M. Arndt et al. (Nature, vol. 401, p. 680
(1999)).

These experiments demonstrate that particles of matter, like photons, are not
classical particles with well-defined trajectories. Instead, when presented with
two possible trajectories, one for each slit, they seem to pass along both
trajectories in a wave-like way, arrive at a random point on the screen and
build up an interference pattern. In all cases the pattern consists of fringes
with a spacing of AD/d, where d is the slit separation, D is the screen distance
and \ is the de Broglie wavelength given by Eq. (1.3).

Physicists have continued to use the ambiguous word particle to describe
these remarkable microscopic objects. We shall live with this ambiguity, but we
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shall occasionally use the term quantum particle to remind the reader that the
object under consideration has particle and wave-like properties. We have used
this term in Fig. 1.3 because this figure provides a compelling illustration of
particle and wave-like properties. Finally, we emphasize the role of Planck’s
constant in linking the particle and wave-like properties of a quantum particle.
If Planck’s constant were zero, all de Broglie wavelengths would be zero and
particles of matter would only exhibit classical, particle-like properties.

1.3 ATOMS

It is well known that atoms can exist in states with discrete or quantized energy.

For example, the energy levels for the hydrogen atom, consisting of an electron

and a proton, are shown in Fig. 1.4. Later in this book we shall show that \

bound states of an electron and a proton have quantized energies Eﬁ/% byco .
.

So

A\
P ( e\tf&unbound age

energy levels E,=0
E;= 13_26 vV
Ey=- 1;26 eV
E1 =136 v

12

Fig. 1.4 A simplified energy level diagram for the hydrogen atom. To a good approxi-
mation the bound states have quantized energies given by E, = —13.6/n” €V where n, the
principal quantum number, can equal 1,2,3, .... When the excitation energy is above
13.6eV, the atom is ionized and its energy can, in principle, take on any value in the
continuum between E = 0 and E = oo.
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But quantized energy levels are not the most amazing property of atoms.
Atoms are surprisingly resilient: in most situations they are unaffected when
they collide with neighbouring atoms, but if they are excited by such encounters
they quickly return to their original pristine condition. In addition, atoms of the
same chemical element are identical: somehow the atomic number Z, the
number of electrons in the atom, fixes a specific identity which is common to
all atoms with this number of electrons. Finally, there is a wide variation in
chemical properties, but there is a surprisingly small variation in size; for
example, an atom of mercury with 80 electrons is only three times bigger than
a hydrogen atom with one electron.

These remarkable properties show that atoms are not mini solar systems in
which particle-like electrons trace well-defined, classical orbits around a nu-
cleus. Such an atom would be unstable because the orbiting electrons would
radiate electromagnetic energy and fall into the nucleus. Even in the absence of
electromagnetic radiation, the pattern of orbits in such an atom w
whenever the atom collided with another atom. Thus, thj X‘Em‘ture
cannot explain why atoms are stable, why at emlcal element

are always identical or why atoms ngly s Alon in
size. Q Z
In fact, atom‘s can e‘xl ood by ﬁ ve-like proper-
b

ties of ato some exten € mus1cal instruments.

r‘ st ing vibr a’g frequency, it forms a standing wave
? of spec1ﬁc shapew -like electrons, with definite energy, are
confined inside an atom, they form a wave pattern of specific shape. An atom is
resilient because, when left alone, it assumes the shape of the electron wave
pattern of lowest energy, and when the atom is in this state of lowest energy
there is no tendency for the electrons to radiate energy and fall into the nucleus.
However, atomic electrons can be excited and assume the shapes of wave
patterns of higher quantized energy.

One of the most surprising characteristics of electron waves in an atom is that
they are entangled so that it is not possible to tell which electron is which. As a
result, the possible electron wave patterns are limited to those that are compat-
ible with a principle called the Pauli exclusion principle. These patterns, for an
atom with an atomic number Z, uniquely determine the chemical properties of
all atoms with this atomic number.

All these ideas will be considered in more detail in subsequent chapters, but
at this stage we can show that the wave nature of atomic electrons provides a
natural explanation for the typical size of atoms. Because the de Broglie
wavelength of an electron depends upon the magnitude of Planck’s constant
h and the electron mass m,, the size of an atom consisting of wave-like electrons
also depends upon % and m,. We also expect a dependence on the strength of
the force which binds an electron to a nucleus; this is proportional to e?/4mc,
where e is the magnitude of the charge on an electron and on a proton. Thus,
the order of magnitude of the size of atoms is expected to be a function of
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However, because of the particle-like properties of light, the process of
observation involves innumerable photon—particle collisions, with the scattered
photons entering the lens of the microscope. To enter the lens, a scattered
photon with wavelength A and momentum //\ must have a sideways momen-
tum between

h sino and + h sin o
N A '
Thus the sideways momentum of the scattered photon is uncertain to the degree

Apz%sincx. (1.13)

The sideways momentum of the observed particle has a similar an@O \
because momentum is conserved when the photon scatters ‘é

We note that we can reduce the uncertainty in e observed
particle by increasing the wavelength of the r“& nat1 article,
but this would result in a pgorer sowution of t nd an
increase in the uncertaint l§ t n of the rt1 b¥ combining

Eq. (1.12) aﬁﬁ& e find that the unCept ies the pos1t10n and in the
serv

v\vte eﬁaé{g ately related by

AxAp =~ h. (1.14)
This result is called the Heisenberg uncertainty principle. It asserts that greater
accuracy in position is possible only at the expense of greater uncertainty in
momentum, and vice versa. The precise statement of the principle is that the
fundamental uncertainties in the simultaneous knowledge of the position and
momentum of a particle obey the inequality

AxApzﬁ, wherehzi. (1.15)
2 2n

We shall derive this inequality in Section 7.4 of Chapter 7.

The Heisenberg uncertainty principle suggests that a precise determination of
position, one with Ax = 0, is possible at the expense of total uncertainty in
momentum. In fact, an analysis of the microscope experiment, which takes into
account the Compton effect, shows that a completely precise determination of
position is impossible. According to the Compton effect, Eq. (1.2), the wave-
length of a scattered photon is increased by

h
AN =—(1 — cos0),
me
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where m is the mass of the observed particle and 6 is an angle of scatter which
will take the photon into the microscope lens. This implies that, even if we
illuminate the particle with radiation of zero wavelength to get the best possible
spatial resolution, the radiation entering the microscope lens has a wavelength
of the order of #/mec. It follows that the resolution given by Eq. (1.12) is at best

A~ (1.16)
S1n o meceSsin o

which means that the minimum uncertainty in the position of an observed
particle of mass m is of the order of i/mc.

Our analysis of Heisenberg’s microscope experiment has illustrated the role
of Planck’s constant in a measurement: The minimum uncertainties in the
position and momentum of an observed particle are related by AxAp h dnd
the minimum uncertainty in position is not zero but of the ord

However, readers are warned that Heisenberg’s microscope
misleading. In particular, readers should resist tSe ég clieve that a

particle can really have a definite posm
the clumsy nature of the o E ‘-ﬁ
0

m, wh1 ause of
ot be measur is no

S Wlth momentum.
le 1dea11 t of the imagination of

This concept i &Q
M ndee certamty principle can be con-
ge 9

evidence for the existerc

red asa danger signal S how far we can go in using the classical
concepts of position and momentum without getting into trouble with reality.

Measurement and wave—particle duality

In practice, the particle-like properties of a quantum particle are observed when
it is detected, whereas its wave-like properties are inferred from the random
nature of the observed particle-like properties. For example, in a two-slit
experiment, particle-like properties are observed when the position of a quan-
tum particle is measured on the screen, but the wave-like passage of the
quantum particle through both the slits is not observed. It is inferred from a
pattern of arrival at the screen which could only arise from the interference of
two wave-like disturbances from the two slits.

However, the inferred properties of a quantum particle depend on the experi-
ment and on the measurements that can take place in this experiment. We shall
illustrate this subjective characteristic of a quantum particle by considering a
modification of the two-slit experiment in which the screen can either be held
fixed or be allowed to move as shown in Fig. 1.7.

When the pin in Fig. 1.7 is inserted, detectors on a fixed screen precisely
measure the position of each arriving particle and an interference pattern builds
with fringes separated by a distance of AD/d.

