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Not all fractions can be represented as decimal fractions. For instance, expanding 1
3 into a decimal fraction

leads to an unending decimal fraction

1

3
= 0.333 333 333 333 333 · · ·

It is impossible to write the complete decimal expansion of 1
3 because it contains infinitely many digits.

But we can describe the expansion: each digit is a three. An electronic calculator, which always represents
numbers as finite decimal numbers, can never hold the number 1

3 exactly.

Every fraction can be written as a decimal fraction which may or may not be finite. If the decimal
expansion doesn’t end, then it must repeat. For instance,

1

7
= 0.142857 142857 142857 142857 . . .

Conversely, any infinite repeating decimal expansion represents a rational number.

A real number is specified by a possibly unending decimal expansion. For instance,
√

2 = 1.414 213 562 373 095 048 801 688 724 209 698 078 569 671 875 376 9 . . .

Of course you can never write all the digits in the decimal expansion, so you only write the first few digits
and hide the others behind dots. To give a precise description of a real number (such as

√
2) you have to

explain how you could in principle compute as many digits in the expansion as you would like. During the
next three semesters of calculus we will not go into the details of how this should be done.

1.2. A reason to believe in
√

2. The Pythagorean theorem says that the hy-
potenuse of a right triangle with sides 1 and 1 must be a line segment of length

√
2. In

middle or high school you learned something similar to the following geometric construction
of a line segment whose length is

√
2. Take a square with side of length 1, and construct

a new square one of whose sides is the diagonal of the first square. The figure you get
consists of 5 triangles of equal area and by counting triangles you see that the larger
square has exactly twice the area of the smaller square. Therefore the diagonal of the smaller square, being
the side of the larger square, is

√
2 as long as the side of the smaller square.

Why are real numbers called real? All the numbers we will use in this first semester of calculus are
“real numbers.” At some point (in 2nd semester calculus) it becomes useful to assume that there is a number
whose square is −1. No real number has this property since the square of any real number is positive, so
it was decided to call this new imagined number “imaginary” and to refer to the numbers we already have
(rationals,

√
2-like things) as “real.”

1.3. The real number line and intervals. It is customary to visualize the real numbers as points
on a straight line. We imagine a line, and choose one point on this line, which we call the origin. We also
decide which direction we call “left” and hence which we call “right.” Some draw the number line vertically
and use the words “up” and “down.”

To plot any real number x one marks off a distance x from the origin, to the right (up) if x > 0, to the
left (down) if x < 0.

The distance along the number line between two numbers x and y is |x − y|. In particular, the
distance is never a negative number.

−3 −2 −1 0 1 2 3

Figure 1. To draw the half open interval [−1, 2) use a filled dot to mark the endpoint which is included
and an open dot for an excluded endpoint.
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range of f

y = f(x) (x, f(x))

x

domain of f

Figure 3. The graph of a function f . The domain of f consists of all x values at which the function is
defined, and the range consists of all possible values f can have.
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Figure 4. A straight line and its slope. The line is the graph of f(x) = mx+ n. It intersects the y-axis
at height n, and the ratio between the amounts by which y and x increase as you move from one point
to another on the line is y1−y0

x1−x0
= m.

3.3. Linear functions. A function which is given by the formula

f(x) = mx+ n

where m and n are constants is called a linear function. Its graph is a straight line. The constants m
and n are the slope and y-intercept of the line. Conversely, any straight line which is not vertical (i.e. not
parallel to the y-axis) is the graph of a linear function. If you know two points (x0, y0) and (x1, y1) on the
line, then then one can compute the slope m from the “rise-over-run” formula

m =
y1 − y0

x1 − x0
.

This formula actually contains a theorem from Euclidean geometry, namely it says that the ratio (y1 − y0) :
(x1 − x0) is the same for every pair of points (x0, y0) and (x1, y1) that you could pick on the line.

