We have chosen to put our server on port 2000. Ports 0-1023 are reserved for the sorellletbwn
ports corresponding to standard TCP/IP services. You can see a list of well-known ports in the UNIX file
letc/services

Line 24: We will use arrays for ouread() andwrite() system calls. They need to be large enough for the

data we send. In this case, 1000 characters will be sufficient. Note carefully, though, that this limit is NOT
there for the purpose of keeping our packets small; we can send as long a message as we like, with a single
call towrite(). Remember, TCP will break up long messages into shorter ones for us, without us even seeing
it, so we do not have to worry about it.

Lines 36-39:

We open a socket, using tisecket()system call. The first parameter indicates whether this is an Internet
socket, versus a socket purely local to this machine (a “UNIX socket”), not going out onto the Internet; the
Internet case here is designated by INET. The second parameter indicates the service, i.e. TCP, UDP or
others; it is TCP in this case, designated by SOEKREAM 2! We have defaulted the third parameter here
(and will not worry about what other possibilities there are for it).

The function’s return value, assigned3D here, is asocket descriptor, quite analogous to a file descriptor.

Lines 41-54: u\(

We are building up a data structure named Addr (“address”) w |c‘g _A@Q in line 51. Itsstyqle,
addr_in (line 31) comes from the #include file and is %eﬁ type. Clearly, it is a complex type,
with many fields, and we will not go into the dﬂs@aﬁ the@an pages if you are interested for more

information. Om
One thing to beware pfi tﬁ&he system
that the_ ma, ﬁ u should_u @r
have l?i@ . Yet treocka @.@ust meant as a dummy, to be replaced by another struct type

which iS specific to the networR protocol being used. In our case, we are using TCP/IP, so we choose the

sockaddr.in type, where “in” stands for “Internet.” There are also types sugoakaddr_nsfor the Xerox
Networks Systems protocol, though of course TCP/IP has become virtually ubiquitous.

exﬁnng‘(sand many other socket functions, you will see
u

ppkaddr, as opposed to theockaddr.in type we

Having already opened a socket, we have to connect it to a specific port at a specific machine. Recall that
the user specifies an Internet host name, sugaasacha.engr.edu But we need the machine’s numerical
Internet address. This is obtained on line 46. The return value is a pointer to another standard data structure.

In line 47, we callmemcopy() a system call which copies strings from one part of memory to another, in
this case from various fields of the struct pointed toHmnstPtr to Addr. A given host may have several
addresses; here we are not bothering to check for that, but simply using the first address, contained in
h_addr_list[0]. (Here ‘h’ stands for “host.”) Thé_length field gives the length of the address.

In line 51, we now connect the socket to the destination host. (It is here that the negotiation between source
and destination hosts will occur, as to packet sizes, and so on.)

Note that the port number we have specified is for the port at the server, not the client. There is a hidden
port number for the client here, which we will discuss later.

Line 57:

2 There are also various others, such as SRV for raw sockets.

17

Here we write either “w” or “ps” to the destination host, depending on what the user requested. Note that
the functionwrite() is identical to the one used for low-level file access, except that we have as the first
parameter a socket descriptor instead of a file descriptor.

Lines 60-61:

On line 60 we read the message sent by the destination host, which will be the output of that host’s running
either thew or pscommand. On line 61 we then write that message to the user’s screen. (For convenience,
we do so again usingrite(), making use of the fact that the standard output has file descriptor 1, though of
course could have usgulintf() .)

Note carefully that if we had been expecting more voluminous data from the server than is the case here, we
may have had to do repeated callsead().

In addition toread() andwrite(), we may also access sockets via other very similar systemreals),
send() recvfrom() and sendto(). (And in non-UNIX environments, wristuse these, since those OSs do
not treat socket and file I/O the same.)

Now let's take a look at the server code.

Line 68: O u\‘

Here the server creates a socket. \ C

Lines 77-85: tesa-

The system functiombind() is called in |Im % Ssoci srz;%)cket with a particular port and with
e, ine

a particular IP address on the h n ﬁ hich the program whidtinci)iss
running, in th|s cas tE achme Recal h ne may have multiple IP addresses, either because
it has ecaus? Ple IP addresses assigned to the same NIC.

For ex pIe suppose one of the NICs at the server machine corresponds to a local private intranet. Then
we could specify that particular address in our cabiiad(), which would enable our making the program
available only on this intranet.

Or, suppose we are running an Internet service provider (ISP). We may be hosting many different customer
Web sites, all with different names{vw.acmegroceries.comwww.flatearthsociety.org etc.), each with

a different IP address. We want a given server, say the one for Acme Groceries, to respond only to clients
accessing thevwww.acmegroceries.comso our call tabind() would specify that address.

In our case here, we wish this server to be accessible from via of its IP addresses, which we specify in line
79 by using the constant INADDRNY.

Note that we did not have a call iind() in our client code. We could have had one if we wanted the client

to access this port only through a particular one of the IP addresses of the client machine. In the intranet
example above, for instance, if the information to be exchanged by the client and server really needs full
security, it might be safer to make sure the client does not accidentally send its information outside the
intranet (say because a routing table becomes corrufted).

