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p � h

l
and E � hc

l
, (1:1)

where l is the wavelength of the electromagnetic radiation. In comparison with

macroscopic standards, the momentum and energy of a photon are tiny. For

example, the momentum and energy of a visible photon with wavelength

l � 663 nm are

p � 10ÿ27 J s and E � 3� 10ÿ19 J:

We note that an electronvolt, 1 eV � 1:602� 10ÿ19 J, is a useful unit for the

energy of a photon: visible photons have energies of the order of an eV and

X-ray photons have energies of the order of 10 keV.

The evidence for the existence of photons emerged during the early years

of the twentieth century. In 1923 the evidence became compelling when

A. H. Compton showed that the wavelength of an X-ray increases when it is

scattered by an atomic electron. This effect, which is now called the Compton

effect, can be understood by assuming that the scattering process is a photon±

electron collision in which energy and momentum are conserved. As illustrated

in Fig. 1.1, the incident photon transfers momentum to a stationary electron so

that the scattered photon has a lower momentum and hence a longer wave-

length. In fact, when the photon is scattered through an angle y by a stationary

electron of mass me, the increase in wavelength is given by

Dl � h

mec
(1ÿ cos y): (1:2)

We note that the magnitude of this increase in wavelength is set by

Pf

p
i

p
f

q

Fig. 1.1 A photon±electron collision in which a photon is scattered by a stationary

electron through an angle y. Because the electron recoils with momentum Pf , the

magnitude of the photon momentum decreases from pi to pf and the photon wavelength

increases.
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by crystal lattices. Indeed, the first experiments to demonstrate the wave

properties of electrons were crystal diffraction experiments by C. J. Davisson

and L. H. Germer and by G. P. Thomson in 1927. Davisson's experiment

involved electrons with energy around 54 eV and wavelength 0.17 nm which

were diffracted by the regular array of atoms on the surface of a crystal of

nickel. In Thomson's experiment, electrons with energy around 40 keV and

wavelength 0.006 nm were passed through a polycrystalline target and dif-

fracted by randomly orientated microcrystals. These experiments showed

beyond doubt that electrons can behave like waves with a wavelength given

by the de Broglie relation Eq. (1.3).

Since 1927, many experiments have shown that protons, neutrons, atoms and

molecules also have wave-like properties. However, the conceptual implications

of these properties are best explored by reconsidering the two-slit interference

experiment illustrated in Fig. 1.2. We recall that a photon passing through two

slits gives rise to wave-like disturbances which interfere constructively and

destructively when the photon is detected on a screen positioned behind the

slits. Particles of matter behave in a similar way. A particle of matter, like a

photon, gives rise to wave-like disturbances which interfere constructively and

destructively when the particle is detected on a screen. As more and more

particles pass through the slits, an interference pattern builds up on the obser-

vation screen. This remarkable behaviour is illustrated in Fig. 1.3.

Interference patterns formed by a variety of particles passing through two

slits have been observed experimentally. For example, two-slit interference pat-

terns formed by electrons have been observed by A. Tonomura, J. Endo,

T. Matsuda, T. Kawasaki and H. Exawa (American Journal of Physics, vol. 57,

p. 117 (1989)). They also demonstrated that a pattern still emerges even when the

source is so weak that only one electron is in transit at any one time, confirming

that each electron seems to pass through both slits in a wave-like way before

detection at a random point on the observation screen. Two-slit interference

experiments have been carried out using neutrons by R. GaÈhler and A. Zeilinger

(American Journal of Physics, vol. 59, p. 316 (1991) ), and using atoms by

O. Carnal and J. Mlynek (Physical Review Letters, vol. 66, p. 2689 (1991) ).

Even molecules as complicated as C60 molecules have been observed to exhibit

similar interference effects as seen by M. Arndt et al. (Nature, vol. 401, p. 680

(1999) ).

These experiments demonstrate that particles of matter, like photons, are not

classical particles with well-defined trajectories. Instead, when presented with

two possible trajectories, one for each slit, they seem to pass along both

trajectories in a wave-like way, arrive at a random point on the screen and

build up an interference pattern. In all cases the pattern consists of fringes

with a spacing of lD=d, where d is the slit separation, D is the screen distance

and l is the de Broglie wavelength given by Eq. (1.3).

Physicists have continued to use the ambiguous word particle to describe

these remarkable microscopic objects. We shall live with this ambiguity, but we

6 Planck's constant in action Chap. 1
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shall occasionally use the term quantum particle to remind the reader that the

object under consideration has particle and wave-like properties. We have used

this term in Fig. 1.3 because this figure provides a compelling illustration of

particle and wave-like properties. Finally, we emphasize the role of Planck's

constant in linking the particle and wave-like properties of a quantum particle.

If Planck's constant were zero, all de Broglie wavelengths would be zero and

particles of matter would only exhibit classical, particle-like properties.

1.3 ATOMS

It is well known that atoms can exist in states with discrete or quantized energy.

For example, the energy levels for the hydrogen atom, consisting of an electron

and a proton, are shown in Fig. 1.4. Later in this book we shall show that

bound states of an electron and a proton have quantized energies given by

Continuum
of unbound
energy levels E` = 0

E3 = − 13.6
32

eV

E2 = − 13.6
22

eV

E1 = − 13.6
12

eV

Fig. 1.4 A simplified energy level diagram for the hydrogen atom. To a good approxi-

mation the bound states have quantized energies given by En � ÿ13:6=n2 eV where n, the

principal quantum number, can equal 1, 2, 3, . . . . When the excitation energy is above

13.6 eV, the atom is ionized and its energy can, in principle, take on any value in the

continuum between E � 0 and E � 1.

1.3 Atoms 7
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But quantized energy levels are not the most amazing property of atoms.

Atoms are surprisingly resilient: in most situations they are unaffected when

they collide with neighbouring atoms, but if they are excited by such encounters

they quickly return to their original pristine condition. In addition, atoms of the

same chemical element are identical: somehow the atomic number Z, the

number of electrons in the atom, fixes a specific identity which is common to

all atoms with this number of electrons. Finally, there is a wide variation in

chemical properties, but there is a surprisingly small variation in size; for

example, an atom of mercury with 80 electrons is only three times bigger than

a hydrogen atom with one electron.

These remarkable properties show that atoms are not mini solar systems in

which particle-like electrons trace well-defined, classical orbits around a nu-

cleus. Such an atom would be unstable because the orbiting electrons would

radiate electromagnetic energy and fall into the nucleus. Even in the absence of

electromagnetic radiation, the pattern of orbits in such an atom would change

whenever the atom collided with another atom. Thus, this classical picture

cannot explain why atoms are stable, why atoms of the same chemical element

are always identical or why atoms have a surprisingly small variation in

size.

In fact, atoms can only be understood by focussing on the wave-like proper-

ties of atomic electrons. To some extent atoms behave like musical instruments.

When a violin string vibrates with definite frequency, it forms a standing wave

pattern of specific shape. When wave-like electrons, with definite energy, are

confined inside an atom, they form a wave pattern of specific shape. An atom is

resilient because, when left alone, it assumes the shape of the electron wave

pattern of lowest energy, and when the atom is in this state of lowest energy

there is no tendency for the electrons to radiate energy and fall into the nucleus.

However, atomic electrons can be excited and assume the shapes of wave

patterns of higher quantized energy.

One of the most surprising characteristics of electron waves in an atom is that

they are entangled so that it is not possible to tell which electron is which. As a

result, the possible electron wave patterns are limited to those that are compat-

ible with a principle called the Pauli exclusion principle. These patterns, for an

atom with an atomic number Z, uniquely determine the chemical properties of

all atoms with this atomic number.

All these ideas will be considered in more detail in subsequent chapters, but

at this stage we can show that the wave nature of atomic electrons provides a

natural explanation for the typical size of atoms. Because the de Broglie

wavelength of an electron depends upon the magnitude of Planck's constant

h and the electron mass me, the size of an atom consisting of wave-like electrons

also depends upon h and me. We also expect a dependence on the strength of

the force which binds an electron to a nucleus; this is proportional to e2=4pE0,
where e is the magnitude of the charge on an electron and on a proton. Thus,

the order of magnitude of the size of atoms is expected to be a function of

1.3 Atoms 9
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However, because of the particle-like properties of light, the process of

observation involves innumerable photon±particle collisions, with the scattered

photons entering the lens of the microscope. To enter the lens, a scattered

photon with wavelength l and momentum h=l must have a sideways momen-

tum between

ÿ h

l
sin a and � h

l
sin a:

Thus the sideways momentum of the scattered photon is uncertain to the degree

Dp � h

l
sin a: (1:13)

The sideways momentum of the observed particle has a similar uncertainty,

because momentum is conserved when the photon scatters.

We note that we can reduce the uncertainty in the momentum of the observed

particle by increasing the wavelength of the radiation illuminating the particle,

but this would result in a poorer spatial resolution of the microscope and an

increase in the uncertainty in the position of the particle. Indeed, by combining

Eq. (1.12) and Eq. (1.13), we find that the uncertainties in the position and in the

momentum of the observed particle are approximately related by

Dx Dp � h: (1:14)

This result is called the Heisenberg uncertainty principle. It asserts that greater

accuracy in position is possible only at the expense of greater uncertainty in

momentum, and vice versa. The precise statement of the principle is that the

fundamental uncertainties in the simultaneous knowledge of the position and

momentum of a particle obey the inequality

Dx Dp � �h

2
, where �h � h

2p
: (1:15)

We shall derive this inequality in Section 7.4 of Chapter 7.