.
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H «— Vertical

i momentum
Quantum particles

incident on two slits sensor

—_—

Pin which

@ 1 <— holds or

L releases screen

Fig. 1.7 A modified two-slit experiment in which the screen may move Vertlcally O \
become a part of a detection system which identifies the slit through which

passes. t esa

When the pin is withdrawn, the s mobile '(Asystem
which is sensitive to the mom m)\ of the p i %he screen.
It recoils When-a XN and, by %}5 @ coll accurately, we
can mem 1 momentuy U’E detected at the screen and

the slit fr q article came. For example, near the
contre of the screen, a par cle e upper slit has a downward momentum
of pd/2D and a particle from the lower slit has an upward momentum of
pd/2D. In general, the difference in vertical momenta of particles from the

two slits is approximately Ap ~ pd/D. Thus, if the momentum of the recoiling
screen is measured with an accuracy of

~ P4
Ap ~ D (1.17)
we can identify the slit from which each particle emerges. When this is the case,
a wave-like passage through both slits is not possible and an interference
pattern should not build up. This statement can be verified by considering the
uncertainties involved in the measurement of the momentum of the screen.
The screen is governed by the Heisenberg uncertainty principle and an
accurate measurement of its momentum is only possible at the expense of an
uncertainty in its position. In particular, if the uncertainty in the vertical
momentum of the screen is Ap =~ pd/D, so that we can just identify the slit
through which each particle passes, then the minimum uncertainty in the
vertical position of the screen is

h _hD

Avmgo~ o (1.18)
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dw 7k
—=— 2.12
dk m ( )
This equation may be integrated to give the following dispersion relation for
the de Broglie waves describing a freely moving quantum particle of mass m:

hk?
= (2.13)
In obtaining this relation we have set the constant of integration to zero
because this constant gives rise to no observable consequences in non-relativis-
tic quantum mechanics.

Our task is to find a wave equation which has sinusoidal solutions which
obey this dispersion relation. The simplest such wave equation is called the
Schrédinger equation. For a free particle moving in one dlmensmr\ as h

form te
6‘5@55@0 2%A—(2 14)

It is easy toq‘)@me complex CXéne
P ( P@Q A glhx=wn (2.15)

is a solution of this equation provided w and k obey the dispersion relation
Eq. (2.13). If we substitute into Eq. (2.14), the left-hand side yields

ih% = ili( — iw)A e = Jiyq R

and the right-hand side yields

L

— Ae i(kx—wt) ,
© 2m ox2 2m

and we have a solution provided /iw = #*k?/2m.

Because the sinusoidal solution, Eq. (2.15), describes a wave moving in the x
direction with wave number k and angular velocity w, we shall assume that it
represents a free particle moving in the x direction with a sharply defined
momentum p = /ik and energy E = p?/2m = hw. There are, of course, many
other solutions of the Schrodinger equation which represent other states of
motion of the particle.

We emphasize that in order to accommodate the dispersion relation for de
Broglie waves, Eq. (2.13), we have arrived at a wave equation, the free-particle
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We can now rewrite Eq. (3.27) as

+o00 1 +oo .
(p) = /_ \P*(x,t)(m /_ p¥(p, et dp) dx.

If the order of integration is interchanged, we obtain

+00 400 B
(p) = / ( \/21%7% W (x, ) et P/ dx>qu(p, 1) dp.

We now use Eq. (3.20) to show that the integral in the brackets is equal to
W*(p, f) and obtain

400

() = W (p, pW(p. 1) dp CO .\

hich is identical to Eq. (3.26) Sa\e‘

which is identical to Eq. (3.26).
o\ r\t,e

Operators _‘(O O—‘ 2
We shall @W‘l idea whic ncreasmgly important as we
(? b¥sic element chanlcs This is the idea that observ-

les in quantum mechan described by operators. At this stage we
shall consider the role of operators in the calculation of position and momen-

tum expectation values using Eq. (3.25) and Eq. (3.27). The recipe for the
calculation is as follows:

e First prepare a sandwich with U* and V.

e To find (x) insert x into the sandwich, and to find (p) insert —ifi 9/dx into the
sandwich.

e Then integrate over x.

In this recipe, the position observable is represented by x and the momentum
observable is represented by —ifid/dx. However, both x and —iid/dx can be
considered as operators which act on the wave function; the real number x
merely multiplies W(x, 7) by a factor x, and the differential expression —ifi d/dx
differentiates W(x, t) and multiplies it by —i/i. To emphasize the role of oper-
ators in quantum physics we rewrite Eq. (3.25) and Eq. (3.27) as

(x) = o P*(x,1) X V(x,) dx and (p) = o W*(x, 1) p W(x,1) dx.

—00 —00

(3.29)
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4.4 A PARTICLE IN A BOX II

One of the key features of quantum physics is that the possible energies of a
confined particle are quantized. Indeed, the familiar quantized energy levels of
atomic, nuclear and particle physics are manifestations of confinement. We
shall illustrate the connection between confinement and quantized energy levels
by considering a particle confined to a box.

A one-dimensional box
We begin by considering a particle moving in one dimension with potential

energy

oo elsewhere,

V(x):{o if0<x<a a\e“g’O‘

This infinite square-well potential co cle to a s1onal
box of size a, as shown in Fi xQ( :) s al physms t a% el lies at
the bottom of the erergy or j forth between

with &% p to infinity. In quantum
@ ¢described by a wave function W(x, 7)

the barri s\,v XxX=ua
E? aried stat i

obeys the one-dime Toffed O0dinger equation
v 8
ih— = V(x 4.31
- [ s V)| (431)
4 4
E,=16 Iz
Vi(x)
Ey=9 Lz
By=4 05
E=1 55
x=0 X=a

Fig. 4.2 Low-lying energy levels of a particle of mass m confined by an infinite square-
well potential ¥ (x) with width a.
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V(x) = +o ? Vx) = -V, V(x)=0

“
Il
o
=
Il
1N}

Fig. 5.1 The potential energy field given by Eq. (5.1) in which there are unbound sta O \
with a continuous range of energies and, if the well is deep enough, boun
discrete energies.

The behaviour of a classical partlc ‘s'hould AThe
energy of the particle, E, is g of its kinetic thallnergies,

preV e EQ%*

When the energy is nega ive and somewhere between £ = —V; and E = 0, the
particle is bound or trapped in the well of depth V; it bounces back and forth
between x = 0 and x = a with kinetic energy E + Vy. But when the energy is
positive, the particle is unbound. For example, it could approach the well from
x = 400 with kinetic energy E, increase its kinetic energy to E + Vp when it
reaches x = a, hit the infinitely-high potential wall at x = 0 and then bounce
back to x = +oc.

The behaviour of a quantum particle in this potential is described by a wave
function W(x, ¢) which is a solution of the Schrédinger equation

v W P
zhgf o T V(x)W. (5.2)

When the particle has definite energy E, the wave function has the form
W(x, 1) =p(x)e ", (5.3)

where /(x) is an eigenfunction satisfying the energy eigenvalue equation

w dy

~ gt VU = Ey. (5.4)
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Once we have solved this eigenvalue equation and found all the possible energy
eigenvalues and eigenfunctions, we can represent any quantum state of the
particle in the potential as a linear superposition of energy eigenfunctions.
To solve the eigenvalue equation, we note that the potential V(x) given by
Eq. (5.1) takes on constant values in three regions of x: (— oo < x < 0),
(0 < x <a) and (a < x < +00). We shall find solutions of Eq. (5.4) in these
three regions and then join the solutions together at x =0 and at x =a to
obtain physically acceptable eigenfunctions. Because the potential V(x)
changes abruptly at x =0 and x = a, we can only require the eigenfunctions
Y(x) to be as smooth as possible. In particular, we shall require (x) to be
continuous at x = 0 and x = « in order to avoid unacceptable abrupt changes
in the position probability density. The differential equation (5.4) with poten-
tial (5.1) then implies that the first derivative of i(x) is continuous at x = ¢ and
discontinuous at x = 0.' \
We are interested in two types of eigenfunctions. The eigen L\\e'l GO

bound states and the eigenfunctions for unbound states.

{eS
Bound states _‘( Om NO -‘ 28A

Ifa bound Phas a neg %— where between E = — 1)
re 1

& shall S s the binding energy, and seek
utidns of Eq (5.4).

In the region (— oo < x < O), the potential energy is infinite and the only
finite solution of Eq. (5.4) is y(x) = 0, signifying that the particle is never found
in the negative x region.

