There are also some surprising ways to use the theorem. For example, let n € Z™, and let
0 < m < n. For any positive integer k, n* can be expressed as a sum of powers of m and
n — m. To see this, simply note that, by the Binomial Theorem,

For an example, 5" = Z <Z> 3hon—k,
k=0

Here are some additional examples of combinatorial proof.

Example 4: A nameless algebraic identity states that

(3)=2()

Here is a combinatorial solution. Its use of color is just one of several ways to \i%entlate the
elements of the two subsets introduced to drive the proof.

Proof: The expression on the left-hand side is the nu Q\ﬁbsets of a 2n-set. Let A be
1

a 2n-set, and suppose that A contams n re ue elements. We now choose all
the possible 2-subsets, by countin all -subsets that have exactly 2 red
elements, all the 2-subsets tlﬁl actly bl i =and all the 2-subsets that have

e blue ele ﬁ g red 2-subsets, (g) blue 2-subsets,

numb ubsets of A is 2 O

exactly one red e m
and x ets co
D-S

@1% d and one blue elements. By the Sum Rule, the

Example 5: Here is a variation on the theme. Suppose we want to prove the identity,

(5)-2(5) == ()

The same technique used in the preceding problem leads to the following argument.

Proof: The expression on the left counts the number of 3-subsets of a 2n-set. Let A be a
2n-set containing n red and n blue elements. There are (”) red 3-subsets, (g) blue 3-subsets,
(Z) (Tf) 3-subsets with two red elements and one blue, and (g) (Tll) 3-subsets with two blue
elements and one red. Simplifying, we see that the number of 3-subsets of A is given by

() () + ()0 + ()(0) = 2() 20 (2): The seslt oo, .

Example 6: Here’s another, asking for a proof of the identity

()G -GG
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