The Heisenberg uncertainty principle suggests that a precise determination of

position, one with Dx � 0, is possible at the expense of total uncertainty in

momentum. In fact, an analysis of the microscope experiment, which takes into

account the Compton effect, shows that a completely precise determination of

position is impossible. According to the Compton effect, Eq. (1.2), the wave-

length of a scattered photon is increased by

Dl � h

mc
(1ÿ cos y),

12 Planck's constant in action Chap. 1
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where m is the mass of the observed particle and y is an angle of scatter which

will take the photon into the microscope lens. This implies that, even if we

illuminate the particle with radiation of zero wavelength to get the best possible

spatial resolution, the radiation entering the microscope lens has a wavelength

of the order of h=mc. It follows that the resolution given by Eq. (1.12) is at best

Dx � l

sin a
� h

mc sin a
, (1:16)

which means that the minimum uncertainty in the position of an observed

particle of mass m is of the order of h=mc.

Our analysis of Heisenberg's microscope experiment has illustrated the role

of Planck's constant in a measurement: The minimum uncertainties in the

position and momentum of an observed particle are related by DxDp � h, and

the minimum uncertainty in position is not zero but of the order of h=mc.

However, readers are warned that Heisenberg's microscope experiment can be

misleading. In particular, readers should resist the temptation to believe that a

particle can really have a definite position and momentum, which, because of

the clumsy nature of the observation, cannot be measured. In fact, there is no

evidence for the existence of particles with definite position and momentum.

This concept is an unobservable idealization or a figment of the imagination of

classical physicists. Indeed, the Heisenberg uncertainty principle can be con-

sidered as a danger signal which tells us how far we can go in using the classical

concepts of position and momentum without getting into trouble with reality.

Measurement and wave±particle duality

In practice, the particle-like properties of a quantum particle are observed when

it is detected, whereas its wave-like properties are inferred from the random

nature of the observed particle-like properties. For example, in a two-slit

experiment, particle-like properties are observed when the position of a quan-

tum particle is measured on the screen, but the wave-like passage of the

quantum particle through both the slits is not observed. It is inferred from a

pattern of arrival at the screen which could only arise from the interference of

two wave-like disturbances from the two slits.

However, the inferred properties of a quantum particle depend on the experi-

ment and on the measurements that can take place in this experiment. We shall

illustrate this subjective characteristic of a quantum particle by considering a

modification of the two-slit experiment in which the screen can either be held

fixed or be allowed to move as shown in Fig. 1.7.

When the pin in Fig. 1.7 is inserted, detectors on a fixed screen precisely

measure the position of each arriving particle and an interference pattern builds

with fringes separated by a distance of lD=d.

1.4 Measurement 13
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d

Quantum particles
incident on two slits

Pin which
holds or
releases screen

Vertical
momentum
sensor

D

Fig. 1.7 A modified two-slit experiment in which the screen may move vertically and

become a part of a detection system which identifies the slit through which each particle

passes.

When the pin is withdrawn, the screen becomes a mobile detection system

which is sensitive to the momentum p � h=l of the particles hitting the screen.

It recoils when a particle arrives and, by measuring this recoil accurately, we

can measure the vertical momentum of the particle detected at the screen and

hence identify the slit from which the particle came. For example, near the

centre of the screen, a particle from the upper slit has a downward momentum

of pd=2D and a particle from the lower slit has an upward momentum of

pd=2D. In general, the difference in vertical momenta of particles from the

two slits is approximately Dp � pd=D. Thus, if the momentum of the recoiling

screen is measured with an accuracy of

Dp � pd

D
, (1:17)

we can identify the slit from which each particle emerges. When this is the case,

a wave-like passage through both slits is not possible and an interference

pattern should not build up. This statement can be verified by considering the

uncertainties involved in the measurement of the momentum of the screen.

The screen is governed by the Heisenberg uncertainty principle and an

accurate measurement of its momentum is only possible at the expense of an

uncertainty in its position. In particular, if the uncertainty in the vertical

momentum of the screen is Dp � pd=D, so that we can just identify the slit

through which each particle passes, then the minimum uncertainty in the

vertical position of the screen is

Dx � h

Dp
� hD

pd
: (1:18)
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d!

dk
� �hk

m
: (2:12)

This equation may be integrated to give the following dispersion relation for

the de Broglie waves describing a freely moving quantum particle of mass m:

! � �hk2

2m
: (2:13)

In obtaining this relation we have set the constant of integration to zero

because this constant gives rise to no observable consequences in non-relativis-

tic quantum mechanics.

Our task is to find a wave equation which has sinusoidal solutions which

obey this dispersion relation. The simplest such wave equation is called the

SchroÈdinger equation. For a free particle moving in one dimension, it has the

form

i�h
]C

]t
� ÿ �h2

2m

]2C

]x2
: (2:14)

It is easy to verify that the complex exponential

C(x, t) � A ei(kxÿ!t) (2:15)

is a solution of this equation provided ! and k obey the dispersion relation

Eq. (2.13). If we substitute into Eq. (2.14), the left-hand side yields

i�h
]C

]t
� i�h(ÿ i!)A ei(kxÿ!t) � �h!A ei(kxÿ!t),

and the right-hand side yields

ÿ �h2

2m

]2C

]x2
� �h2k2

2m
A ei(kxÿ!t),

and we have a solution provided �h! � �h2k2=2m.

Because the sinusoidal solution, Eq. (2.15), describes a wave moving in the x

direction with wave number k and angular velocity !, we shall assume that it

represents a free particle moving in the x direction with a sharply defined

momentum p � �hk and energy E � p2=2m � �h!. There are, of course, many

other solutions of the SchroÈdinger equation which represent other states of

motion of the particle.

We emphasize that in order to accommodate the dispersion relation for de

Broglie waves, Eq. (2.13), we have arrived at a wave equation, the free-particle

28 The SchroÈdinger equation Chap. 2
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We can now rewrite Eq. (3.27) as

hpi �
Z �1
ÿ1

C*(x, t)
1��������
2p�h
p

Z �1
ÿ1

p ~C(p, t) e�ipx=�h dp

� �
dx:

If the order of integration is interchanged, we obtain

hpi �
Z �1
ÿ1

1��������
2p�h
p

Z �1
ÿ1

C*(x, t) e�ipx=�h dx

� �
p ~C(p, t) dp:

We now use Eq. (3.20) to show that the integral in the brackets is equal to
~C*(p, t) and obtain

hpi �
Z �1
ÿ1

~C*(p, t)p ~C(p, t) dp

which is identical to Eq. (3.26).

Operators

We shall now introduce an idea which will become increasingly important as we

develop the basic elements of quantum mechanics. This is the idea that observ-

ables in quantum mechanics can be described by operators. At this stage we

shall consider the role of operators in the calculation of position and momen-

tum expectation values using Eq. (3.25) and Eq. (3.27). The recipe for the

calculation is as follows:

. First prepare a sandwich with 	* and 	.

. To find hxi insert x into the sandwich, and to find h pi insert ÿi�h ]=]x into the

sandwich.

. Then integrate over x.

In this recipe, the position observable is represented by x and the momentum

observable is represented by ÿi�h ]=]x. However, both x and ÿi�h ]=]x can be

considered as operators which act on the wave function; the real number x

merely multiplies C(x, t) by a factor x, and the differential expression ÿi�h ]=]x
differentiates C(x, t) and multiplies it by ÿi�h. To emphasize the role of oper-

ators in quantum physics we rewrite Eq. (3.25) and Eq. (3.27) as

hxi �
Z �1
ÿ1

C*(x, t) x̂ C(x, t) dx and hpi �
Z �1
ÿ1

C*(x, t) p̂ C(x, t) dx:

(3:29)

48 Position and momentum Chap. 3
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4.4 A PARTICLE IN A BOX II

One of the key features of quantum physics is that the possible energies of a

confined particle are quantized. Indeed, the familiar quantized energy levels of

atomic, nuclear and particle physics are manifestations of confinement. We

shall illustrate the connection between confinement and quantized energy levels

by considering a particle confined to a box.

A one-dimensional box

We begin by considering a particle moving in one dimension with potential

energy

V (x) � 0 if 0 < x < a

1 elsewhere,

�
(4:30)

This infinite square-well potential confines the particle to a one-dimensional

box of size a, as shown in Fig. 4.2. In classical physics, the particle either lies at

the bottom of the well with zero energy or it bounces back and forth between

the barriers at x � 0 and x � a with any energy up to infinity. In quantum

physics, more varied states exist. Each is described by a wave function C(x, t)

which obeys the one-dimensional SchroÈdinger equation

i�h
]C

]t
� ÿ �h2

2m

]2

]x2
� V (x)

" #
C: (4:31)

E4 = 16 h2p 2

2ma2

E3 = 9 h2 p 2

2ma2 

E2 = 4 h2 p 2

2ma2

E1 = 1 h2 p 2

2ma2

V(x)

x = 0 x = a

Fig. 4.2 Low-lying energy levels of a particle of mass m confined by an infinite square-

well potential V (x) with width a.
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V(x) =  +` V(x) =  −V0  V(x) =  0

x = 0 x = a

Fig. 5.1 The potential energy field given by Eq. (5.1) in which there are unbound states

with a continuous range of energies and, if the well is deep enough, bound states with

discrete energies.

The behaviour of a classical particle in this potential should be familiar. The

energy of the particle, E, is given by the sum of its kinetic and potential energies,

E � p2

2m
� V (x):

When the energy is negative and somewhere between E � ÿV0 and E � 0, the

particle is bound or trapped in the well of depth V0; it bounces back and forth

between x � 0 and x � a with kinetic energy E � V0. But when the energy is

positive, the particle is unbound. For example, it could approach the well from

x � �1 with kinetic energy E, increase its kinetic energy to E � V0 when it

reaches x � a, hit the infinitely-high potential wall at x � 0 and then bounce

back to x � �1.