3.4. Domain and “biggest possible domain. ” In this course we will usually not be careful about
specifying the domain of the function. When this happens the domain is understood to be the set of all x
for which the rule which tells you how to compute f(x) is meaningful. For instance, if we say that h is the
function

h(x) =
√
x
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11.2. Example: compute limx→3

√
x3 − 3x2 + 2. The given function is the composition of two func-

tions, namely √
x3 − 3x2 + 2 =

√
u, with u = x3 − 3x2 + 2,

or, in function notation, we want to find limx→3 h(x) where

h(x) = f(g(x)), with g(x) = x3 − 3x2 + 2 and g(x) =
√
x.

Either way, we have

lim
x→3

x3 − 3x2 + 2 = 2 and lim
u→2

√
u =
√

2.

You get the first limit from the limit properties (P1). . . (P5). The second limit says that taking the square
root is a continuous function, which it is. We have not proved that (yet), but this particular limit is the one

from example 6.3. Putting these two limits together we conclude that the limit is
√

2.

Normally, you write this whole argument as follows:

lim
x→3

√
x3 − 3x2 + 2 =

√
lim
x→3

x3 − 3x2 + 2 =
√

2,

where you must point out that f(x) =
√
x is a continuous function to justify the first step.

Another possible way of writing this is

lim
x→3

√
x3 − 3x2 + 2 = lim

u→2

√
u =
√

2,

where you must say that you have substituted u = x3 − 3x2 + 2.

12. Exercises

Find the following limits.

52. lim
x→−7

(2x+ 5)

53. lim
x→7−

(2x+ 5)

54. lim
x→−∞

(2x+ 5)

55. lim
x→−4

(x+ 3)2006

56. lim
x→−4

(x+ 3)2007

57. lim
x→−∞

(x+ 3)2007

58. lim
t→1

t2 + t− 2

t2 − 1

59. lim
t↗1

t2 + t− 2

t2 − 1

60. lim
t→−1

t2 + t− 2

t2 − 1

61. lim
x→∞

x2 + 3

x2 + 4

62. lim
x→∞

x5 + 3

x2 + 4

63. lim
x→∞

x2 + 1

x5 + 2

64. lim
x→∞

(2x+ 1)4

(3x2 + 1)2

65. lim
u→∞

(2u+ 1)4

(3u2 + 1)2

66. lim
t→0

(2t+ 1)4

(3t2 + 1)2

67. What are the coordinates of the points labeled A, . . . ,
E in Figure 2 (the graph of y = sinπ/x).

68. If limx→a f(x) exists then f is continuous at x = a.
True or false?

69. Give two examples of functions for which limx↘0 f(x)
does not exist.

70. Group Problem.

If limx→0 f(x) and limx→0 g(x) both do not exist,
then limx→0

(
f(x) + g(x)

)
also does not exist. True or

false?

71. Group Problem.

If limx→0 f(x) and limx→0 g(x) both do not exist,
then limx→0(f(x)/g(x)) also does not exist. True or
false?

72. Group Problem.

In the text we proved that limx→∞
1
x

= 0. Show
that this implies that limx→∞ x does not exist. Hint:
Suppose limx→∞ x = L for some number L. Apply the

limit properties to limx→∞ x ·
1

x
.

73. Evaluate lim
x→9

√
x− 3

x− 9
. Hint: Multiply top and bottom

by
√
x+ 3.
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O A

B

C

θ

ta
n
θ

si
n
θ

Proving lim
x→0

sin θ

θ
= 1

The circular wedge OAC contains the
triangle OAC and is contained in the right
triangle OAB.

The area of triangle OAC is 1
2

sin θ.

The area of circular wedge OAC is 1
2
θ.

The area of right triangle OAB is 1
2

tan θ.

Hence one has sin θ < θ < tan θ for all
angles 0 < θ < π/2.

74. Evaluate lim
x→2

1
x
− 1

2

x− 2
.

75. Evaluate lim
x→2

1√
x
− 1√

2

x− 2
.

76. A function f is defined by

f(x) =


x3 for x < −1

ax+ b for − 1 ≤ x < 1

x2 + 2 for x ≥ 1.

where a and b are constants. The function f is continuous.
What are a and b?

