Respiration During Exercise

O₂ Transport in the Blood

- O₂ is transported by haemoglobin protein, contains iron, in all red blood cells
 - 4 O₂ molecules per haemoglobin
 - direction of reaction depends on: PO₂ of blood + affinity between Hb+O₂
 - o the amount of O₂ that can be transported per blood unit depends on the concentration of haemoglobin
 - O_2 + haemoglobin = 'loading' \rightarrow oxyhaemoglobin
 - release of O_2 from haemoglobin = 'unloading' \rightarrow deoxyhaemoglobin

Oxyhaemoglobin Dissociation Curve

(sigmoidal curve)

high PO_2 = formation of oxyhaemoglobin At lungs:

At tissues: low PO_2 = release of O_2 to tissues

- Effect of pH
 - decreased pH lowers Hb-O₂ affinity
 - o "right" shift ← Bohr effect (H⁺ binds to haemoglobin)
 - o favours offloading of O₂ to tissues
- **Effect of Temperature**
 - o increased blood temperature lowers Hb-O₂ affinity
 - o "right shift" − O₂ offloading
- Effect of 2-3 DPG
 - o by-product of red blood cell glycolysis
 - "right" shift during altitude exposure

Notesale.co.uk Ventilation & Acid-Base Balance

Pulmonary ventilation rel

 $H^{+} + HCO_{3}^{-}$ H₂CO₃ $CO_2 + H_2O$ muscle

- INCREASED ventilation = CO₂ exhalation; reduced PCO₂ & H⁺ concentration
- DECREAED ventilation = CO_2 build-up; increased PCO_2 & H⁺ concentration

O₂ Transport in the Muscle

Myoglobin shuttles O₂ from cell membrane to mitochondria.

- Large quantities in slow-twitch fibres
- Small quantities in intermediate fibres
- Limited quantities in fast-twitch fibres

Higher O₂ affinity than haemoglobin (event at low PO_2)

Allows Mb to store O_2 = reserve

lung

Which is important as at the start of exercise there's a time log between onset of muscle contraction & increased O₂ delivery so reserves buffer the muscle O₂ needs (at start) – this contributes to O₂ debt.

CO₂ Transport in the Blood

At tissue:	H ⁺ binds to Hb	At lung: O ₂ binds to Hb
	HCO₃ diffuses out of RBC into plasma	reaction reverses to release CO ₂
	Cl ⁻ diffuses into RBC = chloride shift	