concentration gradients for each ion/molecule (ex: Channels let K+ leave cell, Pumps bring K+ back into the cell)

- Ion levels
 - SEE TABLE BELOW
 - Hint: excess Sodium (Na+) causes high blood pressure so TOO MUCH Na+ in blood and outside cell (so Low inside)... K+ is just the opposite of Na+
 - may seem stupid, but makes you never forget

ION NAME	Concentration Inside cell	Concentration Outside Cell (interstitial fluid)	Concentration in Plasma
Na+	low	high	high
K+_	high	low	low
CI-	low	high	high
protein	high	low	high

- **Aquaporins:** Channels that let alot of water in
- Plasma Membrane is not always constant in its number of Channels/carriers (depends on what's needed/ cell type)
 - endocytosis: used to take proteins back into the cell and Off File MEMBRANE
 - Exocytosis: is used to embed proteins INTO THEM

Membrane Potential

n electrical poter lacross their membrane

le the cell the charges whatve

- voltage is 5-100 mV
- This means that the potential is negative, but what makes it negative
 - unequal distribution of ions (see chart)
 - many amino acids are negatively charged and the proteins made of them are large and stuck inside of the cell
 - The cell membrane's selective permeability helps maintain this
 - large negatively charged organic phosphates also get stuck inside (like the proteins)
 - These fixed anions attract cations that can pass through channels which accumulate at higher and higher concentrations outside of the
 - There is huge pressure for Na+ to go into the cell, but only few channels to let it through (negative charge inside attracts it AND Lower [Na+] inside)
 - Na+/K+ pump keeps the Na+ that does seep in balanced out to keep the cell from **depolarizing** (covered later) when it doesn't want to
 - called an electrogenic pump because it creates the electric gradient (pumps 3 Na+ out 2 K+ in resulting in a loss of + charge every cycle... keeping the inside of the cell negative)
- Featured Disorder: Hyperkalemia
 - an abnormal increase in [K+] in blood, increasing the amount of K+ outside of cells.
 - Raising [K+] outside cell makes it favorable for K+ to move into the cell and make the