In the region (0 < x < a), the potential energy is V' (x) = — V) and Eq. (5.4)
has the form

2 272
% = —kJy, where E = % - V. (5.5)

The general solution of this second-order differential equation has the form
¥(x) = Csin (kox + 7),

where C and y are arbitrary constants. To ensure continuity of i(x) at x = 0, we
shall set the constant y to zero to give

Y(x) = Csinkgx. (5.6)

! The infinite change in the potential at x = 0 forces a discontinuity in dy /dx at x = 0. A more
rigorous approach would be to consider a potential energy with a finite value ¥ in the region
x <0, require the continuity of y(x) and dyy/dx at x = 0 and then take the limit V; — oc.
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In the region (a < x < +00), the potential energy is zero and Eq. (5.4) has the
form

2 2 2
% =o?Y, where E = _hz—m' (5.7)

The general solution is
Y(x)=Ae ™ + A ™™,

where A and A’ are arbitrary constants. To ensure that the eigenfunction is finite
at infinity, we set 4’ to zero to give a solution which falls off exponentially with x:

Y(x) = Ae ™. (5.8)

Our next task is to join the solution given by Eq. (5.6), whlch&sg CG
in the

the region (0 < x < a), onto the solution given by q.(5.8
region (a < x < +00). As mentioned earher e1gen ction
and its first derivative to be contmuo t1nu

“ Q)a =Ae, (5.9
NI 0
@T@J / é c%oa — _ade . (5.10)

If we divide Eq. (5.10) by Eq. (5.9), we obtain
ko cotkpa = —a. (5.11)

Equation (5.11) sets the condition for a smooth join at x = a of the functions
Csinkox and A e **. It is a non-trivial condition which is only satisfied when
the parameters k¢ and o take on special values. And once we have found these
special values, we will be able to find the binding energies of the bound states
from ¢ = h*a2/2m.

To find these binding energies, we note that « and k( are not independent
parameters. They are defined by

o’ 1wk}
2m and 2m 0
which imply that
Pw?
o + k% =w?, where wis given by Vj=——. (5.12)

2m

O\
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Thus, we have two simultaneous equations for o and ko, Eq. (5.11) and
Eq. (5.12). These equations may be solved graphically by finding the points
of intersection of the curves

o= —kocotkoa and o + k% = w2,

as illustrated in Fig. 5.2.

Inspection of Fig. 5.2 shows the number of points of intersection, and hence
the number of bound states, increase as the well becomes deeper. In particular,
there are no bound states for a shallow well with

© Yo

A
(eNIE " o

N
?( OV
5= 1.5F 1
=
.8
3
1 i
(A)
0.5F 1
0
0 0.5 1 1.5 2 2.5 3
kg in units of m/a
Fig. 5.2 Graphical solution of the simultaneous equations o« = —kocotkoa and

o® + k% = w?. The units of ko and o are n/a. Three values for the well-depth parameter,
w=mn/a, w=2n/aand w = 31/a, are labelled by (A), (B) and (C), respectively. For (A)
there is one point of intersection and one bound state, for (B) there are two points of
intersection and two bound states and for (C) there are three points of intersection and
three bound states.
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2a’

There is one bound state when

w i3
2a 2a
and two bound states when

O
2a 2a’

and so on.
To illustrate the nature of the bound states, we shall consider a potential with
well-depth parameter w = 2n/a which corresponds to a well with d\ C

W zN Otesa
In this case two bound te&‘ Qﬁ}d G%d ‘xex d state w1th

binding energ \e
% eV padt
( and ¢ =1.17 ' 22
2ma

The corresponding eigenfunctions are shown in Fig. 5.3. These eigenfunctions
show that a bound quantum particle can be found outside the classical region
of confinement (0 < x < a). Specifically, for x > 0, bound-state eigenfunctions
have non-zero values given by

Y(x) = Ae ™.

Hence the position probability densities for a bound particle fall off exponen-
tially as x penetrates into the classically forbidden region. Because the param-
eter o is related to the binding energy ¢ via ¢ = /i*o? /2m, the degree of quantum
penetration into the classically forbidden region is more pronounced when the
binding energy is low. The phenomenon of quantum penetration will be con-
sidered further in Section 5.2.

Unbound states

We shall now consider a particle with positive energy E that approaches the
well, shown in Fig. 5.1, from the right and is then reflected at x = 0. It is useful
to write the energy of the particle as

R
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By substituting this value for  into Eq. (5.42) we can illustrate the incredible
sensitivity of the electron tunnelling probability. For example, there is a meas-
urable 2 % change in the probability when the gap between the surfaces changes
by a mere 0.001 nm!

The extreme sensitivity of electron tunnelling is exploited in a device called
the scanning tunnelling microscope. In this device a sharp metal probe is pos-
itioned near to a surface under investigation. The separation is made small
enough to induce the tunnelling of electrons between the probe and the surface,
and a potential difference between the probe and the surface is also established
so that there is a net current of electrons in one direction. As the probe is moved
or scanned across the surface, surface features of atomic dimensions will give
rise to measurable changes in the current of tunnelling electrons. In this way the
scanning tunnelling microscope can produce a map of the locations of individ-

ual atoms on the surface. \
\e <o
Tunnelling protons Sa

The centre of the sun consis f{\ s of electro % llght
atomic nuclei af a te e at ma out 107 K~ d other light
nuclei colh“‘@ ccasionally %' n occas10nally fuse to release
Itimately ra solar surface as sunshine.
mn rstand the 15? agl in the generation of solar thermonuclear
energy, we shall focus o1t two protons approaching each other near the centre
of the sun. They move in the ionized gas with thermal kinetic energies of the
order of

E~kT ~ 1keV.

The mutual potential energy of the two protons depends on their separation. As
illustrated in Fig. 5.5, the potential energy at large separation r is dominated by
the repulsive Coulomb potential

But at small separations, when r becomes comparable with the range of nuclear
forces given by ry ~ 2 x 10713 m, the potential energy becomes attractive. The
net effect is a Coulomb barrier which rises to a height of about 1 MeV at a
separation of about 2 x 10~ m or 2 fm.

Thus, when protons approach each other near the centre of the sun, they do
so with energies of the order of keV and they encounter a Coulomb barrier
measured in MeV. According to classical physics, there is a well-defined dis-
tance of closest approach r¢, which is given by
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u(r
vy =0 (5.46)
where u(r), as shown in problem 2 at the end of the chapter, obeys
W d*u
~2udr7 + V(ru= (5.47)

We shall not attempt to solve this equation. Instead, we shall use the results we
obtained for a one-dimensional barrier to write down a plausible form of the
eigenfunction and then estimate the probability of tunnelling through a Cou-
lomb barrier.

We begin by considering a three-dimensional barrier with constant height Vp
and width ¢ — ry. In this case, the function u(r) decays exponentlally n &O \
classically forbidden region as r gets smaller and it is given by

The probability that the protons tunnel from r = r¢ to r = ry is approximately
equal to the ratio of |u(ry)|* to [u(r¢)|*, and it is given by

T ~| exp[—Bre — vl I (5.48)

We now consider the Coulomb barrier shown in Fig. 5.5. In this case, the

eigenfunction in the classically forbidden region (ry < r < r¢) is again approxi-
mately given by

u(r) o e,

but f now depends on r because it is given by

hZ 2
RE e

E= .
2 Amepr

The probability that the two protons tunnel from r =r¢ to r =ry is now
approximately given by a generalization of Eq. (5.48)
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2

T~ (5.49)

ol 54

If we assume that r¢ >> ry and evaluate the integral in Eq. (5.49) by substi-
tuting r = r¢ cos” 0, we find that

Eo\ /2
T~ — == 5.50
o (52) s
where FE is the relative energy of the protons and Eg is defined by
2\’
Eg = 2rpuc?. 5.51
¢ (4neohc) THe 31

e 0

The energy Eg is called the Gamow energy and its val gﬁ
{ el thro h the

We can now estimate the probability tha
Coulomb barrier which normally kee a a

near
the centre of the sun. By sub.ﬁft al ther al eﬁé\ eV into
Eq. (5.50), we 0{@\'\' ,L

P '} e\, ﬁ@ X3 %1071,

Thus, with a probablhty of about one in 3 billion, protons colliding near the
centre of the sun tunnel through the Coulomb barrier. And when they do so
they have a chance of fusing and releasing thermonuclear energy.