The behaviour of a quantum particle in this potential is described by a wave

function C(x, t) which is a solution of the SchroÈdinger equation

i�h
]C

]t
� ÿ �h2

2m

]2C

]x2
� V (x)C: (5:2)

When the particle has definite energy E, the wave function has the form

C(x, t) � c(x) eÿiEt=�h, (5:3)

where c(x) is an eigenfunction satisfying the energy eigenvalue equation

ÿ �h2

2m

d2c
dx2
� V (x)c � Ec: (5:4)

84 Square wells and barriers Chap. 5
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Once we have solved this eigenvalue equation and found all the possible energy

eigenvalues and eigenfunctions, we can represent any quantum state of the

particle in the potential as a linear superposition of energy eigenfunctions.

To solve the eigenvalue equation, we note that the potential V(x) given by

Eq. (5.1) takes on constant values in three regions of x: (ÿ1 < x < 0),

(0 < x < a) and (a < x < �1). We shall find solutions of Eq. (5.4) in these

three regions and then join the solutions together at x � 0 and at x � a to

obtain physically acceptable eigenfunctions. Because the potential V(x)

changes abruptly at x � 0 and x � a, we can only require the eigenfunctions

c(x) to be as smooth as possible. In particular, we shall require c(x) to be

continuous at x � 0 and x � a in order to avoid unacceptable abrupt changes

in the position probability density. The differential equation (5.4) with poten-

tial (5.1) then implies that the first derivative of c(x) is continuous at x � a and

discontinuous at x � 0.1

We are interested in two types of eigenfunctions. The eigenfunctions for

bound states and the eigenfunctions for unbound states.

Bound states

If a bound state exists, it has a negative energy somewhere between E � ÿV0

and E � 0. We shall set E � ÿE, where E is the binding energy, and seek

solutions of Eq. (5.4).

In the region (ÿ1 < x < 0), the potential energy is infinite and the only

finite solution of Eq. (5.4) is c(x) � 0, signifying that the particle is never found

in the negative x region.

In the region (0 < x < a), the potential energy is V (x) � ÿV0 and Eq. (5.4)

has the form

d2c
dx2
� ÿk2

0c, where E � �h2k2
0

2m
ÿ V0: (5:5)

The general solution of this second-order differential equation has the form

c(x) � C sin (k0x� g),

where C and g are arbitrary constants. To ensure continuity of c(x) at x � 0, we

shall set the constant g to zero to give

c(x) � C sin k0x: (5:6)

1 The infinite change in the potential at x � 0 forces a discontinuity in dc=dx at x � 0. A more
rigorous approach would be to consider a potential energy with a finite value V1 in the region
x � 0, require the continuity of c(x) and dc=dx at x � 0 and then take the limit V1 !1.

5.1 Bound and Unbound States 85
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In the region (a < x < �1), the potential energy is zero and Eq. (5.4) has the

form

d2c
dx2
� a2c, where E � ÿ �h2a2

2m
: (5:7)

The general solution is

c(x) � A eÿax � A0 e�ax,

where A and A0 are arbitrary constants. To ensure that the eigenfunction is finite

at infinity, we set A0 to zero to give a solution which falls off exponentially with x:

c(x) � A eÿax: (5:8)

Our next task is to join the solution given by Eq. (5.6), which is valid in

the region (0 < x < a), onto the solution given by Eq. (5.8), which is valid in the

region (a < x < �1). As mentioned earlier, we shall require the eigenfunction

and its first derivative to be continuous at x � a. Continuity of c(x) gives

C sin k0a � A eÿaa, (5:9)

and continuity of dc=dx gives

k0C cos k0a � ÿaA eÿaa: (5:10)

If we divide Eq. (5.10) by Eq. (5.9), we obtain

k0 cot k0a � ÿa: (5:11)

Equation (5.11) sets the condition for a smooth join at x � a of the functions

C sin k0x and A eÿax. It is a non-trivial condition which is only satisfied when

the parameters k0 and a take on special values. And once we have found these

special values, we will be able to find the binding energies of the bound states

from E � �h2a2=2m.

To find these binding energies, we note that a and k0 are not independent

parameters. They are defined by

E � ÿ �h2a2

2m
and E � �h2k2

0

2m
ÿ V0,

which imply that

a2 � k2
0 � w2, where w is given by V0 � �h2w2

2m
: (5:12)
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Thus, we have two simultaneous equations for a and k0, Eq. (5.11) and

Eq. (5.12). These equations may be solved graphically by finding the points

of intersection of the curves

a � ÿk0 cot k0a and a2 � k2
0 � w2,

as illustrated in Fig. 5.2.

Inspection of Fig. 5.2 shows the number of points of intersection, and hence

the number of bound states, increase as the well becomes deeper. In particular,

there are no bound states for a shallow well with

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

(C)

(B)

(A)

k0 in units of π/a

α 
in

 u
ni

ts
 o

f 
π/

a

Fig. 5.2 Graphical solution of the simultaneous equations a � ÿk0 cot k0a and

a2 � k2
0 � w2. The units of k0 and a are p=a. Three values for the well-depth parameter,

w � p=a, w � 2p=a and w � 3p=a, are labelled by (A), (B) and (C), respectively. For (A)

there is one point of intersection and one bound state, for (B) there are two points of

intersection and two bound states and for (C) there are three points of intersection and

three bound states.
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w <
p
2a
:

There is one bound state when

p
2a
< w <

3p
2a

,

and two bound states when

3p
2a

< w <
5p
2a

,

and so on.

To illustrate the nature of the bound states, we shall consider a potential with

well-depth parameter w � 2p=a which corresponds to a well with depth

V0 � 2�h2p2

ma2
:

In this case two bound states exist, a ground state and a first excited state with

binding energies

E1 � 3:26
�h2p2

2ma2
and E2 � 1:17

�h2p2

2ma2
:

The corresponding eigenfunctions are shown in Fig. 5.3. These eigenfunctions

show that a bound quantum particle can be found outside the classical region

of confinement (0 < x < a). Specifically, for x > 0, bound-state eigenfunctions

have non-zero values given by

c(x) � A eÿax:

Hence the position probability densities for a bound particle fall off exponen-

tially as x penetrates into the classically forbidden region. Because the param-

eter a is related to the binding energy E via E � �h2a2=2m, the degree of quantum

penetration into the classically forbidden region is more pronounced when the

binding energy is low. The phenomenon of quantum penetration will be con-

sidered further in Section 5.2.

Unbound states

We shall now consider a particle with positive energy E that approaches the

well, shown in Fig. 5.1, from the right and is then reflected at x � 0. It is useful

to write the energy of the particle as
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By substituting this value for b into Eq. (5.42) we can illustrate the incredible

sensitivity of the electron tunnelling probability. For example, there is a meas-

urable 2% change in the probability when the gap between the surfaces changes

by a mere 0.001 nm!

The extreme sensitivity of electron tunnelling is exploited in a device called

the scanning tunnelling microscope. In this device a sharp metal probe is pos-

itioned near to a surface under investigation. The separation is made small

enough to induce the tunnelling of electrons between the probe and the surface,

and a potential difference between the probe and the surface is also established

so that there is a net current of electrons in one direction. As the probe is moved

or scanned across the surface, surface features of atomic dimensions will give

rise to measurable changes in the current of tunnelling electrons. In this way the

scanning tunnelling microscope can produce a map of the locations of individ-

ual atoms on the surface.

Tunnelling protons

The centre of the sun consists of an ionized gas of electrons, protons and light

atomic nuclei at a temperature T of about 107 K. The protons and other light

nuclei collide frequently, occasionally get close and occasionally fuse to release

energy which is ultimately radiated from the solar surface as sunshine.

To understand the issues involved in the generation of solar thermonuclear

energy, we shall focus on two protons approaching each other near the centre

of the sun. They move in the ionized gas with thermal kinetic energies of the

order of

E � kT � 1 keV:

The mutual potential energy of the two protons depends on their separation. As

illustrated in Fig. 5.5, the potential energy at large separation r is dominated by

the repulsive Coulomb potential

V (r) � e2

4pE0r
:

But at small separations, when r becomes comparable with the range of nuclear

forces given by rN � 2� 10ÿ15 m, the potential energy becomes attractive. The

net effect is a Coulomb barrier which rises to a height of about 1MeV at a

separation of about 2� 10ÿ15 m or 2 fm.

Thus, when protons approach each other near the centre of the sun, they do

so with energies of the order of keV and they encounter a Coulomb barrier

measured in MeV. According to classical physics, there is a well-defined dis-

tance of closest approach rC , which is given by
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c(r) � u(r)

r
, (5:46)

where u(r), as shown in problem 2 at the end of the chapter, obeys

ÿ �h2

2m
d2u

dr2
� V (r)u � E: (5:47)

We shall not attempt to solve this equation. Instead, we shall use the results we

obtained for a one-dimensional barrier to write down a plausible form of the

eigenfunction and then estimate the probability of tunnelling through a Cou-

lomb barrier.