77. Find a constant k such that the function

f(x) =

{
3x+ 2 for x < 2

x2 + k for x ≥ 2.

is continuous. Hint: Compute the one-sided limits.

78. Find constants a and c such that the function

f(x) =


x3 + c for x < 0

ax+ c2 for 0 ≤ x < 1

arctanx for x ≥ 1.

is continuous for all x.

13. Two Limits in Trigonometry

In this section we’ll derive a few limits involving the trigonometric functions. You can think of them as
saying that for small angles θ one has

sin θ ≈ θ and cos θ ≈ 1− 1
2θ

2.

We will use these limits when we compute the derivatives of Sine, Cosine and Tangent.

13.1. Theorem. lim
θ→0

sin θ

θ
= 1.

Proof. The proof requires a few sandwiches and some geometry.

We begin by only considering positive angles, and in fact we will only consider angles 0 < θ < π/2.

Since the wedge OAC contains the triangle OAC its area must be larger. The area of the wedge is 1
2θ

and the area of the triangle is 1
2 sin θ, so we find that

(13) 0 < sin θ < θ for 0 < θ <
π

2
.

The Sandwich Theorem implies that

(14) lim
θ↘0

sin θ = 0.

Moreover, we also have

(15) lim
θ↘0

cos θ = lim
θ↘0

√
1− sin2 θ = 1.
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97. Is there a constant k such that the function

f(x) =

{
sin(1/x) for x 6= 0

k for x = 0.

is continuous? If so, find it; if not, say why.

98. Find a constant A so that the function

f(x) =


sinx

2x
for x 6= 0

A when x = 0

99. Compute limx→∞ x sin π
x

and limx→∞ x tan π
x

. (Hint:
substitute something).

100. Group Problem.

(Geometry & Trig review) Let An be the area of the
regular n-gon inscribed in the unit circle, and let Bn be
the area of the regular n-gon whose inscribed circle has
radius 1.

(a) Show that An < π < Bn.

(b) Show that

An =
n

2
sin

2π

n
and Bn = n tan

π

n

(c) Compute limn→∞An and limn→∞Bn.

Here is a picture of A12, B6 and π:

On a historical note: Archimedes managed to com-
pute A96 and B96 and by doing this got the most accurate
approximation for π that was known in his time. See also:

http://www-history.mcs.st-andrews.ac.uk/

HistTopics/Pi_through_the_ages.html
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If you don’t remember the geometric sum formula, then you could also just verify (19) by carefully multiplying
both sides with x− a. For instance, when n = 3 you would get

x× (x2 + xa+ a2) = x3 +ax2 +a2x
−a× (x2 + xa+ a2) = −ax2 −a2x −a3

(x− a)× (x2 + ax+ a2) = x3 −a3

With formula (19) in hand we can now easily find the derivative of xn:

f ′(a) = lim
x→a

xn − an

x− a
= lim
x→a

{
xn−1 + xn−2a+ xn−3a2 + · · ·+ xan−2 + an−1

}
= an−1 + an−2a+ an−3a2 + · · ·+ a an−2 + an−1.

Here there are n terms, and they all are equal to an−1, so the final result is

f ′(a) = nan−1.

One could also write this as f ′(x) = nxn−1, or, in Leibniz’ notation

dxn

dx
= nxn−1.

This formula turns out to be true in general, but here we have only proved it for the case in which n is a
positive integer.

3. Differentiable implies Continuous

3.1. Theorem. If a function f is differentiable at some a in its domain, then f is also continuous at a.

Proof. We are given that

lim
x→a

f(x)− f(a)

x− a
exists, and we must show that

lim
x→a

f(x) = f(a).

This follows from the following computation

lim
x→a

f(x) = lim
x→a

(
f(x)− f(a) + f(a)

)
(algebra)

= lim
x→a

f(x)− f(a)

x− a
· (x− a) + f(a) (more algebra)

=

{
lim
x→a

f(x)− f(a)

x− a

}
· lim
x→a

(x− a) + lim
x→a

f(a) (Limit Properties)

= f ′(a) · 0 + f(a) (f ′(a) exists)

= f(a).