In practice, stars evolve slowly by adjusting their temperature so that the
average thermal energy of nuclei is well below the Coulomb barrier. Fusion
then proceeds at a rate proportional to the tunnelling probability. Because this
probability is very low, fusion proceeds at a slow pace and the nuclear fuel lasts
for an astronomically long time scale.

PROBLEMS 5

1. Consider a particle of mass m in the one-dimensional potential energy field
0 if —co<x<—a
Vix)y=< —Vy if —a<x<+a
0 if +a < x < 4o0.

Because the potential is symmetric about x = 0, there are two types of
energy eigenfunctions. There are symmetric eigenfunctions which obey
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We note that when n = 0, i.e. when the particle is in the ground state of the
oscillator, the product of Ax and Ap is as small as it can be.

e Because the position and momentum of the particle are uncertain, the
potential energy and the kinetic energy are uncertain. The expectation values
of these uncertain observables are

E, and —=-E,.
m

Not surprisingly, the sum of the expectation values of the uncertain potential
and kinetic energies is equal to E,, the sharply defined total energy of the
state.

Finally, it is useful to consider in general terms why the quantum stat O ‘\
of the harmonic oscillator is so different from the classic @‘ fe in
which the particle lies at rest at the bottom of t I‘¥ inetic energy
and zero potential energy When a qua u ﬁ pre01 ed at

the centre of the well, Q ce tam mome en e, a
high kinetic engrgy. mar c/ its mo zero, it has a

highly unc t and 1t ma be&r regrons of high potential

s tha ttic and potential energies of a
q¥ant®m partrcle in a‘é scrllator potential has a minimum value
when its position and nfbmentum are uncertain, but not too uncertain. This
minimum is called the zero point energy of the harmonic oscillator. A lower
bound for this energy is derived using these ideas in problem 1 at the end of this
chapter.

Non-stationary states

The general wave function of a particle in a harmonic oscillator potential has
the form

V= > elx)e B (6.15)

n=0,1,2...

This wave function represents a state of uncertain energy because when the
energy is measured many outcomes are possible: Ey = hw E =3 shw, ... with
probabilities |co|2, ler |2,

This wave function also represents a non-stationary state, a state with time-
dependent observable properties. For example, the position probability ampli-
tude |W(x, r)]* has time-dependent terms which arise from the interference of
terms involving different energy eigenfunctions, ¥,(x). In particular, the inter-
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Continuum of
eV

5 energy levels

4 - Ve(r)

0 T T T T T >
0 0.1 0.2 nm

Internuclear separation r

Fig. 6.4 The effective internuclear potential V,(r) and the vibrational energy levels of \

the hydrogen molecule. The potential energy near the minimum 1s a m e yO

quadratic and acts like a harmonic oscillator potential, and the lowe I‘/

are approximately equally spaced and given by the E 1brat10na1

levels become more closely spaced as the degree ases an%&ﬁsom-
evels

ation of the molecule gives rise to a contlm
If classwa\;fv@W a‘px)hcable the &%@ldge energy

PreT a0l i,

where m; and m;, are the masses of the nuclei and p; and p, are the magnitudes
of their momenta. In the centre-of-mass frame, we can set p; = p» = p and, by
introducing the reduced mass

mymy
my +my’

we obtain

2
P 1, 5
Eclassical = — + = kx”.
classical 2,“ B X

This energy is the same as the energy of a single particle of mass u on a spring
with elastic constant k. Accordingly, we expect the vibrating nuclei in a
diatomic molecule to act like a harmonic oscillator with classical frequency
w = /k/u, where p is the reduced mass of the nuclei and k is an elastic constant
characterizing the strength of the molecular bond between the nuclei.

The quantum mechanical behaviour of this oscillator is described by a wave
function W(x, r) which satisfies the Schrodinger equation
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v B 92
h— = |- —
21 9x2

Fr +;k2x2]\1r. (6.18)

This equation is almost identical to Eq. (6.8), which formed the starting point
for our discussion of the quantum oscillator. Indeed, if we replace the mass m
by the reduced mass p, we can apply all our results to a diatomic molecule.
Most importantly, we can use Eq. (6.12) to write down an expression for the
vibrational energy levels of a diatomic molecule with reduced mass ¢ and elastic

constant k:
1 k
E, = (n + 5) fiw, where w= \/; (6.19)

The quantum number # can take on the values 0, 1,2, ...,

the harmonic oscillator model for molecular vibrat' . This
occurs when the vibrational energy becomes o he dissogiation
energy of the molecule, as shown for olec A

A transition from one Vlﬂc@ 1 of the g is often
accompanied by abso rpt1 %ﬁo ic radiation, usu-

ally in tg\[l art of the sp c articularly so for diatomic
r@ 1th two dlff heteronuclear diatomic molecules. For
sich molecules, the elec én electric dipole which can strongly absorb

or emit electromagnetic radlatlon In fact, this mechanism leads to transitions
between adjacent vibrational levels and the emission or absorption of photons

with energy”
E=ny~
u

These photons give rise to a prominent spectral line with wavelength

he u
A= = 2nc\/%. (6.20)

4 The probablhty for transition from ,, to ,, induced by electric dipole radiation is proportional
to X, % where

+00

Xm, n = l/l:f,(x)Xl//n(X) dx.

By using the properties of the harmonic oscillator eigenfunctions, one can show that x,, , = 0if
|m —n| # 1. (See problem 11 at the end of this chapter.)
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As an example, we consider the carbon monoxide molecule. The reduced
mass of the nuclei is u = 6.85amu, and, when transitions between adjacent
vibrational levels occur, infrared radiation with wavelength A = 4.6 um is emit-
ted or absorbed. If we substitute these values for x4 and X\ into Eq. (6.20), we find
that the elastic constant, characterizing the strength of the bond in the carbon
monoxide molecule, is £ = 1908 Nm ™'

In reality, the situation is more complex. First of all, transitions between
adjacent vibrational levels have slightly different wavelengths, because the
vibrational energy levels are only approximately equally spaced; as illustrated
in Fig. 6.4, a harmonic oscillator potential does not exactly describe the
interaction between the nuclei in a diatomic molecule. Second, the molecule
may rotate and each vibrational level is really a band of closely spaced levels
with different rotational energies; accordingly, there is a band of spectral lines
associated with each vibrational transition. CO \

6.5 THREE-DIMENSIONAL OSCI me

We shall conclude this chap i ng a partlcle ﬁassflane three-
dimensional ha;mon{N;ﬂlg ntlal

P(e\,\ @82@%(;” +2). 6.21)

A classical particle at a distance r from the origin would experience a central
force towards the origin of magnitude kr. When displaced from the origin and
released, it executes simple harmonic motion with angular frequency
w = /k/m, but more complicated motion occurs when the particle is displaced
and also given a transverse velocity.

The behaviour of a quantum particle is governed by a Hamiltonian operator
H which is the sum of three one-dimensional Hamiltonians:

H=H,+H +H (6.22)

where
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Energy Degeneracy

%hw 10
%hw 6
%hw 3
%hw 1

Fig. 6.5 The four lowest energy levels of a particle in a three-dimensional harmonic
oscillator potential. The degeneracy of each level is denoted on the right-hand side.

\
El,o,o—;hw and Yy, o(x,7,2) = (%)3/221/2(_ e (Yé‘\e, CO

5 L
Eo,1,0 = 2hw and g 1 o(x, y,z‘).(.( - —(;z%)/A_
5 (2 2,2 2
Eo,0,1 = ﬂ(ew X, y, 1/ e~ (X 427247
P ‘.ﬂar way we can@ @ﬁgs with energy 7%iw/2, ten states with energy

9%hw/2, and so on.

The energy levels of the three-dimensional harmonic oscillator are shown in
Fig. 6.5. This diagram also indicates the degeneracy of each level, the degener-
acy of an energy level being the number of independent eigenfunctions associ-
ated with the level. This degeneracy arises because the Hamiltonian for the
three-dimensional oscillator has rotational and other symmetries.

6.6 THE OSCILLATOR EIGENVALUE PROBLEM

For the benefit of mathematically inclined readers we shall now discuss
the problem of finding the energy eigenfunctions and eigenvalues of a one-
dimensional harmonic oscillator. The method used is interesting and intro-
duces mathematical methods which are very useful in advanced quantum
mechanics. This section may be omitted without significant loss of continuity.
In order to simplify the task of finding the eigenvalues and eigenfunctions,
we shall clean up the eigenvalue equation (6.10) and give it a gentle massage.
We note that this equation contains three dimensional constants: Planck’s
constant /i, the classical angular frequency w, and the mass of the confined
particle m. With these constants we can construct an energy /iw and a
length +//i/mw. Hence, it is natural to measure the energy E in units of 7w
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The ground state

Two possible eigenvalues and eigenfunctions are immediately apparent from an
inspection of the alternative expressions for the eigenvalue equation given by
Eq. (6.30) and Eq. (6.31).