We begin by considering a three-dimensional barrier with constant height VB

and width rC ÿ rN . In this case, the function u(r) decays exponentially in the

classically forbidden region as r gets smaller and it is given by

u(r) / ebr,

where b is given by

E � ÿ �h2b2

2m
� VB:

The probability that the protons tunnel from r � rC to r � rN is approximately

equal to the ratio of ju(rN )j2 to ju(rC)j2, and it is given by

T � j exp [ÿ b(rC ÿ rN)] j2: (5:48)

We now consider the Coulomb barrier shown in Fig. 5.5. In this case, the

eigenfunction in the classically forbidden region (rN < r < rC) is again approxi-

mately given by

u(r) / ebr,

but b now depends on r because it is given by

E � ÿ �h2b2

2m
� e2

4pE0r
:

The probability that the two protons tunnel from r � rC to r � rN is now

approximately given by a generalization of Eq. (5.48)
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T � exp ÿ
Z rC

rN

b dr

� ����� ����2: (5:49)

If we assume that rC >> rN and evaluate the integral in Eq. (5.49) by substi-

tuting r � rC cos2 y, we find that

T � exp ÿ EG

E

� �1=2
" #

(5:50)

where E is the relative energy of the protons and EG is defined by

EG � e2

4pE0�hc

� �2

2p2mc2: (5:51)

The energy EG is called the Gamow energy and its value is 493 keV.

We can now estimate the probability that two protons tunnel through the

Coulomb barrier which normally keeps them well apart when they collide near

the centre of the sun. By substituting a typical thermal energy of E � 1 keV into

Eq. (5.50), we obtain

T � exp [ÿ 22] � 3� 10ÿ10:

Thus, with a probability of about one in 3 billion, protons colliding near the

centre of the sun tunnel through the Coulomb barrier. And when they do so

they have a chance of fusing and releasing thermonuclear energy.

In practice, stars evolve slowly by adjusting their temperature so that the

average thermal energy of nuclei is well below the Coulomb barrier. Fusion

then proceeds at a rate proportional to the tunnelling probability. Because this

probability is very low, fusion proceeds at a slow pace and the nuclear fuel lasts

for an astronomically long time scale.

PROBLEMS 5

1. Consider a particle of mass m in the one-dimensional potential energy field

V (x) �
0 if ÿ1 < x < ÿa

ÿV0 if ÿa < x < �a

0 if �a < x < �1.

(

Because the potential is symmetric about x � 0, there are two types of

energy eigenfunctions. There are symmetric eigenfunctions which obey
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We note that when n � 0, i.e. when the particle is in the ground state of the

oscillator, the product of Dx and Dp is as small as it can be.

. Because the position and momentum of the particle are uncertain, the

potential energy and the kinetic energy are uncertain. The expectation values

of these uncertain observables are

1

2
m!2hx2i � 1

2
En and

hp2i
2m
� 1

2
En:

Not surprisingly, the sum of the expectation values of the uncertain potential

and kinetic energies is equal to En, the sharply defined total energy of the

state.

Finally, it is useful to consider in general terms why the quantum ground state

of the harmonic oscillator is so different from the classical ground state in

which the particle lies at rest at the bottom of the well with zero kinetic energy

and zero potential energy. When a quantum particle is precisely localized at

the centre of the well, it has a highly uncertain momentum and, hence, a

high kinetic energy. Similarly, when its momentum is precisely zero, it has a

highly uncertain position and it may be found in regions of high potential

energy. It follows that the sum of the kinetic and potential energies of a

quantum particle in a harmonic oscillator potential has a minimum value

when its position and momentum are uncertain, but not too uncertain. This

minimum is called the zero point energy of the harmonic oscillator. A lower

bound for this energy is derived using these ideas in problem 1 at the end of this

chapter.

Non-stationary states

The general wave function of a particle in a harmonic oscillator potential has

the form

C(x, t) �
X

n�0, 1, 2...

cncn(x) eÿiEnt=�h: (6:15)

This wave function represents a state of uncertain energy because when the

energy is measured many outcomes are possible: E0 � 1
2
�h!, E1 � 3

2
�h!, . . . with

probabilities jc0j2, jc1j2, . . ..

This wave function also represents a non-stationary state, a state with time-

dependent observable properties. For example, the position probability ampli-

tude jC(x, t)j2 has time-dependent terms which arise from the interference of

terms involving different energy eigenfunctions, cn(x). In particular, the inter-
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Fig. 6.4 The effective internuclear potential Ve(r) and the vibrational energy levels of

the hydrogen molecule. The potential energy near the minimum is approximately

quadratic and acts like a harmonic oscillator potential, and the lowest vibrational levels

are approximately equally spaced and given by the En � (n� 1
2
)�h!. The vibrational

levels become more closely spaced as the degree of excitation increases and the dissoci-

ation of the molecule gives rise to a continuum of energy levels.

If classical physics were applicable, the nuclei would have energy

Eclassical � p2
1

2m1

� p2
2

2m2

� 1

2
kx2:

where m1 and m2 are the masses of the nuclei and p1 and p2 are the magnitudes

of their momenta. In the centre-of-mass frame, we can set p1 � p2 � p and, by

introducing the reduced mass

m � m1m2

m1 �m2

,

we obtain

Eclassical � p2

2m
� 1

2
kx2:

This energy is the same as the energy of a single particle of mass m on a spring

with elastic constant k. Accordingly, we expect the vibrating nuclei in a

diatomic molecule to act like a harmonic oscillator with classical frequency

! � ��������
k=m

p
, where m is the reduced mass of the nuclei and k is an elastic constant

characterizing the strength of the molecular bond between the nuclei.

The quantum mechanical behaviour of this oscillator is described by a wave

function C(x, t) which satisfies the SchroÈdinger equation
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i�h
]C

]t
� ÿ �h2

2m
]2

]x2
� 1

2
k2x2

" #
C: (6:18)

This equation is almost identical to Eq. (6.8), which formed the starting point

for our discussion of the quantum oscillator. Indeed, if we replace the mass m

by the reduced mass m, we can apply all our results to a diatomic molecule.

Most importantly, we can use Eq. (6.12) to write down an expression for the

vibrational energy levels of a diatomic molecule with reduced mass m and elastic

constant k:

En � n� 1

2

� �
�h!, where ! �

���
k

m

s
: (6:19)

The quantum number n can take on the values 0, 1, 2, . . ., but, when n is large,

the harmonic oscillator model for molecular vibrations breaks down. This

occurs when the vibrational energy becomes comparable with the dissociation

energy of the molecule, as shown for the hydrogen molecule in Fig. 6.4.

A transition from one vibrational level of the molecule to another is often

accompanied by the emission or absorption of electromagnetic radiation, usu-

ally in the infrared part of the spectrum. This is particularly so for diatomic

molecules with two different nuclei, i.e. heteronuclear diatomic molecules. For

such molecules, the electrons form an electric dipole which can strongly absorb

or emit electromagnetic radiation. In fact, this mechanism leads to transitions

between adjacent vibrational levels and the emission or absorption of photons

with energy4

E � �h

�����
k

m
:

s

These photons give rise to a prominent spectral line with wavelength

l � hc

E
� 2pc

���
m
k

r
: (6:20)

4 The probability for transition from cm to cn induced by electric dipole radiation is proportional
to jxm, nj2 where

xm, n �
Z �1
ÿ1

cm*(x)xcn(x) dx:

By using the properties of the harmonic oscillator eigenfunctions, one can show that xm, n � 0 if
jmÿ nj 6� 1. (See problem 11 at the end of this chapter.)
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As an example, we consider the carbon monoxide molecule. The reduced

mass of the nuclei is m � 6:85 amu, and, when transitions between adjacent

vibrational levels occur, infrared radiation with wavelength l � 4:6 mm is emit-

ted or absorbed. If we substitute these values for m and l into Eq. (6.20), we find

that the elastic constant, characterizing the strength of the bond in the carbon

monoxide molecule, is k � 1908 Nmÿ1.

In reality, the situation is more complex. First of all, transitions between

adjacent vibrational levels have slightly different wavelengths, because the

vibrational energy levels are only approximately equally spaced; as illustrated

in Fig. 6.4, a harmonic oscillator potential does not exactly describe the

interaction between the nuclei in a diatomic molecule. Second, the molecule

may rotate and each vibrational level is really a band of closely spaced levels

with different rotational energies; accordingly, there is a band of spectral lines

associated with each vibrational transition.

6.5 THREE-DIMENSIONAL OSCILLATORS

We shall conclude this chapter by considering a particle of mass m in the three-

dimensional harmonic oscillator potential

V (r) � 1
2
kr2 � 1

2
k(x2 � y2 � z2): (6:21)

A classical particle at a distance r from the origin would experience a central

force towards the origin of magnitude kr. When displaced from the origin and

released, it executes simple harmonic motion with angular frequency

! � ���������
k=m

p
, but more complicated motion occurs when the particle is displaced

and also given a transverse velocity.

The behaviour of a quantum particle is governed by a Hamiltonian operator

Ĥ which is the sum of three one-dimensional Hamiltonians:

Ĥ � Ĥx � Ĥy � Ĥz (6:22)

where

Ĥx � ÿ �h2

2m

]2

]x2
� 1

2
m!2x2,

Ĥy � ÿ �h2

2m

]2

]y2
� 1

2
m!2y2,

Ĥz � ÿ �h2

2m

]2

]z2
� 1

2
m!2z2:
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Fig. 6.5 The four lowest energy levels of a particle in a three-dimensional harmonic

oscillator potential. The degeneracy of each level is denoted on the right-hand side.

E1, 0, 0 � 5

2
�h! and c1, 0, 0(x, y, z) � 1

a
���
p
p

� �3=2

21=2 x

a

� �
eÿ(x2�y2�z2)=2a2

;

E0, 1, 0 � 5

2
�h! and c0, 1, 0(x, y, z) � 1

a
���
p
p

� �3=2

21=2 y

a

� �
eÿ(x2�y2�z2)=2a2

;

E0, 0, 1 � 5

2
�h! and c0, 0, 1(x, y, z) � 1

a
���
p
p

� �3=2

21=2 z

a

� �
eÿ(x2�y2�z2)=2a2

:

In a similar way we can find six states with energy 7�h!=2, ten states with energy

9�h!=2, and so on.

