Respiration During Exercise # O₂ Transport in the Blood - O₂ is transported by haemoglobin protein, contains iron, in all red blood cells - 4 O₂ molecules per haemoglobin - direction of reaction depends on: PO₂ of blood + affinity between Hb+O₂ - o the amount of O₂ that can be transported per blood unit depends on the concentration of haemoglobin - O_2 + haemoglobin = 'loading' \rightarrow oxyhaemoglobin - release of O_2 from haemoglobin = 'unloading' \rightarrow deoxyhaemoglobin ## Oxyhaemoglobin Dissociation Curve (sigmoidal curve) high PO_2 = formation of oxyhaemoglobin At lungs: At tissues: low PO_2 = release of O_2 to tissues - Effect of pH - decreased pH lowers Hb-O₂ affinity - o "right" shift ← Bohr effect (H⁺ binds to haemoglobin) - o favours offloading of O₂ to tissues - **Effect of Temperature** - o increased blood temperature lowers Hb-O₂ affinity - o "right shift" − O₂ offloading - Effect of 2-3 DPG - o by-product of red blood cell glycolysis - "right" shift during altitude exposure Notesale.co.uk Ventilation & Acid-Base Balance Pulmonary ventilation rel $H^{+} + HCO_{3}^{-}$ H₂CO₃ $CO_2 + H_2O$ muscle - INCREASED ventilation = CO₂ exhalation; reduced PCO₂ & H⁺ concentration - DECREAED ventilation = CO_2 build-up; increased PCO_2 & H⁺ concentration #### O₂ Transport in the Muscle Myoglobin shuttles O₂ from cell membrane to mitochondria. - Large quantities in slow-twitch fibres - Small quantities in intermediate fibres - Limited quantities in fast-twitch fibres Higher O₂ affinity than haemoglobin (event at low PO_2) Allows Mb to store O_2 = reserve lung Which is important as at the start of exercise there's a time log between onset of muscle contraction & increased O₂ delivery so reserves buffer the muscle O₂ needs (at start) – this contributes to O₂ debt. ## CO₂ Transport in the Blood | At tissue: | H ⁺ binds to Hb | At lung: O ₂ binds to Hb | |------------|--|--| | | HCO₃ diffuses out of RBC into plasma | reaction reverses to release CO ₂ | | | Cl ⁻ diffuses into RBC = chloride shift | |