First, Eq. (6.30) is clearly satisfied if

1
¢=—= and [q—i}p(q) =0.
2 q
This first-order differential equation for y/(¢) has the solution

Yig) =A™

\
where A is a constant. But this solution must be dlscarded beca e\ GO *
satisfy the boundary conditions, ¥/(¢) — 0 as ¢ — i
normalizable wave function.
Second, Eq. (6.31) is clearly satlsﬁ

\e\JSI—I—— andé %(l O
Eus case the dlfferenQ a’g for (g) has the solution

W(g)=Ae 7,

which is an acceptable eigenfunction because y(g) — 0 as ¢ — +oo. Later we
shall show that this is the eigenfunction of the ground state. Accordingly, we
shall use the quantum number » =0 as a label and take the ground state
eigenvalue and eigenfunction to be

=11 and u(q) = Age™"7, (6.32)
where A, is a normalization constant.
If we use Eq. (6.28) to express the dimensionless variables ¢ and ¢ in terms of
the dimensional variables E and x, we find that the ground state of a harmonic
oscillator with angular frequency w has energy

= U (6.33)

and that its eigenfuction, as a function of Xx, is given by
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Observables and \
operators \e cO-

Operators have to b (Qn(u‘r.n\ @xscr% observable
quantities bec Yae ements ma u 1, outcomes. In Chapter 3
\l ors

Pre Q

r*r and p=—inV
to calculate the expectation values and the uncertainties in the position and
momentum of a particle. In Chapter 4 we used the Hamiltonian operator

2

h
H=——V>4+V(@)
2m

to explore the energy properties of a particle. And in the next chapter we shall
consider in detail a fourth operator, the operator describing the orbital angular
momentum of a particle,

L=rxp.

In this chapter we shall consider some physical properties of observables in
quantum mechanics and link these properties to the mathematical properties of
the operators which describe observables. In so doing, concepts that were
implicit in the use of operators in earlier chapters will be clarified and de-
veloped. This chapter will deal with concepts that are more abstract and
mathematical than those encountered elsewhere in this book. It may be omitted
without significant loss of continuity.
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In fact, we have three commuting operators,
[x, 0] = [x,p:] = [.p-] =

and simultaneous eigenfunctions of the form

e iz

Yoy (.3, 2) = 0(x — x)o(y — y)\/ﬁ

Moreover, any wave function W(x, y, z, ) can be expressed as linear superpos-
ition of these eigenfunctions as follows:

+o0 400 +o0
\I,(xa Y.z, t) = / dx// dy// dp; C(X/, y/ap;: t)lpx’ ’p’_(xa Y, Z)' O \
—00 —00 —00 C .

In this expression ¢(x', )/, p’, ) is a probability amplit xaaﬁble
observables. In fact, the probability of ﬁndl K_ 1rne t lo hzed
with m

between x’ and x’ 4 dx’ and between the

z direction between p and X@l &(
This example h th ener ining a quantum

state of g 1n three spe01fy1ng a set of three
?}Y servable 11 be used in Chapter 9 when
struct stationary hydrogen atom by specifying the energy,

the magnitude of the orbltal angular momentum and the z component of the
orbital angular momentum.

7.5 CONSTANTS OF MOTION

Observables that are compatible with the energy observable have a particular
physical significance. They are constants of the motion. To explain the signifi-
cance of this statement we consider the expectation value for an observable 4
for a particle with wave function V¥,

(A(1)) = / U4 ¥ dr. (7.20)

In general, the expectation value (A(¢)) will vary with time as the wave
function W(r, 7) ebbs and flows in accord with the Schrédinger equation

m% — HV. (7.21)



8.1 Angular Momentum Basics 157

For example, the ¥ boson is a spin-one particle with s = 1 and m, = +1,0, — 1
and the electron is a spin-half particle with s :% and m,; = i%. Thus, spin
angular momentum can be integer, like orbital angular momentum, but it can
also be half-integer.

Orbital and spin angular momenta may be combined to give a total angular
momentum with magnitude and z component given by

=+JjG+Dh and J.=mh, (8.4)

where, in general, the quantum numbers j and 7; may take on integer and half-
integer values given by

+J

+(1'- 1) \
1, =,2, .. and m; = a\e (G’O‘

N e:zfé A

The actual values of t e ber j depgnd
angular mome ed It c s&r t, when an orbital

an u 1th quan l 's combined with a spin with

c?\ mber s, S€ a ar momenta may arise with quantum
bers

j=l+sl+s—1,...|l—s| (8.6)

For example, we can have j :% and % when /=1 and s = 2, and we can
have j=2,1 and 0 when /=1 and s=1. We note that, in general, two
angular momenta with quantum numbers j; and j, may be combined to
give an angular momentum with quantum number j which can take on the
values

J=i+ti a+i—1 ... h—jl

Earlier we referred to an angular momentum defined by two quantum
numbers as a fuzzy vector. The fuzziness arises because, when one of its
Cartesian components is sharply defined, the other two components are uncer-
tain but quantized when measured. In view of the uncertainties we have already
encountered in position, momentum and energy, uncertain angular momentum
should not be a surprise. Indeed, the uncertainty in orbital angular momentum
can be directly traced to the uncertainties in the position and momentum of a
particle, as indicated in problem 3 at the end of Chapter 7. But it is surprising
that angular momentum in any given direction can only equal an integer or
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mag

Fig. 8.2 The energy levels in a magnetic field of an atom in states with angular
momentum quantum numbers j =5, 1 and 3 . The spacing between levels is given by
gupB where B is the strength of the magnetlc ﬁeld up is the Bohr magneton and g is a
Landé g-factor, a constant which depends on the spin and orbital angular moment, O
quantum numbers of the atomic state. C

The main features of a Stern—Gerlach expﬂe@ strate
A beam of atoms is passed_thro t1e field pr 1a11y
shaped poles of an electr m& é d rect10j et 1s largely

tion say, Z B(x, y,z), increases

in one dlrectl e
x ses. In this g@ acqulres an energy
E ag: =

which depends upon the z component of its magnetic moment u. and on the
location in the field. Because this magnetic energy varies strongly with z, the
atom is deflected by a force in the z direction which is given by

—u-B(x,y,z)

Observation
screen

y 2
L Collimated — |

X beam of

atoms N
Magnet

Fig. 8.3 The Stern—Gerlach experiment in which atoms pass through a non-uniform
magnetic field which separates out atoms according to the value of the magnetic moment
in the direction of maximum non-uniformity of the field.
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simpler angular shapes. These basis wave functions are usually taken to be
wave functions with specific orbital angular momentum properties. Accord-
ingly, we shall consider some wave functions with simple angular dependence
and deduce the orbital angular momentum properties of the particle they
describe. The properties of the following wave functions will be explored: The
spherically symmetric wave function given by

V0,0 = R(), (8.18)

where R(r) is any well-behaved function of r = 1/x2 + 2 + z2, and the wave
functions

(x+ ly)

Vo = ROZ. = ROy Ry )

(8.19)

The rationale for the labels (0,0), (1,0) and (1, £+ 1) will beca@ et we
have determined the angular momentum propeit escrlbed by
these wave functions.

The position probablhty ave funCtIQﬁ; 28
b%ewkewm — @)é (xg% j:l)| = |R(r )|2M

are illustrated in Fig. 4 We note that a particle described by the wave
function g ¢, is equally likely to be found at any point on the surface of a
sphere of radius r, whereas particular regions of the surface are more likely
locations for a particle described by the wave functions ; o) and ¥ ). For
the wave function W, o the North and South poles are more probable

(0,0) (1,0) (1,£1)

Fig. 8.4 The position probability densities on the surface of a sphere for a particle with
wave functions ¥ o), ¥ 1,0y and ¥ 4y given by Egs. (8.18) and (8.19). For future
reference, these wave functions have orbital angular quantum numbers (/, 7;) equal to
(0, 0), (1, 0) and (1, £ 1). (This figure was produced with the permission of Thomas D
York.)