The energy levels of the three-dimensional harmonic oscillator are shown in

Fig. 6.5. This diagram also indicates the degeneracy of each level, the degener-

acy of an energy level being the number of independent eigenfunctions associ-

ated with the level. This degeneracy arises because the Hamiltonian for the

three-dimensional oscillator has rotational and other symmetries.

6.6 THE OSCILLATOR EIGENVALUE PROBLEM

For the benefit of mathematically inclined readers we shall now discuss

the problem of finding the energy eigenfunctions and eigenvalues of a one-

dimensional harmonic oscillator. The method used is interesting and intro-

duces mathematical methods which are very useful in advanced quantum

mechanics. This section may be omitted without significant loss of continuity.

In order to simplify the task of finding the eigenvalues and eigenfunctions,

we shall clean up the eigenvalue equation (6.10) and give it a gentle massage.

We note that this equation contains three dimensional constants: Planck's

constant �h, the classical angular frequency !, and the mass of the confined

particle m. With these constants we can construct an energy �h! and a

length
������������
�h=m!

p
. Hence, it is natural to measure the energy E in units of �h!

6.6 The Oscillator Eigenvalue Problem 123

Preview from Notesale.co.uk

Page 140 of 284



The ground state

Two possible eigenvalues and eigenfunctions are immediately apparent from an

inspection of the alternative expressions for the eigenvalue equation given by

Eq. (6.30) and Eq. (6.31).

First, Eq. (6.30) is clearly satisfied if

E � ÿ 1

2
and qÿ d

dq

� �
c(q) � 0:

This first-order differential equation for c(q) has the solution

c(q) � A e�q2=2

where A is a constant. But this solution must be discarded because it does not

satisfy the boundary conditions, c(q)! 0 as q! �1, which are needed for a

normalizable wave function.

Second, Eq. (6.31) is clearly satisfied if

E � � 1

2
and q� d

dq

� �
c(q) � 0:

In this case the differential equation for c(q) has the solution

c(q) � A eÿq2=2,

which is an acceptable eigenfunction because c(q)! 0 as q! �1. Later we

shall show that this is the eigenfunction of the ground state. Accordingly, we

shall use the quantum number n � 0 as a label and take the ground state

eigenvalue and eigenfunction to be

E0 � � 1
2

and u0(q) � A0 eÿq2=2, (6:32)

where A0 is a normalization constant.

If we use Eq. (6.28) to express the dimensionless variables E and q in terms of

the dimensional variables E and x, we find that the ground state of a harmonic

oscillator with angular frequency ! has energy

E0 � 1
2
�h! (6:33)

and that its eigenfuction, as a function of x, is given by
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7
Observables and
operators

Operators have to be used in quantum mechanics to describe observable

quantities because measurements may have uncertain outcomes. In Chapter 3

we used the operators

r̂ � r and p̂ � ÿi�hr

to calculate the expectation values and the uncertainties in the position and

momentum of a particle. In Chapter 4 we used the Hamiltonian operator

Ĥ � ÿ �h2

2m
r2 � V (r)

to explore the energy properties of a particle. And in the next chapter we shall

consider in detail a fourth operator, the operator describing the orbital angular

momentum of a particle,

L̂ � r̂� p̂:

In this chapter we shall consider some physical properties of observables in

quantum mechanics and link these properties to the mathematical properties of

the operators which describe observables. In so doing, concepts that were

implicit in the use of operators in earlier chapters will be clarified and de-

veloped. This chapter will deal with concepts that are more abstract and

mathematical than those encountered elsewhere in this book. It may be omitted

without significant loss of continuity.
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In fact, we have three commuting operators,

[x̂, ŷ] � [x̂, p̂z] � [ŷ, p̂z] � 0,

and simultaneous eigenfunctions of the form

cx0y0p0z
(x, y, z) � d(xÿ x0)d(yÿ y0)

1��������
2p�h
p eÿip0zz:

Moreover, any wave function C(x, y, z, t) can be expressed as linear superpos-

ition of these eigenfunctions as follows:

C(x, y, z, t) �
Z �1
ÿ1

dx0
Z �1
ÿ1

dy0
Z �1
ÿ1

dp0z c(x0, y0, p0z, t)cx0y0p0z
(x, y, z):

In this expression c(x0, y0, p0z, t) is a probability amplitude for three compatible

observables. In fact, the probability of finding the particle at time t localized

between x0 and x0 � dx0 and between y0 and y0 � dy0, and with momentum in the

z direction between p0z and p0z � dp0z, is jc(x0, y0, p0z, t)j2 dx0 dy0 dp0z.
This example has illustrated the general procedure of defining a quantum

state of a particle moving in three dimensions by specifying a set of three

compatible observables. This procedure will be used in Chapter 9 when

we construct stationary states of the hydrogen atom by specifying the energy,

the magnitude of the orbital angular momentum and the z component of the

orbital angular momentum.

7.5 CONSTANTS OF MOTION

Observables that are compatible with the energy observable have a particular

physical significance. They are constants of the motion. To explain the signifi-

cance of this statement we consider the expectation value for an observable A

for a particle with wave function C,

hA(t)i �
Z

C*Â C d3r: (7:20)

In general, the expectation value hA(t)i will vary with time as the wave

function C(r, t) ebbs and flows in accord with the SchroÈdinger equation

i�h
]C

]t
� ĤC: (7:21)
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For example, the W boson is a spin-one particle with s � 1 and ms � �1, 0,ÿ 1

and the electron is a spin-half particle with s � 1
2

and ms � � 1
2
. Thus, spin

angular momentum can be integer, like orbital angular momentum, but it can

also be half-integer.

Orbital and spin angular momenta may be combined to give a total angular

momentum with magnitude and z component given by

J �
���������������
j(j � 1)

p
�h and Jz � mj�h, (8:4)

where, in general, the quantum numbers j and mj may take on integer and half-

integer values given by

j � 0,
1

2
, 1,

3

2
, 2, . . . . . . : and mj �

�j

�(j ÿ 1)

..

.

ÿ(j ÿ 1)

ÿj:

8>>>><>>>>: (8:5)

The actual values of the quantum number j depend on the orbital and spin

angular momenta being combined. It can be shown that, when an orbital

angular momentum with quantum number l is combined with a spin with

quantum number s, several total angular momenta may arise with quantum

numbers

j � l � s, l � sÿ 1, . . . jl ÿ sj: (8:6)

For example, we can have j � 3
2

and 1
2

when l � 1 and s � 1
2
, and we can

have j � 2, 1 and 0 when l � 1 and s � 1. We note that, in general, two

angular momenta with quantum numbers j1 and j2 may be combined to

give an angular momentum with quantum number j which can take on the

values

j � j1 � j2, j1 � j2 ÿ 1, . . . , jj1 ÿ j2j:

Earlier we referred to an angular momentum defined by two quantum

numbers as a fuzzy vector. The fuzziness arises because, when one of its

Cartesian components is sharply defined, the other two components are uncer-

tain but quantized when measured. In view of the uncertainties we have already

encountered in position, momentum and energy, uncertain angular momentum

should not be a surprise. Indeed, the uncertainty in orbital angular momentum

can be directly traced to the uncertainties in the position and momentum of a

particle, as indicated in problem 3 at the end of Chapter 7. But it is surprising

that angular momentum in any given direction can only equal an integer or
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j =1

Emag

j = 1
2 j = 3

2

Fig. 8.2 The energy levels in a magnetic field of an atom in states with angular

momentum quantum numbers j � 1
2
, 1 and 3

2
. The spacing between levels is given by

gmBB where B is the strength of the magnetic field, mB is the Bohr magneton and g is a

LandeÂ g-factor, a constant which depends on the spin and orbital angular momentum

quantum numbers of the atomic state.

The main features of a Stern±Gerlach experiment are illustrated in Fig. 8.3.

A beam of atoms is passed through a magnetic field produced by specially

shaped poles of an electromagnet. The direction of the magnetic field is largely

in one direction, the z direction say, but its strength, B(x, y, z), increases

markedly as z increases. In this field, each atom acquires an energy

Emag(x, y, z) � ÿmzB(x, y, z)

which depends upon the z component of its magnetic moment mz and on the

location in the field. Because this magnetic energy varies strongly with z, the

atom is deflected by a force in the z direction which is given by

N

S

Magnet

y

x

z

Collimated
beam of
atoms

Observation
screen

x

z

Fig. 8.3 The Stern±Gerlach experiment in which atoms pass through a non-uniform

magnetic field which separates out atoms according to the value of the magnetic moment

in the direction of maximum non-uniformity of the field.
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simpler angular shapes. These basis wave functions are usually taken to be

wave functions with specific orbital angular momentum properties. Accord-

ingly, we shall consider some wave functions with simple angular dependence

and deduce the orbital angular momentum properties of the particle they

describe. The properties of the following wave functions will be explored: The

spherically symmetric wave function given by

c(0, 0) � R(r), (8:18)

where R(r) is any well-behaved function of r �
�������������������������
x2 � y2 � z2

p
, and the wave

functions

c(1, 0) � R(r)
z

r
, c(1,�1) � R(r)

(x� iy)

r
, c(1,ÿ1) � R(r)

(xÿ iy)

r
: (8:19)

The rationale for the labels (0,0), (1,0) and (1, � 1) will become clear after we

have determined the angular momentum properties of the states described by

these wave functions.