�

4. Some non-differentiable functions

4.1. A graph with a corner. Consider the function

f(x) = |x| =

{
x for x ≥ 0,

−x for x < 0.

This function is continuous at all x, but it is not differentiable at x = 0.
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6. The Differentiation Rules

You could go on and compute more derivatives from the definition. Each time you would have to compute
a new limit, and hope that there is some trick that allows you to find that limit. This is fortunately not
necessary. It turns out that if you know a few basic derivatives (such as dxn/dx = nxn−1) the you can find
derivatives of arbitrarily complicated functions by breaking them into smaller pieces. In this section we’ll
look at rules which tell you how to differentiate a function which is either the sum, difference, product or
quotient of two other functions.

Constant rule: c′ = 0
dc

dx
= 0

Sum rule: (u± v)′ = u′ ± v′ du± v
dx

=
du

dx
± dv

dx

Product rule: (u · v)′ = u′ · v + u · v′ duv

dx
=
du

dx
v + u

dv

dx

Quotient rule:
(u
v

)′
=
u′ · v − u · v′

v2

d
u

v
dx

=
v
du

dx
− udv

dx
v2

Table 1. The differentiation rules

The situation is analogous to that of the “limit-properties” (P1). . . (P6) from the previous chapter which
allowed us to compute limits without always having to go back to the epsilon-delta definition.

6.1. Sum, product and quotient rules. In the following c and n are constants, u and v are functions
of x, and ′ denotes differentiation. The Differentiation Rules in function notation, and Leibniz notation, are
listed in figure 1.

Note that we already proved the Constant Rule in example 2.2. We will now prove the sum, product and
quotient rules.

6.2. Proof of the Sum Rule. Suppose that f(x) = u(x)+v(x) for all x where u and v are differentiable.
Then

f ′(a) = lim
x→a

f(x)− f(a)

x− a
(definition of f ′)

= lim
x→a

(
u(x) + v(x)

)
−
(
u(a) + v(a)

)
x− a

(use f = u+ v)

= lim
x→a

(
u(x)− u(a)

x− a
+
v(x)− v(a)

x− a

)
(algebra)

= lim
x→a

u(x)− u(a)

x− a
+ lim
x→a

v(x)− v(a)

x− a
(limit property)

= u′(a) + v′(a) (definition of u′, v′)

6.3. Proof of the Product Rule. Let f(x) = u(x)v(x). To find the derivative we must express the
change of f in terms of the changes of u and v

f(x)− f(a) = u(x)v(x)− u(a)v(a)

= u(x)v(x)− u(x)v(a) + u(x)v(a)− u(a)v(a)

= u(x)
(
v(x)− v(a)

)
+
(
u(x)− u(a)

)
v(a)
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Since g is a differentiable function it must also be a continuous function, and hence limx→a g(x) = g(a). So
we can substitute y = g(x) in the limit defining f ′(g(a))

(27) f ′(g(a)) = lim
y→a

f(y)− f(g(a))

y − g(a)
= lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
.

Put all this together and you get

(f ◦ g)′(a) = lim
x→a

f(g(x))− f(g(a))

x− a

= lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
· g(x)− g(a)

x− a

= lim
x→a

f(g(x))− f(g(a))

g(x)− g(a)
· lim
x→a

g(x)− g(a)

x− a
= f ′(g(a)) · g′(a)

which is what we were supposed to prove – the proof seems complete.

There is one flaw in this proof, namely, we have divided by g(x) − g(a), which is not allowed when
g(x)− g(a) = 0. This flaw can be fixed but we will not go into the details here.2 �

13.3. First example. We go back to the functions

z = f(y) = y2 + y and y = g(x) = 2x+ 1

from the beginning of this section. The composition of these two functions is

z = f(g(x)) = (2x+ 1)2 + (2x+ 1) = 4x2 + 6x+ 2.

We can compute the derivative of this composed function, i.e. the derivative of z with respect to x in two
ways. First, you simply differentiate the last formula we have:

(28)
dz

dx
=
d(4x2 + 6x+ 2)

dx
= 8x+ 6.