\
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L* =2/ and L. = 0. Therefore, it describes a particle with a precise magnitude
L = +/2h and precise z component L. = 0, but its orbital angular momentum in
the x and y directions are uncertain.

Clearly, we can construct other wave functions with similar properties. For
example, if we replace z in the expression for i, ) by x or by y, we obtain the
wave functions

X
‘Ml,()) = R(r); and wz/l,o) = R(r)J_;_ (8.22)

Both these wave functions describe a particle with an orbital angular momen-
tum of magnitude L = v/2/; but for ‘/’(1,0) the x component is zero and the y
and z components are uncertain, and for xﬁé’l’ o) the y component is zero and the
z and x components are uncertain.

We shall finally consider the wave functions \ e CO \
- “”NG*
%md near

both of which describe a ua&§ Wthh orm

the Equator a orth or S own in Fig. 8.4. By

ev. uXEe of th operators on the functions
itN/easy to sho i - functlons are not elgenfunctlons of L

orof L,, but that they ultaneous eigenfunctions of L. and 2. In

fact,

Vo, = RO

I:z‘ﬁ(l,+1) =+, ;1) and z2¢(1,+1) = 2h2¢(1,+1)

and

i’z'p(l,—l) =, 1) and i2‘10(1,71) = thlp(l,fl)'

Thus, the wave function ;) describes a particle with L. = +7iand L = V21,
and the wave function v, _;, describes a particle with L. = —/i and L = V2h;
in both cases, the x and y components of the orbital angular momentum are
uncertain.

By exploring the properties of these simple wave functions, we have illus-
trated three general properties of orbital angular momentum in quantum
physics:

e Orbital angular momentum in quantum physics is quantized and the natural
unit for angular momentum is

h=1.055%x10"3*7Js.
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e The orbital angular momentum of a quantum particle is at best a fuzzy
vector. We have only been able to specify precisely the magnitude and just
one of the components of orbital angular momentum. This is because the
components of angular momentum are non-compatible observables as dis-
cussed generally in Chapter 7.

e A quantum particle with specific orbital angular momentum properties has a
wave function with a specific angular shape. If the orbital angular momen-
tum is zero the wave function is spherically symmetric, and if the orbital
angular momentum is non-zero the wave function has angular dependence.

Spherical harmonics

So far we have considered wave functions to be functions of th (éce a O
coordinates x, y and z. In practice, it is more useful to conm%& fions
e

to be functions of the spherical polar coordmate r d Fig. 8.5.

This figure shows that the Cartes1an and, sp mates Ant P

are related by ,2
\T‘quﬁ =rsin 0&% z =rcos0.

‘n a quantum st? ented by a wave function ¥(r, 0, ¢), the
dependence on 6 and ¢ ¥pecifies an angular shape that determines the orbital
angular momentum properties of the state. In fact, all possible orbital angular
momentum properties can be described using simultaneous eigenfunctions of
[* and L.. These eigenfunctions are called spherical harmonics. They are
denoted Y7 ,,(0, ¢) and they satisfy the eigenvalue equations:

Fig. 8.5 The spherical polar coordinates (r, 0, ¢) of the point P.
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any internal field. What is the spacing between these closely spaced
levels in eV?

4. Two particles of mass m are attached to the ends of a massless rod of length
a. The system is free to rotate in three dimensions about its centre of mass.

(a) Write down an expression for the classical kinetic energy of rotation of
the system, and show that the quantum rotational energy levels are given

by
2
R T
ma
(b) What is the degeneracy of the /th energy level? O \

(¢) The H, molecule consists of two protons separate%\&&%
0.075nm. Find the energy needed to ex rotational
state of the molecule. ﬁ

5. (a) By conmdermiN %‘ Q‘.‘e.e\n @2 2&11 polar co-

ordi
P x—rsmﬁc@agsmﬁsmqﬁ and z=rcosb,
and the chain rule

W wpox apay ooz
ap  oxap  dyop oz og’

show that the operator for the z component of the orbital angular
momentum of a particle,

can be rewritten as

d
LZ = _lhﬁ .
(b) Verify that
eimid
Z(§) =
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3d state with m=0 3d state with m=+1 or —1 3d state with m=+2 or -2

Fig. 9.7 The size and shape of the 3d states of the hydrogen atom with a z component
of orbital angular momentum equal to mii.

9.4 RADIATIVE TRANSITIONS GO ‘\

with quantum numbers n, / and m; are, jn g

nger st tates
with definite energy, and r fﬁon between t 2%1;1 take
c%‘Qy is mitted

place in which electr

eithe ab8orb
The mos \,ﬁ% ative transmong}x‘ electrzc dipole transitions.

an interac ectric field component E of the
'ewtr agnetic field W1Pagor describing the electric dipole moment of
the electron—nucleus systtm. The electric dipole operator is d = —er, where r is
the vector position operator for the electron in the atom, and the interaction is
given by

When a hydrogen atom interacts with an eleeaﬁ &aﬁtum states

H = -d E. (9.26)

In the presence of this interaction, the probability for a transition between
states with quantum numbers n;, l;, m;, and ny, Iy, m, is proportional to

[ W, 00 1 1, 0 S0 ©.27)

We can easily prove that electric dipole transitions always involve a change in
parity by showing that the integral in Eq. (9.27) is zero if the initial and final
states have the same parity. We show this by considering the effect of changing
the integration variable from r to —r. The interaction H; = —d - E changes sign,
but the sign of the eigenfunction, y,, m, (ryory,, Iy, (r), is unchanged if the
eigenfunction has even parity and it is changed if the eigenfunction has odd
parity, as shown by Eqgs. (9.13) and (9.14). Thus, when both eigenfunctions have
the same parity, the integrand in Eq. (9.27) changes sign when the integration
variable r is changed to —r and this implies that the integral must be zero.
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It can also be shown, by noting that the angular dependence of the
eigenfunctions lﬁnf,b,’m[ (r) and zp,,,_,,l_,m,’_ (r) are given by spherical harmonics,
that the integral in Eq. (9.27), and hence the probability of transition, is
zero unless the difference A/ =/ — /; is +1 or —1. This means that all electric
dipole transitions in the hydrogen atom also obey the selection rule

Al = +1. (9.28)

The electric dipole transitions between low-lying states of the hydrogen atom
are shown as dotted lines in Fig. 9.8, where spectroscopic notation, 1s, 2s, 2p,
etc. has been used to label the levels corresponding to states with different
values for the principal quantum number n and orbital angular momentum
quantum number /; for example, 2s corresponds to n =2 and / =0 and 2p

correspondston=2and / =1 Q
The transitions shown in Fig. 9.8 may be induced or sp X%duce
transitions between states with energy E,, and E t.h g y when the
atom interacts with an external electro 1ch oscill th an

angular frequency w which ‘ (ﬁ@ e YeYonant condltlo %
wieW "8 fzﬂ o
l— 1

=2 =3
n=4
N
n=3 3s 3d
n=2 2s
1s |

n=1 ———

Fig. 9.8 Electric dipole radiative transitions between low-lying energy levels of the
hydrogen atom with different values for the quantum numbers n and /. Spectroscopic
notation, 1s, 2s, 2p, etc. has been used to label the energy levels; for example, 2s
corresponds to n =2 and / = 0 and 2p corresponds to n =2 and / = 1. We note that
the electric dipole transitions shown by the dotted lines obey the A/ = +1 selection rule
given in Eq. (9.28).

R
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ECp3p)=Er — 4 L ot mec?.

We note that the difference in energies of the 2p;), and 2p, ), states can be
verified by observing a small difference in the wavelengths of the radiation
emitted by the transitions 2p;, — 1/, and 2p;, — 1s;,. We also note that
the 2s;, and 2p, , states are predicted to have the same energy, but that this
degeneracy is removed by a small effect called the Lamb shift which arises from
the quantum field properties of the electromagnetic field.

9.7 THE COULOMB EIGENVALUE PROBLEM

In this section we shall find the energy levels and eigenfunctions of an electron

in a Coulomb potential by solving the eigenvalue problem defined by the
differential equation (9.15) and the boundary conditions (9.16). §hi ecGO
may be omitted without significant loss of continuity. \

As a first step we shall tidy up Eq. (9.15) b &

L fro NP o8k,
so that ess measure 012 %nd 2 is a dimensionless
g)

b1nd1n the definitions for ay and Eg,
and (9.20), ? t the radial eigenfunction u(q), when ex-
pressed as a function ¢, satisfies the differential equation

2
dPu 2 10+ D] 2 037
dg? 7

and the boundary conditions
ug)=0 at ¢g=0 and at ¢g=oo. (9.38)

Our next step is to find the behaviour of u(g) at large ¢ and at small g. At
large ¢ the differential equation (9.37) becomes

du
g

The general solution is
u(q) =Ae M + Be,

where 4 and B are constants, but to satisfy the boundary condition u(g) — 0 as
q — oo we set B =0 to give
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where |c;, |2 is equal to the probability that the particle has a z component of
spin equal to m;h. (See footnote 2 below.)