The position probability densities for these wave functions,

jc(0, 0)j2 � jR(r)j2, jc(1, 0)j2 � jR(r)j2 z2

r2
and jc(1,�1)j2 � jR(r)j2 (x2 � y2)

r2
,

are illustrated in Fig. 8.4. We note that a particle described by the wave

function c(0, 0) is equally likely to be found at any point on the surface of a

sphere of radius r, whereas particular regions of the surface are more likely

locations for a particle described by the wave functions c(1, 0) and c(1,�1). For

the wave function c(1, 0) the North and South poles are more probable

(0, 0) (1, 0) (1,61)

Fig. 8.4 The position probability densities on the surface of a sphere for a particle with

wave functions c(0, 0),c(1, 0) and c(1,�1) given by Eqs. (8.18) and (8.19). For future

reference, these wave functions have orbital angular quantum numbers (l,ml) equal to

(0, 0), (1, 0) and (1, � 1). (This figure was produced with the permission of Thomas D.

York.)
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L2 � 2�h2 and Lz � 0. Therefore, it describes a particle with a precise magnitude

L � ���
2
p

�h and precise z component Lz � 0, but its orbital angular momentum in

the x and y directions are uncertain.

Clearly, we can construct other wave functions with similar properties. For

example, if we replace z in the expression for c(1, 0) by x or by y, we obtain the

wave functions

c0(1, 0) � R(r)
x

r
and c00(1, 0) � R(r)

y

r
: (8:22)

Both these wave functions describe a particle with an orbital angular momen-

tum of magnitude L � ���
2
p

�h; but for c0(1, 0) the x component is zero and the y

and z components are uncertain, and for c00(1, 0) the y component is zero and the

z and x components are uncertain.

We shall finally consider the wave functions

c(1,�1) � R(r)
(x� iy)

r
and c(1,ÿ1) � R(r)

(xÿ iy)

r
,

both of which describe a quantum particle which is more likely to be found near

the Equator and never at the North or South poles, as shown in Fig. 8.4. By

evaluating the action of the angular momentum operators on the functions

x� iy, it is easy to show that these wave functions are not eigenfunctions of L̂x

or of L̂y, but that they are both simultaneous eigenfunctions of L̂z and L̂2. In

fact,

L̂zc(1,�1) � ��hc(1,�1) and L̂2c(1,�1) � 2�h2c(1,�1)

and

L̂zc(1,ÿ1) � ÿ�hc(1,ÿ1) and L̂2c(1,ÿ1) � 2�h2c(1,ÿ1):

Thus, the wave function c(1,�1) describes a particle with Lz � ��h and L � ���
2
p

�h,

and the wave function c(1,ÿ1) describes a particle with Lz � ÿ�h and L � ���
2
p

�h;

in both cases, the x and y components of the orbital angular momentum are

uncertain.

By exploring the properties of these simple wave functions, we have illus-

trated three general properties of orbital angular momentum in quantum

physics:

. Orbital angular momentum in quantum physics is quantized and the natural

unit for angular momentum is

�h � 1:055� 10ÿ34 J s:
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. The orbital angular momentum of a quantum particle is at best a fuzzy

vector. We have only been able to specify precisely the magnitude and just

one of the components of orbital angular momentum. This is because the

components of angular momentum are non-compatible observables as dis-

cussed generally in Chapter 7.

. A quantum particle with specific orbital angular momentum properties has a

wave function with a specific angular shape. If the orbital angular momen-

tum is zero the wave function is spherically symmetric, and if the orbital

angular momentum is non-zero the wave function has angular dependence.

Spherical harmonics

So far we have considered wave functions to be functions of the Cartesian

coordinates x, y and z. In practice, it is more useful to consider wave functions

to be functions of the spherical polar coordinates r, y and f illustrated Fig. 8.5.

This figure shows that the Cartesian and spherical coordinates of the point P

are related by

x � r sin y cosf, y � r sin y sinf, and z � r cos y:

When a quantum state is represented by a wave function C(r, y,f), the

dependence on y and f specifies an angular shape that determines the orbital

angular momentum properties of the state. In fact, all possible orbital angular

momentum properties can be described using simultaneous eigenfunctions of

L̂2 and L̂z. These eigenfunctions are called spherical harmonics. They are

denoted Yl,ml
(y,f) and they satisfy the eigenvalue equations:

z

r

P

q

f

x

y

Fig. 8.5 The spherical polar coordinates (r, y, f) of the point P.
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any internal field. What is the spacing between these closely spaced

levels in eV?

4. Two particles of mass m are attached to the ends of a massless rod of length

a. The system is free to rotate in three dimensions about its centre of mass.

(a) Write down an expression for the classical kinetic energy of rotation of

the system, and show that the quantum rotational energy levels are given

by

El � l(l � 1)�h2

ma2
with l � 0, 1, 2, . . . :

(b) What is the degeneracy of the lth energy level?

(c) The H2 molecule consists of two protons separated by a distance of

0.075 nm. Find the energy needed to excite the first excited rotational

state of the molecule.

5. (a) By considering the relation between Cartesian and spherical polar co-

ordinates,

x � r sin y cosf, y � r sin y sinf, and z � r cos y,

and the chain rule

]c
]f
� ]c

]x

]x

]f
� ]c

]y

]y

]f
� ]c

]z

]z

]f
,

show that the operator for the z component of the orbital angular

momentum of a particle,

bLz � ÿi�h x
]

]y
ÿ y

]

]x

� �
,

can be rewritten as

bLz � ÿi�h
]

]f
:

(b) Verify that

Zml
(f) � eimlf������

2p
p
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3d state with m=0 3d state with m=+1 or −1 3d state with m=+2 or −2

<        48 Bohr radii        > <        48 Bohr radii        > <        48 Bohr radii        >

Fig. 9.7 The size and shape of the 3d states of the hydrogen atom with a z component

of orbital angular momentum equal to m�h.

9.4 RADIATIVE TRANSITIONS

When a hydrogen atom interacts with an electromagnetic field, quantum states

with quantum numbers n, l and ml are, in general, no longer stationary states

with definite energy, and radiative transitions between these states may take

place in which electromagnetic energy is either absorbed or emitted.

The most probable radiative transitions are called electric dipole transitions.

They are caused by an interaction of the electric field component E of the

electromagnetic field with the operator describing the electric dipole moment of

the electron±nucleus system. The electric dipole operator is d � ÿer, where r is

the vector position operator for the electron in the atom, and the interaction is

given by

ĤI � ÿd � E: (9:26)

In the presence of this interaction, the probability for a transition between

states with quantum numbers ni, li, mli and nf , lf , mlf is proportional to

j
Z

c*nf , lf ,mlf
(r) ĤI cni, li,mli

(r) d3r j2: (9:27)

We can easily prove that electric dipole transitions always involve a change in

parity by showing that the integral in Eq. (9.27) is zero if the initial and final

states have the same parity. We show this by considering the effect of changing

the integration variable from r toÿr. The interaction ĤI � ÿd � E changes sign,

but the sign of the eigenfunction, cni, li,mli
(r) or cnf , lf ,mlf

(r), is unchanged if the

eigenfunction has even parity and it is changed if the eigenfunction has odd

parity, as shown by Eqs. (9.13) and (9.14). Thus, when both eigenfunctions have

the same parity, the integrand in Eq. (9.27) changes sign when the integration

variable r is changed to ÿr and this implies that the integral must be zero.
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It can also be shown, by noting that the angular dependence of the

eigenfunctions cnf , lf ,mlf
(r) and cni, li,mli

(r) are given by spherical harmonics,

that the integral in Eq. (9.27), and hence the probability of transition, is

zero unless the difference Dl � lf ÿ li is �1 or ÿ1. This means that all electric

dipole transitions in the hydrogen atom also obey the selection rule

Dl � �1: (9:28)

The electric dipole transitions between low-lying states of the hydrogen atom

are shown as dotted lines in Fig. 9.8, where spectroscopic notation, 1s, 2s, 2p,

etc. has been used to label the levels corresponding to states with different

values for the principal quantum number n and orbital angular momentum

quantum number l; for example, 2s corresponds to n � 2 and l � 0 and 2p

corresponds to n � 2 and l � 1.

The transitions shown in Fig. 9.8 may be induced or spontaneous. Induced

transitions between states with energy Eni
and Enf

occur strongly when the

atom interacts with an external electromagnetic field which oscillates with an

angular frequency ! which satisfies the resonant condition

�h! � jEnf
ÿ Eni

j;

l =  0 l =  1 l =  2 l =  3

n =  4

n =  3

n =  2

n =  1

3s

2s

1s

2p

3p 3d

Fig. 9.8 Electric dipole radiative transitions between low-lying energy levels of the

hydrogen atom with different values for the quantum numbers n and l. Spectroscopic

notation, 1s, 2s, 2p, etc. has been used to label the energy levels; for example, 2s

corresponds to n � 2 and l � 0 and 2p corresponds to n � 2 and l � 1. We note that

the electric dipole transitions shown by the dotted lines obey the Dl � �1 selection rule

given in Eq. (9.28).
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E(2p3=2) � E2 ÿ 1
64

a4mec
2:

We note that the difference in energies of the 2p3=2 and 2p1=2 states can be

verified by observing a small difference in the wavelengths of the radiation

emitted by the transitions 2p3=2 ! 1s1=2 and 2p1=2 ! 1s1=2. We also note that

the 2s1=2 and 2p1=2 states are predicted to have the same energy, but that this

degeneracy is removed by a small effect called the Lamb shift which arises from

the quantum field properties of the electromagnetic field.