The other approach is to use the chain rule:

dz

dy
=
d(y2 + y)

dy
= 2y + 1,

and
dy

dx
=
d(2x+ 1)

dx
= 2.

Hence, by the chain rule one has

(29)
dz

dx
=
dz

dy

dy

dx
= (2y + 1) · 2 = 4y + 2.

The two answers (28) and (29) should be the same. Once you remember that y = 2x+ 1 you see that this is
indeed true:

y = 2x+ 1 =⇒ 4y + 2 = 4(2x+ 1) + 2 = 8x+ 6.

The two computations of dz/dx therefore lead to the same answer. In this example there was no clear
advantage in using the chain rule. The chain rule becomes useful when the functions f and g become more
complicated.

2 Briefly, you have to show that the function

h(y) =

{
{f(y)− f(g(a))}/(y − g(a)) y 6= a

f ′(g(a)) y = a

is continuous.
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The direct approach goes like this:

f ′(x) =
d
(
1− x4

)1/4
dx

= 1
4

(
1− x4

)−3/4 d(1− x4)

dx

= 1
4

(
1− x4

)−3/4(−4x3
)

= − x3(
1− x4

)3/4
To find the derivative using implicit differentiation we must first find a nice implicit description of the
function. For instance, we could decide to get rid of all roots or fractional exponents in the function and
point out that y = 4

√
1− x4 satisfies the equation y4 = 1− x4. So our implicit description of the function

y = f(x) = 4
√

1− x4 is

x4 + y4 − 1 = 0; The defining function is therefore F (x, y) = x4 + y4 − 1

Differentiate both sides with respect to x (and remember that y = f(x), so y here is a function of x), and
you get

dx4

dx
+
dy4

dx
− d1

dx
= 0 =⇒ 4x3 + 4y3 dy

dx
= 0.

The expressions G and H from equation (30) in the recipe are G(x, y) = 4y3 and H(x, y) = 4x3.

This last equation can be solved for dy/dx:

dy

dx
= −x

3

y3
.

This is a nice and short form of the derivative, but it contains y as well as x. To express dy/dx in terms of x

only, and remove the y dependency we use y = 4
√

1− x4. The result is

f ′(x) =
dy

dx
= −x

3

y3
= − x3(

1− x4
)3/4 .

15.4. Another example. Let f be a function defined by

y = f(x) ⇐⇒ 2y + sin y = x, i.e. 2y + sin y − x = 0.

For instance, if x = 2π then y = π, i.e. f(2π) = π.

To find the derivative dy/dx we differentiate the defining equation

d(2y + sin y − x)

dx
=
d0

dx
=⇒ 2

dy

dx
+ cos y

dy

dx
− dx

dx
= 0 =⇒ (2 + cos y)

dy

dx
− 1 = 0.

Solve for dy
dx and you get

f ′(x) =
1

2 + cos y
=

1

2 + cos f(x)
.

If we were asked to find f ′(2π) then, since we know f(2π) = π, we could answer

f ′(2π) =
1

2 + cosπ
=

1

2− 1
= 1.

If we were asked f ′(π/2), then all we would be able to say is

f ′(π/2) =
1

2 + cos f(π/2)
.

To say more we would first have to find y = f(π/2), which one does by solving

2y + sin y =
π

2
.
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15.5. Derivatives of Arc Sine and Arc Tangent. Recall that

y = arcsinx ⇐⇒ x = sin y and − π
2 ≤ y ≤

π
2 ,

and
y = arctanx ⇐⇒ x = tan y and − π

2 < y < π
2 .

15.6. Theorem.
d arcsinx

dx
=

1√
1− x2

d arctanx

dx
=

1

1 + x2

Proof. If y = arcsinx then x = sin y. Differentiate this relation

dx

dx
=
d sin y

dx
and apply the chain rule. You get

1 =
(
cos y

) dy
dx
,

and hence
dy

dx
=

1

cos y
.