When the spatial and spin properties of a particle are independent of each
other, the quantum state may be represented by a product

D(p) = Y(rp)x(p)-

For example, the first term y(r,) describing the spatial properties of the particle
could be a hydrogen-like wave function with quantum numbers 7, [, m; and the
second term y(p) could be a spin state with quantum numbers s = % and
my = i%. When this is the case, we have a single-particle quantum state of
the form

q)n,l, m,,m;(p) = lﬂn, I m,(rp)Xs, ms(p)

We can now write down expressions for quantum tat %@&e the
spatial and spin properties of two 1dentlca1
When both particles occupy the s 1ce stat w1th

spatial and spin quantum n @, i\ ms, We can c uct metrical
state for two iden éth e for 6
V)(eﬁl @%? " MWM@ (10.17)

But an antisymmetric two-particle state for two identical particles cannot be
constructed when both particles occupy the same single-particle state. This
implies that, when identical particles have antisymmetric exchange symmetry,
two or more particles cannot occupy the same single-particle state.

When the particles are associated with two different single-particle states, it is
possible to construct both symmetric and antisymmetric two-particle states.
For example, we can have a symmetric state of the form

1
DO, q) = =[P, 1, m, PPy v (@)
Var e L (10.18)

+ CI)n 1, my, my (q)q)n, ol m (p)]

s Loy

2 In general, the probability amplitude ¢m, depends on time, but to keep the notation simple we shall
ignore time dependence. The spin eigenvectors X, ,, (p) are less abstract if they are represented by
column matrices with 25 4+ 1 components; for example a particle with spin s = 2 can be described

using the matrices
1 0
X%,%(p): <0> and X%’i%(p): (1) ,
P P

where the subscript p is necessary because a matrix representing particle p must be distinguished
from a matrix representing another particle. The mathematics of the representation of spin
quantum states is covered in more advanced books, but this mathematics will not be needed here.
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most one proton and by one neutron. Similarly, theoretical models of protons,
neutrons and other hadrons are governed by the idea that quarks of a specific
flavour and colour also act like systems of identical fermions with antisym-
metric quantum states.

The boson way of being indistinguishable also leads to important physical
phenomena. Because bosons are described by symmetric quantum states, many
bosons may occupy the same single-particle state and when this happens
quantum-mechanical behaviour on a macroscopic scale may arise.

The most important example of boson togetherness is the coherent light of a
laser. This coherence arises because photons, bosons with spin one, have a high
probability to have the same energy and momentum, in much the same way as
two particles with a symmetric wave function have a high probability of being
at the same location.

Boson togetherness is also responsible for the superfluidity of liquid helium at \
temperatures below 2.2 K. Liquid helium consists of a system of wea yanterdct O
ing helium atoms which behave like bosons because the consg 8leus

ow te

with spin zero and two electrons with a combjine pera-
tures, a considerable fraction of the at in\1 1um ‘co the
same lowest-energy state. ef znstem sat 1c the
atoms have wq‘ve funeti nx are cohe ot er and move

collectlvel Recentl ose Elnstem condensates
ed by ¢ 1 netlc traps; indeed the 2001 Nobel
@31 Phys1cs was aw@ d@g .uf Cornell Wolfgang Ketterle and Carl Wie-
man for their work in proQucing the first pure Bose—Einstein condensate in 1995.

Surprisingly, boson-like togetherness also occurs in situations where fer-
mion-like behaviour is expected. It occurs in the superconductivity of metals
at low temperatures because pairs of electrons act like indistinguishable bosons.
It also probably occurs when liquid helium-3 becomes a superfluid at very low
temperatures. Helium-3 atoms, unlike the normal helium atoms, are fermions
because the *He nucleus has spin half, but pairs of helium-3 atoms can act like a
system of indistinguishable bosons and give rise to collective motion with no
friction in liquid helium-3.

PROBLEMS 10

1. In Section 10.1 we explained why the wave function of two identical particles
has a definite exchange symmetry. In this problem we show that this ex-
change symmetry remains unchanged as the wave function evolves.

Given that the time evolution of the wave function for two particles is
governed by the Schrédinger equation,

oW(rp,1q, 1)
Jat

ih = H(rp, 1) W(rp, 1, 1),
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10, quantum states which describe a system of indistinguishable electrons must
be antisymmetric whenever two electrons are exchanged. This can only be
achieved if electrons are assigned to orbitals in accordance with the Pauli
exclusion principle; i.e. not more than one electron may occupy an orbital
with the same quantum numbers n, [, m;, m;. This means that at most two
electrons can be assigned to 1s orbitals, one with quantum numbers n = 1,
=0, m=0, and m, = +%, and one with quantum numbers n =1, /=0
m; =0, and m; = —%. Similarly, not more than two electrons can be assigned
to 2s orbitals, but up to six electrons can be assigned to 2p orbitals because there
are six of these orbitals with quantum numbers n =2,/ =1, m; = +1,0, — 1
and my = i%. When the 1s, 2s and 2p orbitals are fully occupied, additional
electrons may only be assigned to orbitals with principal quantum numbers 7
greater than 2. These orbitals have higher energy and also a limited capacity.
We can illustrate how to use this construction kit for atomic states
considering a carbon atom containing six electrons which may oc e@
levels similar to those shown on the right-hand-side of Fi S Igrdund
state is obtained by assigning six electrons tQ onbi the?lowest possible
energy; a maximum of two electrons ergy Eis, Q) itA;n f

two can have the energy
remaining elec‘grons

o

Mmimum ene ﬁ D the two
ssignme @ i ron configuration
denotedbéQ’)‘ Wlth ener 2; )

P( Pag+2E25+2E2p

The first excited state of the carbon atom is obtained by assigning only one
electron to a 2s orbital and three electrons to 2p orbitals. This gives rise to the
electron configuration (1s)*(2s)(2p)* with energy

E =2E;+ E) + 3E2p.

If the energy levels shown in Fig. 11.2 for the screened potential V4(r) are used
as a rough guide, the energy of the ground state is —41.1Ey and the energy of
the first excited state is —40.6E. Clearly, states of higher excitation may be
obtained by assigning more electrons to 2p orbitals or by assigning electrons to
3s, 3p, 3d, ... orbitals.

In the preceding paragraph we have followed custom and given the wrong
impression that particular electrons are in particular orbitals. This is not the
case. Because all the electrons in the atom are indistinguishable, each electron
is equally associated with each of the occupied orbitals. In fact, like the
two-electron state given by Eq. (10.19), the multi-electron quantum state is
antisymmetric when any two of the electrons are exchanged.

We have also wrongly given the impression that the central potential which
represents the effect of the attraction of the nucleus and of the average effects of
electron—electron repulsion, is easy to find. In fact, the central potential and the
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I e?
= 11.9
2m,R? 4megR (11.9)
For future reference, we will rewrite this energy as
Al B
=——— 11.1
it (11.10)
where 4, and B, are the constants
W e’
A = d B =— 11.11
1 om, an 1 4meo 5 ( )

which determine the kinetic energy and the potential energy for a state of O \
hydrogen atom with spatial extent R. We note that for a state with \,ﬁR
$

energy is dominated by the potential energy —B; /R, tha éﬁ
R, the energy is dominated by the kinetic ener Q& Al/
a balance between the attractive effec ener Isive
effect of the kinetic energy ﬁf @ Inimum ene@%he

g

i.e. when R =24,/B. conclude that this model predicts a ground state
with an energy and size given by

mall
apd that

B 24,
El = —4—141 and R1 Bl (1112)

When we substitute for 4; and B; and use the expressions for the Bohr radius
ap and Rydberg energy Eg, Egs. (9.19) and (9.20), we find that Eq. (11.12) gives
the correct energy and radius for the ground state of the hydrogen atom,

E1=—ER and R] = dy. (1113)

We shall now show that the model, with minor adjustments, can also describe
the energy and size of the ground state of the helium atom. In this atom there
are two electrons and a nucleus of charge 2e. If both electrons are in the same
single-particle state, the energy of a two-electron quantum state of size R is
roughly given by

i &2 &2

=2 —4 11.14
2m,R? 4meoR + 4neoR,e’ ( )
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son for the first 11 elements are shown in Fig 11.5. The solid circles give
energies and radii for real atoms in which the Pauli principle has a governing
role, and the open circles give the energies and radii for hypothetical atoms in
which the Pauli principle plays no role.