9.7 THE COULOMB EIGENVALUE PROBLEM

In this section we shall find the energy levels and eigenfunctions of an electron

in a Coulomb potential by solving the eigenvalue problem defined by the

differential equation (9.15) and the boundary conditions (9.16). This section

may be omitted without significant loss of continuity.

As a first step we shall tidy up Eq. (9.15) by setting

r � qa0 and E � ÿg2ER, (9:36)

so that q is a dimensionless measure of distance and g2 is a dimensionless

measure of the binding energy. If we use the definitions for a0 and ER,

Eqs. (9.19) and (9.20), we find that the radial eigenfunction u(q), when ex-

pressed as a function q, satisfies the differential equation

d2u

dq2
� 2

q
ÿ l(l � 1)

q2

� �
u � g2u (9:37)

and the boundary conditions

u(q) � 0 at q � 0 and at q � 1: (9:38)

Our next step is to find the behaviour of u(q) at large q and at small q. At

large q the differential equation (9.37) becomes

d2u

dq2
� g2u:

The general solution is

u(q) � A eÿgq � B e�gq,

where A and B are constants, but to satisfy the boundary condition u(q)! 0 as

q!1 we set B � 0 to give
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where jcms
j2 is equal to the probability that the particle has a z component of

spin equal to ms�h. (See footnote 2 below.)

When the spatial and spin properties of a particle are independent of each

other, the quantum state may be represented by a product

F(p) � c(rp)x(p):

For example, the first term c(rp) describing the spatial properties of the particle

could be a hydrogen±like wave function with quantum numbers n, l, ml and the

second term w(p) could be a spin state with quantum numbers s � 1
2

and

ms � � 1
2
. When this is the case, we have a single-particle quantum state of

the form

Fn, l,ml,ms
(p) � cn, l,ml

(rp)xs,ms
(p):

We can now write down expressions for quantum states which describe the

spatial and spin properties of two identical particles.

When both particles occupy the same single-particle state, say one with

spatial and spin quantum numbers n, l, ml , ms, we can construct a symmetrical

state for two identical particles of the form

F(S)(p, q) � Fn, l,ml,ms
(p)Fn, l,ml,ms

(q): (10:17)

But an antisymmetric two-particle state for two identical particles cannot be

constructed when both particles occupy the same single-particle state. This

implies that, when identical particles have antisymmetric exchange symmetry,

two or more particles cannot occupy the same single-particle state.

When the particles are associated with two different single-particle states, it is

possible to construct both symmetric and antisymmetric two-particle states.

For example, we can have a symmetric state of the form

F(S)(p, q) � 1���
2
p [Fn, l,ml,ms

(p)Fn0, l0,m
0
l
,m
0
s
(q)

�Fn, l,ml,ms
(q)Fn0, l0,m

0
l
,m
0
s
(p)]

(10:18)

2 In general, the probability amplitude cms
depends on time, but to keep the notation simple we shall

ignore time dependence. The spin eigenvectors xs,ms
(p) are less abstract if they are represented by

column matrices with 2s� 1 components; for example, a particle with spin s � 1
2
can be described

using the matrices

x 1
2
,�1

2
(p) � 1

0

� �
p

and x1
2
,ÿ1

2
(p) � 0

1

� �
p

,

where the subscript p is necessary because a matrix representing particle p must be distinguished
from a matrix representing another particle. The mathematics of the representation of spin
quantum states is covered in more advanced books, but this mathematics will not be needed here.
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most one proton and by one neutron. Similarly, theoretical models of protons,

neutrons and other hadrons are governed by the idea that quarks of a specific

flavour and colour also act like systems of identical fermions with antisym-

metric quantum states.

The boson way of being indistinguishable also leads to important physical

phenomena. Because bosons are described by symmetric quantum states, many

bosons may occupy the same single-particle state and when this happens

quantum-mechanical behaviour on a macroscopic scale may arise.

The most important example of boson togetherness is the coherent light of a

laser. This coherence arises because photons, bosons with spin one, have a high

probability to have the same energy and momentum, in much the same way as

two particles with a symmetric wave function have a high probability of being

at the same location.

Boson togetherness is also responsible for the superfluidity of liquid helium at

temperatures below 2.2 K. Liquid helium consists of a system of weakly interact-

ing helium atoms which behave like bosons because they consist of a 4He nucleus

with spin zero and two electrons with a combined spin of zero. At low tempera-

tures, a considerable fraction of the atoms in liquid helium `condense' into the

same lowest-energy state. They form a Bose±Einstein condensate in which the

atoms have wave functions which are coherent with each other and move

collectively without friction. Recently almost pure Bose±Einstein condensates

have been produced by cooling atoms in magnetic traps; indeed the 2001 Nobel

Prize in Physics was awarded to Eric Cornell, Wolfgang Ketterle and Carl Wie-

man for their work in producing the first pure Bose±Einstein condensate in 1995.

Surprisingly, boson-like togetherness also occurs in situations where fer-

mion-like behaviour is expected. It occurs in the superconductivity of metals

at low temperatures because pairs of electrons act like indistinguishable bosons.

It also probably occurs when liquid helium-3 becomes a superfluid at very low

temperatures. Helium-3 atoms, unlike the normal helium atoms, are fermions

because the 3He nucleus has spin half, but pairs of helium-3 atoms can act like a

system of indistinguishable bosons and give rise to collective motion with no

friction in liquid helium-3.

PROBLEMS 10

1. In Section 10.1 we explained why the wave function of two identical particles

has a definite exchange symmetry. In this problem we show that this ex-

change symmetry remains unchanged as the wave function evolves.

Given that the time evolution of the wave function for two particles is

governed by the SchroÈdinger equation,

i�h
]C(rp, rq, t)

]t
� Ĥ(rp, rq)C(rp, rq, t),
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10, quantum states which describe a system of indistinguishable electrons must

be antisymmetric whenever two electrons are exchanged. This can only be

achieved if electrons are assigned to orbitals in accordance with the Pauli

exclusion principle; i.e. not more than one electron may occupy an orbital

with the same quantum numbers n, l, ml , ms. This means that at most two

electrons can be assigned to 1s orbitals, one with quantum numbers n � 1,

l � 0, ml � 0, and ms � � 1
2
, and one with quantum numbers n � 1, l � 0,

ml � 0, and ms � ÿ 1
2
. Similarly, not more than two electrons can be assigned

to 2s orbitals, but up to six electrons can be assigned to 2p orbitals because there

are six of these orbitals with quantum numbers n � 2, l � 1, ml � �1, 0, ÿ 1,

and ms � � 1
2
. When the 1s, 2s and 2p orbitals are fully occupied, additional

electrons may only be assigned to orbitals with principal quantum numbers n

greater than 2. These orbitals have higher energy and also a limited capacity.

We can illustrate how to use this construction kit for atomic states by

considering a carbon atom containing six electrons which may occupy energy

levels similar to those shown on the right-hand-side of Fig. 11.2. The ground

state is obtained by assigning six electrons to orbitals with the lowest possible

energy; a maximum of two electrons can have the energy E1s, a maximum of

two can have the energy E2s and the minimum energy for each of the two

remaining electrons is E2p. These assignments give an electron configuration

denoted by (1s)2(2s)2(2p)2 with energy

E � 2E1s � 2E2s � 2E2p:

The first excited state of the carbon atom is obtained by assigning only one

electron to a 2s orbital and three electrons to 2p orbitals. This gives rise to the

electron configuration (1s)2(2s)(2p)3 with energy

E � 2E1s � E2s � 3E2p:

If the energy levels shown in Fig. 11.2 for the screened potential VA(r) are used

as a rough guide, the energy of the ground state is ÿ41:1ER and the energy of

the first excited state is ÿ40:6ER. Clearly, states of higher excitation may be

obtained by assigning more electrons to 2p orbitals or by assigning electrons to

3s, 3p, 3d, . . . orbitals.

In the preceding paragraph we have followed custom and given the wrong

impression that particular electrons are in particular orbitals. This is not the

case. Because all the electrons in the atom are indistinguishable, each electron

is equally associated with each of the occupied orbitals. In fact, like the

two-electron state given by Eq. (10.19), the multi-electron quantum state is

antisymmetric when any two of the electrons are exchanged.

We have also wrongly given the impression that the central potential which

represents the effect of the attraction of the nucleus and of the average effects of

electron±electron repulsion, is easy to find. In fact, the central potential and the
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E � �h2

2meR2
ÿ e2

4pE0R
: (11:9)

For future reference, we will rewrite this energy as

E � A1

R2
ÿ B1

R
, (11:10)

where A1 and B1 are the constants

A1 � �h2

2me

and B1 � e2

4pE0

, (11:11)

which determine the kinetic energy and the potential energy for a state of the

hydrogen atom with spatial extent R. We note that for a state with large R, the

energy is dominated by the potential energy ÿB1=R, that for a state with small

R, the energy is dominated by the kinetic energy of localization A1=R
2, and that

a balance between the attractive effect of the potential energy and the repulsive

effect of the kinetic energy gives rise to a minimum energy when

dE

dR
� ÿ2

A1

R3
� B1

R2
� 0,

i.e. when R � 2A1=B1. We conclude that this model predicts a ground state

with an energy and size given by

E1 � ÿ B2
1

4A1

and R1 � 2A1

B1

: (11:12)

When we substitute for A1 and B1 and use the expressions for the Bohr radius

a0 and Rydberg energy ER, Eqs. (9.19) and (9.20), we find that Eq. (11.12) gives

the correct energy and radius for the ground state of the hydrogen atom,

E1 � ÿER and R1 � a0: (11:13)

We shall now show that the model, with minor adjustments, can also describe

the energy and size of the ground state of the helium atom. In this atom there

are two electrons and a nucleus of charge 2e. If both electrons are in the same

single-particle state, the energy of a two-electron quantum state of size R is

roughly given by

E � 2
�h2

2meR2
ÿ 4

e2

4pE0R
� e2

4pE0Ree

, (11:14)
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son for the first 11 elements are shown in Fig 11.5. The solid circles give

energies and radii for real atoms in which the Pauli principle has a governing

role, and the open circles give the energies and radii for hypothetical atoms in

which the Pauli principle plays no role.