To summarize, in a server program, callinigd() associates with the given socket the port number and IP
address that “phone calls” to this socket will be allowed on.

2|t we do callbind() in a client, this must be done before calliognnect()

18

Normally we do not need to cdind() in a client program. Yet the client still needs a port number and IP
address to use in accepting messages which come from the server. If we do btd{lin the client, then
calling connect()in the client will cause the OS to assign to the client a port, callegjsdwemeral port, as
well as an IP address (in the case that the client has more than one IP a8ftiress).

Note that nowhere in the client or server code above do we see any mention of the client's ephemeral port
number. (WPSPORT is the number of a port at the server, not at the client.) But the OS at the client will
indeed notify the server regarding the identity of the ephemeral port (when the clierdaratisct)),

Normally we do not need to know which ephemeral port has been assigned at a client, but if we need it then
we can get it by callinggetsockname(jn the client after callingconnect()

Line 88:

Be calling thdisten() function, we are notifying the OS that this program will be a server, not a client. We
also notify the OS as to how many incoming calls (in the form of clients invokingtimmect()function)

will be allowed to be pending at one time, in this case five. If a call arrives when the queue is full, the call
will be discarded (so it is best when writing the client to put the caltdanect()in a loop, looping until
connect()succeeds).

Lines 93-115: u\(

Here we loop indefinitely, continuing to process calls one at a ti p tion (line 95) accepts

a pending call, returning a socket which we will use C@& ages to the client. By making it a
separate socket, we can have several client sﬂ Imult neously, though we are not doing so here.
The original socket is then calledl ho

ted sockets

the actual mes qé\
We re@h‘ @n S command@/ ag on I|ne 108, and then respond to the client on line 114.

Lines 35-56:

se jO s Ilsten for connection requests from
clients, rather than for actu han e sockets createddgyt() which do
e@%ﬂ it the cI|

There are two systems calls you might not be familiar with here. The funsyistem()(lines 50, 52 and
54) actually submits a shell-level command. Note that we are saving the response irtrafi#ient.
The file is later removed, using thmlink() function (line 42), which is the system-call level analog of the
shell-levelrm command.

5.1.2 Who Shall | Say Is Calling?

There are many other TCP/IP functions available. For example, after line 95 in the server code, we could
call getpeername()if we needed to know the Internet address of the client. To use this function, declare a
variable, says, of typesockaddr_in and initialize itssin_family field to AF_INET. Also, declare a variable,

sayi, of typeint and initialize it tosizeof(sockaddrin). Then the call togetpeername()will have as

its arguments to the socket descript@ir{tDescriptor in our example here}&s and&i. To then get the
address as a character string in “Internet dot” form, call the funatienntoa() ons.sinaddr.

That would give us the numerical Internet address, and if we needed the alphabetic name, we could get this

This is for TCP. In the case of UDP, where one normally does notcaahect() this function is performed by the call to
sendto()

19

5.3 Nonblocking I/0

In many applications a server has sockets open to several clients at once. In this case, the server needs a
mechanism for determining which sockets have data waiting and which do not. One way to handle this is to
make the socketsonblocking, which means that a call tead() will not wait until data is ready. If data

is ready at that socket, the call tead() will read that data, but if not, the call immediately returns, with a

value of -1. You code can then repeatedly poll all sockets, testing for input data at each one, and reading
that data if it is there. Here is an example of code to make a socket nonblocking:

Flag =
ioctl(S,FIONBIO,&Flag);

HereS was the return value from a call smcket() You will need the proper include-files; check thmran
page forioctl().

A much more flexible and sophisticated tool for dealing with multiple sockets isalet()function. A
newer such tool ipoll().

5.4 Debugging Client/Server Programs O u\k

accept()properly. Though you are probably a tS|mpIy as a means of remote login,

it also can be used to communlcate does is open a connection to

a given host at a given port; wi the u,ij) ent to that port, and whatever bytes the
rs scree

port sends will a \;l é
This c?j to help ou?@@ process. If for example we have a sepe8.csiucdavis.edu
n type

runnin port 1088, we coul

As a quick check, you can first try to usgnet to check \ger has calb@dd(), listen() and
gecm

telnet pc8.cs.ucdavis.edu 1088

If we get a response here but not from our own client program, the latter may have an ewonéct()or
whatever, such as misspecifying the server’s IP address or port. (On the other hand, if we get no response, it
may also be due to the system configuration not allovéhget access to that port.)

In general, debugging a server/client pair, using a debugginguwdgoth you should do when debugging

any program) will be a bit more difficult, because you will need to invoke the tool once for the server and
once for the client. So, even though | typically use a GUjddb, such agldd, for debugging a server/client

pair | sometimes use just the plain-tegdb, since my screen would not conveniently fit two GUIs at the
same time. Or, | might just use the debugging tool on the client while running the server without a debugging
tool, or vice versa.

You may find a tool such astrace, available on many UNIX systems (and also similar programs such as
ktrace, truss, etc.) to be useful. It will print out each system call made by a program, and the result of
each call. In our case here, that means callscept() connect() etc. Since the ouptut attrace may be
voluminous, you may wish to pipe isgderr output throughmore, say as

strace application_program_name application_arguments |& more

23