We see that without the Pauli principle, the ionization energies steadily
increase and the radii steadily decrease with atomic number Z. In particular,
the periodicity of chemical properties of real atoms is replaced by a chemistry in
which atoms steadily become less reactive than helium. A world without the
Pauli exclusion principle would be very different. One thing is for certain: it
would be a world with no chemists.

Tonization
energy (Ex)

14

- O

R\t
e 110

PYe éag :

2 ° .

Radius (ag)

3 .
.
2 .
.
1..00 o...

Q9 9 09 0 0 0 o

2 4 6 8 10
Atomic number Z

Fig. 11.5 The effect of the Pauli exclusion principle on the ionization energies and radii
of the first 11 elements. The solid circles correspond to atoms in which the Pauli
principle constrains the behaviour of the electrons and the hollow circles correspond
to atoms in which the constraints of the Pauli principle are not imposed. The Pauli
principle has no effect on the ground states of the first elements, hydrogen and helium.
The Rydberg energy and the Bohr radius have been used as units for the ionization
energies and radii.
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is a fundamental length in a relativistic theory of the electron. Show that this length
is o’ay where ap is the Bohr radius and o = e? /4neyfic. The constant o is called the
fine structure constant and it is approximately equal to 1/137.

5. The force between the electron and the proton, e? / 47egr?, causes a centripetal accel-
eration equal to m,v%/r. The orbital angular momentum of the electron is L = mwr.

6. Make use of the fact that the magnitude of the momentum of a particle is at least as
big as the uncertainty in its momentum and use the uncertainty principle Eq. (1.15).

7. Use the uncertainty principle to show that the uncertainty in the momentum of the
quark, and hence the minimum value of its average momentum, is small compared
with mc where m is the mass of the quark.

8. Evaluate the de Broglic wavelength of electrons with kinetic energy 200 eV ¢ O \
consider the condition for strong diffraction by a slit.

9. Show that the de Broglie wavelength of a 5':1: 166 n
condition for constructive 1nterference 0 y ato rface
is Dsin¢ =n\. Show t ijon* is satlsﬁed
¢ =50 degrees and\an

\g@ due to a co @n copper is strongly diffracted by
e of atoms. Tqdg @ the de Broglie wavelength of a 7¢eV electron
s 0. 46 nm and that thls S CO le with the distance between atoms in copper.
11. Show that the de Broglie wavelength of a neutron with thermal energy %kT is
comparable with the distance between atoms in a solid if 7= 300 K.

12. Estimate the thermal energy of an oxygen molecule at 7 = 273 K and show that the
de Broglie wavelength is much smaller than the typical distance between molecules in
air.

CHAPTER 2

1. The phase and group velocities are given by

w dw
Uphase = E and Ugroup = @ .

Verify that vgeu = 3 Vphase-
2. Use

sink/(x — ct)

/cos K(x—ct) dk' = e
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00 —82
= / N e_“"( )Ne_”4m’2 dr
0 4reor

and

/ Ne™ <2m % _”>4nr dr.
e

(c¢) Find the minimum of (E) = (T) + (V) by setting d(E)/da =0
2. (a) The minimum of V,(r) is found using

dv, I? &2

& e dmer Y ()\
(b) The maximum and minimum distances r, which occur when éa‘\ @Q

e

%A QA
o _‘ 2

(b) Find the maximum of r¥*2e~2/(+Da,

(c) Use the integral given in problem 1 to evaluate

/ ual(r)ruo,l(r) dr and / uﬁ’l(r)rzuo,/(r) dr.
0 0

(e) For/>> 1, the orbital angular momentum L tends to /71 and rmost probable and (r)
both tend to Pay or L2ay /1.

4. (a) The eigenfunction is normalized if Ny =1/

(b) Show that

A VSO ()P dr = 0
i\ = —1/2ap.

8. Choosek to be along the z axis so that e® = e#*7<0s0 and write d*r = r2 dr d(cos 0) d¢.
Integrate from ¢ = 0 to 2z, from cos 0 = —1 to +1 and from r = 0 to co.



M shell 239
Magnetic energies 161
Magnetic moments 8.2
Measurement 1.4, 27, 41, 42
and non-locality 16
and wave—particle duality 13
Metastable state 196
Molecules see Diatomic molecules
Momentum operator 49
eigenfunctions for 139
Muonic hydrogen atom 209, 210

Normalization of
probability distribution 36, 37
wave function 42, 73

Nuclear magneton 160

Observables 48, 136, 7.1
compatible 7.3, 143, 145, 147
complete set of 142
non-compatible 142
Operators 48, 7.1

commuting 146
Hermitignel \1@

position 49
Orbital 232
Orthogonality 72
Ortho-hydrogen 227
Orthonormality 72

Para-hydrogen 227

Parity 104, 114, 184-185, 238
of spherical harmonics 185

Partial wave 173

Particle in a box
one-dimensional 3.4, 66
three-dimensional 69

Pauli exclusion principle 9, 223, 233,

11.3

Periodic table 11.2
Phase velocity 25
Phase shift 90, 173
Photoelectric effect 18
Photons 1.1
Planck’s constant 1
Poisson distribution 52
Position operator 49

eigenfunctions for 138

P age

Index 265

Positronium 209
Potential barrier 5.2 see also Tunnelling
Principal quantum number 8, 188
Probability 3.7
amplitude 137
for angular momentum 172, 173
for energy 71, 74
for momentum 44, 140
for position 41, 139
current density 56
density 37, 41, 44
interpretation of wave function 40
Probability distribution for
continuous random variable 37
discrete random variable 35
p-state 156

Quantized energy lev 6%3\
Quantu m also

tum, Prj A'
Zr‘u Zg
tes
I states 117

Radial function 183

Radial quantum number 188

Radial Schrodinger equation 183

Radiative transitions 120, 9.4, 237

Raising operator 126

Reduced mass 119, 196

Reflection probability 97, 107

Residual electron—electron repulsion 234,
236

Russell-Saunders coupling 235

Rydberg energy 10, 186

Scanning tunnelling microscope 100
Schrédinger equation 21, 28, 30
time-independent 64
Schwarz inequality 151
Selection rules for electric dipole
transitions
angular momentum 195, 237-238
parity 194, 238
Shell structure of atomic electrons 239
Single-particle states 231
Singlet spin state 236
Spectroscopic notation 156, 190, 232, 235,
236

cO



PHYSICAL CONSTANTS AND CONVERSION FACTORS

Symbol Description Numerical Value

¢ velocity of light in vacuum 299792458 m s~!, exactly
Lo permeability of vacuum 47 x 107N A2, exactly
€ permittivity of vacuum where ¢ = 1/, /cofig 8.854 x 10712C> N~I'm
h Planck constant 6.626 x 10734 ] s

/ h/2n 1.055 x 10737 s

G gravitational constant

e elementary charge

eV electronvolt

o fine structure constant, & / 47

electrgn m

ec energy 0.511 MeV

m e)d eton, eh/Zmede 9274 x 10°#J T~
XR Rydberg energ m%‘) 13.61eV

a Bohr radius (1/a) (i/mec) 0.5292 x 10" 19m
A angstrom 10-%m

my proton mass 1.673 x 107?kg
m],c2 proton rest-mass energy 938.272 MeV

my,c? neutron rest-mass energy 939.566 MeV

Uy nuclear magneton, efi/2m, 5051 x 10727 T~!
fm femtometre or fermi 107" m

b barn 10-28 m?

u atomic mass unit, (5 m('>C atom) 1.661 x 107*" kg
Ny Avogadro constant, atoms in gram mol 6.022 x 10?* mol™!
T; triple-point temperature 273.16 K

k Boltzmann constant 1.381 x 107837 K™!
R molar gas constant, N4k 8.315 T mol ' K!
a Stefan—Boltzmann constant, (12/60) (k*/#*c?) 5.670 x 1078 W m~2 K~*