We see that without the Pauli principle, the ionization energies steadily

increase and the radii steadily decrease with atomic number Z. In particular,

the periodicity of chemical properties of real atoms is replaced by a chemistry in

which atoms steadily become less reactive than helium. A world without the

Pauli exclusion principle would be very different. One thing is for certain: it

would be a world with no chemists.

Ionization
energy (ER)

14

12

10

8

6

4

2

2 4 6 8 10

Radius (a0)

3

2

1

2 4 6 8 10

Atomic number Z

Fig. 11.5 The effect of the Pauli exclusion principle on the ionization energies and radii

of the first 11 elements. The solid circles correspond to atoms in which the Pauli

principle constrains the behaviour of the electrons and the hollow circles correspond

to atoms in which the constraints of the Pauli principle are not imposed. The Pauli

principle has no effect on the ground states of the first elements, hydrogen and helium.

The Rydberg energy and the Bohr radius have been used as units for the ionization

energies and radii.
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is a fundamental length in a relativistic theory of the electron. Show that this length

is a2a0 where a0 is the Bohr radius and a � e2=4pE0�hc. The constant a is called the

fine structure constant and it is approximately equal to 1=137.

5. The force between the electron and the proton, e2=4pE0r2, causes a centripetal accel-

eration equal to meu2=r. The orbital angular momentum of the electron is L � mur.

6. Make use of the fact that the magnitude of the momentum of a particle is at least as

big as the uncertainty in its momentum and use the uncertainty principle Eq. (1.15).

7. Use the uncertainty principle to show that the uncertainty in the momentum of the

quark, and hence the minimum value of its average momentum, is small compared

with mc where m is the mass of the quark.

8. Evaluate the de Broglie wavelength of electrons with kinetic energy 200 eV and

consider the condition for strong diffraction by a slit.

9. Show that the de Broglie wavelength of a 54 eV electron is l � 0:166 nm. The

condition for constructive interference of waves scattered by atoms on the surface

is D sinf � nl. Show that this condition is satisfied when D � 0:215 nm,

f � 50 degrees and n � 1.

10. Show that the wave due to a conduction electron in copper is strongly diffracted by

the lattice of atoms. To do this show that the de Broglie wavelength of a 7 eV electron

is 0.46 nm and that this is comparable with the distance between atoms in copper.

11. Show that the de Broglie wavelength of a neutron with thermal energy 3
2
kT is

comparable with the distance between atoms in a solid if T � 300 K.

12. Estimate the thermal energy of an oxygen molecule at T � 273K and show that the

de Broglie wavelength is much smaller than the typical distance between molecules in

air.

CHAPTER 2

1. The phase and group velocities are given by

uphase � !
k

and ugroup � d!

dk
:

Verify that ugroup � 3
2
uphase.

2. Use

Z
cos k0(xÿ ct) dk0 � sin k0(xÿ ct)

(xÿ ct)
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hV i �
Z 1

0

N eÿar
ÿe2

4pE0r

� �
N eÿar4pr2 dr

and

hTi �
Z 1

0

N eÿar
ÿ�h2

2mer

d2

dr2
rN eÿar

 !
4pr2 dr:

(c) Find the minimum of hEi � hTi � hVi by setting dhEi=da � 0.

2. (a) The minimum of Ve(r) is found using

dVe

dr
� L2

mr3
ÿ e2

4pE0r2
� 0:

(b) The maximum and minimum distances r, which occur when pr � 0, are given by

e2

8pE0a
� L2

2mr2
ÿ e2

4pE0r
:

3. Use the integral given in problem 1 to evaluate

N2

Z 1
0

r2l�2 eÿ2r=(l�1)a0 dr:

(b) Find the maximum of r2l�2 eÿ2r=(l�1)a0 .

(c) Use the integral given in problem 1 to evaluate

Z 1
0

u*0, l(r)ru0, l(r) dr and

Z 1
0

u*0, l(r)r
2u0, l(r) dr:

(e) For l >> 1, the orbital angular momentum L tends to l�h and rmost probable and hri
both tend to l2a0 or L2a0=�h2.

4. (a) The eigenfunction is normalized if N1 � 1=
�������
pa3

0

q
.

(b) Show that

Z 1
0

c2*(r)c1(r)r
2 dr � 0

if l � ÿ1=2a0.

8. Choose k to be along the z axis so that eik�r � eikr cos y and write d3r � r2 drd( cos y) df.

Integrate from f � 0 to 2p, from cos y � ÿ1 to �1 and from r � 0 to1.
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M shell 239

Magnetic energies 161

Magnetic moments 8.2

Measurement 1.4, 27, 41, 42

and non-locality 16

and wave±particle duality 13

Metastable state 196

Molecules see Diatomic molecules

Momentum operator 49

eigenfunctions for 139

Muonic hydrogen atom 209, 210

Normalization of

probability distribution 36, 37

wave function 42, 73

Nuclear magneton 160

Observables 48, 136, 7.1

compatible 7.3, 143, 145, 147

complete set of 142

non-compatible 142

Operators 48, 7.1

commuting 145

Hermitian 136, 150

linear 136

momentum 49

position 49

Orbital 232

Orthogonality 72

Ortho-hydrogen 227

Orthonormality 72

Para-hydrogen 227

Parity 104, 114, 184±185, 238

of spherical harmonics 185

Partial wave 173

Particle in a box

one-dimensional 3.4, 66

three-dimensional 69

Pauli exclusion principle 9, 223, 233,

11.3

Periodic table 11.2

Phase velocity 25

Phase shift 90, 173

Photoelectric effect 18

Photons 1.1

Planck's constant 1

Poisson distribution 52

Position operator 49

eigenfunctions for 138

Positronium 209

Potential barrier 5.2 see also Tunnelling

Principal quantum number 8, 188

Probability 3.1

amplitude 137

for angular momentum 172, 173

for energy 71, 74

for momentum 44, 140

for position 41, 139

current density 56

density 37, 41, 44

interpretation of wave function 40

Probability distribution for

continuous random variable 37

discrete random variable 35

p-state 156

Quantized energy levels 66, 68

Quantum numbers 44, 68 see also

Angular momentum, Principal,

Radial

Quantum particle 4, 7, 13, 38

Quantum states 3.6

Quasi-classical states 117

Radial function 183

Radial quantum number 188

Radial SchroÈdinger equation 183

Radiative transitions 120, 9.4, 237

Raising operator 126

Reduced mass 119, 196

Reflection probability 97, 107

Residual electron±electron repulsion 234,

236

Russell-Saunders coupling 235

Rydberg energy 10, 186

Scanning tunnelling microscope 100

SchroÈdinger equation 21, 28, 30

time-independent 64

Schwarz inequality 151

Selection rules for electric dipole

transitions

angular momentum 195, 237±238

parity 194, 238

Shell structure of atomic electrons 239

Single-particle states 231

Singlet spin state 236

Spectroscopic notation 156, 190, 232, 235,

236

Index 265
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PHYSICAL CONSTANTS AND CONVERSION FACTORS

Symbol Description Numerical Value

c velocity of light in vacuum 299 792 458m sÿ1, exactly

m0 permeability of vacuum 4p� 10ÿ7 N Aÿ2, exactly

E0 permittivity of vacuum where c � 1=
���������
E0m0

p
8:854� 10ÿ12 C2 Nÿ1 m

ÿ2

h Planck constant 6:626� 10ÿ34 J s

�h h=2p 1:055� 10ÿ34 J s

G gravitational constant 6:674� 10ÿ11 m3 kgÿ1 sÿ2

e elementary charge 1:602� 10ÿ19 C

eV electronvolt 1:602� 10ÿ19 J

a fine structure constant, e2=4pE0�hc 1=137:0

me electron mass 9:109� 10ÿ31 kg

mec
2 electron rest-mass energy 0.511MeV

mB Bohr magneton, e�h=2me 9:274� 10ÿ24 J Tÿ1

ER Rydberg energy a2mec
2=2 13.61 eV

a0 Bohr radius (1=a) (�h=mec) 0:5292� 10ÿ10 m

AÊ angstrom 10ÿ10 m

mp proton mass 1:673� 10ÿ27kg

mpc
2 proton rest-mass energy 938.272MeV

mnc
2 neutron rest-mass energy 939.566MeV

mN nuclear magneton, e�h=2mp 5:051� 10ÿ27 J Tÿ1

fm femtometre or fermi 10ÿ15 m

b barn 10ÿ28 m2

u atomic mass unit, 1
12

m(12C atom) 1:661� 10ÿ27 kg

NA Avogadro constant, atoms in gram mol 6:022� 1023 molÿ1

Tt triple-point temperature 273.16K

k Boltzmann constant 1:381� 10ÿ23 J Kÿ1

R molar gas constant, NAk 8:315 J molÿ1 Kÿ1

s Stefan±Boltzmann constant, (p2=60) (k4=�h3c2) 5:670� 10ÿ8 W mÿ2 Kÿ4
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