
We have chosen to put our server on port 2000. Ports 0-1023 are reserved for the so-calledwell-known
ports corresponding to standard TCP/IP services. You can see a list of well-known ports in the UNIX file
/etc/services.

Line 24: We will use arrays for ourread() andwrite() system calls. They need to be large enough for the
data we send. In this case, 1000 characters will be sufficient. Note carefully, though, that this limit is NOT
there for the purpose of keeping our packets small; we can send as long a message as we like, with a single
call towrite() . Remember, TCP will break up long messages into shorter ones for us, without us even seeing
it, so we do not have to worry about it.

Lines 36-39:

We open a socket, using thesocket()system call. The first parameter indicates whether this is an Internet
socket, versus a socket purely local to this machine (a “UNIX socket”), not going out onto the Internet; the
Internet case here is designated by AFINET. The second parameter indicates the service, i.e. TCP, UDP or
others; it is TCP in this case, designated by SOCKSTREAM.21 We have defaulted the third parameter here
(and will not worry about what other possibilities there are for it).

The function’s return value, assigned toSDhere, is asocket descriptor, quite analogous to a file descriptor.

Lines 41-54:

We are building up a data structure named Addr (“address”) which we will use in line 51. Its type,sock-
addr in (line 31) comes from the #include file and is a standard socket type. Clearly, it is a complex type,
with many fields, and we will not go into the details here. See the man pages if you are interested for more
information.

One thing to beware of is that for the system call connect() and many other socket functions, you will see
that the man pages say you should use a struct of typesockaddr, as opposed to thesockaddr in type we
have used here. Yet thesockaddr type is just meant as a dummy, to be replaced by another struct type
which is specific to the network protocol being used. In our case, we are using TCP/IP, so we choose the
sockaddr in type, where “in” stands for “Internet.” There are also types such assockaddr ns for the Xerox
Networks Systems protocol, though of course TCP/IP has become virtually ubiquitous.

Having already opened a socket, we have to connect it to a specific port at a specific machine. Recall that
the user specifies an Internet host name, such asgarnacha.engr.edu. But we need the machine’s numerical
Internet address. This is obtained on line 46. The return value is a pointer to another standard data structure.

In line 47, we callmemcopy(), a system call which copies strings from one part of memory to another, in
this case from various fields of the struct pointed to byHostPtr to Addr . A given host may have several
addresses; here we are not bothering to check for that, but simply using the first address, contained in
h addr list[0] . (Here ‘h’ stands for “host.”) Theh length field gives the length of the address.

In line 51, we now connect the socket to the destination host. (It is here that the negotiation between source
and destination hosts will occur, as to packet sizes, and so on.)

Note that the port number we have specified is for the port at the server, not the client. There is a hidden
port number for the client here, which we will discuss later.

Line 57:
21There are also various others, such as SOCKRAW for raw sockets.

17

Preview from Notesale.co.uk

Page 17 of 29



Here we write either “w” or “ps” to the destination host, depending on what the user requested. Note that
the functionwrite() is identical to the one used for low-level file access, except that we have as the first
parameter a socket descriptor instead of a file descriptor.

Lines 60-61:

On line 60 we read the message sent by the destination host, which will be the output of that host’s running
either thew or ps command. On line 61 we then write that message to the user’s screen. (For convenience,
we do so again usingwrite() , making use of the fact that the standard output has file descriptor 1, though of
course could have usedprintf() .)

Note carefully that if we had been expecting more voluminous data from the server than is the case here, we
may have had to do repeated calls toread().

In addition toread() andwrite() , we may also access sockets via other very similar system callsrecv(),
send(), recvfrom() and sendto(). (And in non-UNIX environments, wemustuse these, since those OSs do
not treat socket and file I/O the same.)

Now let’s take a look at the server code.

Line 68:

Here the server creates a socket.

Lines 77-85:

The system functionbind() is called in line 80. This associates the socket with a particular port and with
a particular IP address on the local machine, i.e. the machine on which the program which callsbind() is
running, in this case the server machine. Recall that machine may have multiple IP addresses, either because
it has several NICs, or because it may have multiple IP addresses assigned to the same NIC.

For example, suppose one of the NICs at the server machine corresponds to a local private intranet. Then
we could specify that particular address in our call tobind(), which would enable our making the program
available only on this intranet.

Or, suppose we are running an Internet service provider (ISP). We may be hosting many different customer
Web sites, all with different names (www.acmegroceries.com, www.flatearthsociety.org, etc.), each with
a different IP address. We want a given server, say the one for Acme Groceries, to respond only to clients
accessing thewww.acmegroceries.com, so our call tobind() would specify that address.

In our case here, we wish this server to be accessible from via of its IP addresses, which we specify in line
79 by using the constant INADDRANY.

Note that we did not have a call tobind() in our client code. We could have had one if we wanted the client
to access this port only through a particular one of the IP addresses of the client machine. In the intranet
example above, for instance, if the information to be exchanged by the client and server really needs full
security, it might be safer to make sure the client does not accidentally send its information outside the
intranet (say because a routing table becomes corrupted).22

To summarize, in a server program, callingbind() associates with the given socket the port number and IP
address that “phone calls” to this socket will be allowed on.

22If we do callbind() in a client, this must be done before callingconnect().

18

Preview from Notesale.co.uk

Page 18 of 29



Normally we do not need to callbind() in a client program. Yet the client still needs a port number and IP
address to use in accepting messages which come from the server. If we do not callbind() in the client, then
calling connect()in the client will cause the OS to assign to the client a port, called anephemeral port, as
well as an IP address (in the case that the client has more than one IP address).23

Note that nowhere in the client or server code above do we see any mention of the client’s ephemeral port
number. (WPSPORT is the number of a port at the server, not at the client.) But the OS at the client will
indeed notify the server regarding the identity of the ephemeral port (when the client callsconnect()),

Normally we do not need to know which ephemeral port has been assigned at a client, but if we need it then
we can get it by callinggetsockname()in the client after callingconnect().

Line 88:

Be calling thelisten() function, we are notifying the OS that this program will be a server, not a client. We
also notify the OS as to how many incoming calls (in the form of clients invoking theconnect()function)
will be allowed to be pending at one time, in this case five. If a call arrives when the queue is full, the call
will be discarded (so it is best when writing the client to put the call toconnect() in a loop, looping until
connect()succeeds).

Lines 93-115:

Here we loop indefinitely, continuing to process calls one at a time. Theaccept()function (line 95) accepts
a pending call, returning a socket which we will use to exchange messages to the client. By making it a
separate socket, we can have several client sessions active simultaneously, though we are not doing so here.
The original socket is then called alistening socket, whose job is only to listen for connection requests from
clients, rather than for actual information exchange with client. The sockets created byaccept(), which do
the actual message exchange with the clients, are calledconnected sockets.

We read the client’s command, ”w” or ”ps”, on line 108, and then respond to the client on line 114.

Lines 35-56:

There are two systems calls you might not be familiar with here. The functionsystem()(lines 50, 52 and
54) actually submits a shell-level command. Note that we are saving the response in a file,tmp.client.
The file is later removed, using theunlink() function (line 42), which is the system-call level analog of the
shell-levelrm command.

5.1.2 Who Shall I Say Is Calling?

There are many other TCP/IP functions available. For example, after line 95 in the server code, we could
call getpeername()if we needed to know the Internet address of the client. To use this function, declare a
variable, says, of typesockaddr in and initialize itssin family field to AF INET. Also, declare a variable,
say i, of type int and initialize it tosizeof(sockaddrin). Then the call togetpeername()will have as
its arguments to the socket descriptor (ClntDescriptor in our example here),&s and&i . To then get the
address as a character string in “Internet dot” form, call the functioninet ntoa() ons.sin addr.

That would give us the numerical Internet address, and if we needed the alphabetic name, we could get this

23This is for TCP. In the case of UDP, where one normally does not callconnect(), this function is performed by the call to
sendto().

19

Preview from Notesale.co.uk

Page 19 of 29



5.3 Nonblocking I/O

In many applications a server has sockets open to several clients at once. In this case, the server needs a
mechanism for determining which sockets have data waiting and which do not. One way to handle this is to
make the socketsnonblocking, which means that a call toread() will not wait until data is ready. If data
is ready at that socket, the call toread() will read that data, but if not, the call immediately returns, with a
value of -1. You code can then repeatedly poll all sockets, testing for input data at each one, and reading
that data if it is there. Here is an example of code to make a socket nonblocking:

Flag = 1;
ioctl(S,FIONBIO,&Flag);

HereS was the return value from a call tosocket(). You will need the proper include-files; check theman
page forioctl().

A much more flexible and sophisticated tool for dealing with multiple sockets is theselect()function. A
newer such tool ispoll().

5.4 Debugging Client/Server Programs

As a quick check, you can first try to usetelnet to check whether the server has calledbind(), listen() and
accept()properly. Though you are probably accustomed to usingtelnet simply as a means of remote login,
it also can be used to communicate with servers at specified ports. Whattelnet does is open a connection to
a given host at a given port; whatever bytes the user types will be sent to that port, and whatever bytes the
port sends will appear on the user’s screen.

This could be used to help our debugging process. If for example we have a server onpc8.cs.ucdavis.edu,
running on port 1088, we could type

telnet pc8.cs.ucdavis.edu 1088

If we get a response here but not from our own client program, the latter may have an error inconnect()or
whatever, such as misspecifying the server’s IP address or port. (On the other hand, if we get no response, it
may also be due to the system configuration not allowingtelnet access to that port.)

In general, debugging a server/client pair, using a debugging tool(which you should do when debugging
any program) will be a bit more difficult, because you will need to invoke the tool once for the server and
once for the client. So, even though I typically use a GUI togdb, such asddd, for debugging a server/client
pair I sometimes use just the plain-textgdb, since my screen would not conveniently fit two GUIs at the
same time. Or, I might just use the debugging tool on the client while running the server without a debugging
tool, or vice versa.

You may find a tool such asstrace, available on many UNIX systems (and also similar programs such as
ktrace, truss, etc.) to be useful. It will print out each system call made by a program, and the result of
each call. In our case here, that means calls toaccept(), connect(), etc. Since the ouptut ofstracemay be
voluminous, you may wish to pipe itsstderr output throughmore, say as

strace application_program_name application_arguments |& more

23

Preview from Notesale.co.uk

Page 23 of 29