How do we get rid of the y on the right hand side? We know x = sin y, and also −π2 ≤ y ≤
π
2 . Therefore

sin2 y + cos2 y = 1 =⇒ cos y = ±
√

1− sin2 y = ±
√

1− x2.

Since −π2 ≤ y ≤
π
2 we know that cos y ≥ 0, so we must choose the positive square root. This leaves us with

cos y =
√

1− x2, and hence
dy

dx
=

1√
1− x2

.

The derivative of arctanx is found in the same way, and you should really do this yourself. �

16. Exercises

For each of the following problems find the derivative
f ′(x) if y = f(x) satisfies the given equation. State what
the expressions F (x, y), G(x, y) and H(x, y) from the
recipe in the beginning of this section are.

If you can find an explicit description of the function
y = f(x), say what it is.

167. xy =
π

6

168. sin(xy) = 1
2

169.
xy

x+ y
= 1

170. x+ y = xy

171. (y − 1)2 + x = 0

172. (y + 1)2 + y − x = 0

173. (y − x)2 + x = 0

174. (y + x)2 + 2y − x = 0

175.
(
y2 − 1

)2
+ x = 0

176.
(
y2 + 1

)2 − x = 0

177. x3 + xy + y3 = 3

178. sinx+ sin y = 1

179. sinx+ xy + y5 = π

180. tanx+ tan y = 1

For each of the following explicitly defined functions
find an implicit definition which does not involve taking
roots. Then use this description to find the derivative
dy/dx.

181. y = f(x) =
√

1− x

182. y = f(x) =
4
√
x+ x2

183. y = f(x) =
√

1−
√
x

184. y = f(x) = 4
√
x−
√
x

185. y = f(x) =
3

√√
2x+ 1− x2

186. y = f(x) =
4
√
x+ x2
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f ′(x) > 0 f ′(x) > 0f ′(x) < 0

x = 1
3

√
3x = − 1

3

√
3

Figure 4. The graph of f(x) = x3 − x.

6.4. A function whose tangent turns up and down infinitely often near the origin. We end
with a weird example. Somewhere in the mathematician’s zoo of curious functions the following will be on
exhibit. Consider the function

f(x) =
x

2
+ x2 sin

π

x
.

y = 1
2x+ x2

y = 1
2x− x

2

y = 1
2x

y = 1
2x+ x2 sin π

x

Figure 5. Positive derivative at a point (x = 0) does not mean that the function is “increasing near
that point.” The slopes at the intersection points alternate between 1

2
− π and 1

2
+ π.

For x = 0 this formula is undefined, and we are free to define f(0) = 0. This makes the function continuous
at x = 0. In fact, this function is differentiable at x = 0, with derivative given by

f ′(0) = lim
x→0

f(x)− f(0)

x− 0
= lim
x→0

1

2
+ x sin

π

x
=

1

2
.

71

Preview from Notesale.co.uk

Page 71 of 134



convex not convex

Figure 9. If a graph is convex then all chords lie above the graph. If it is not convex then some chords
will cross the graph or lie below it.

Between the two stationary points the function is increasing, so

f(−1−
√

2) ≤ f(x) ≤ f(B) for A ≤ x ≤ B.

From this it follows that f(x) is the smallest it can be when x = A = −1 −
√

2 and at its largest when
x = B = −1 +

√
2: the local maximum and minimum which we found are in fact a global maximum and

minimum.

11. Convexity, Concavity and the Second Derivative

By definition, a function f is convex on some interval a < x < b if the line segment connecting any pair
of points on the graph lies above the piece of the graph between those two points.

The function is called concave if the line segment connecting any pair of points on the graph lies below
the piece of the graph between those two points.

A point on the graph of f where f ′′(x) changes sign is called an inflection point.

Instead of “convex” and “concave” one often says “curved upwards” or “curved downwards.”

You can use the second derivative to tell if a function is concave or convex.

11.1. Theorem. A function f is convex on some interval a < x < b if and only if f ′′(x) ≥ 0 for all x
on that interval.

11.2. Theorem. A function f is convex on some interval a < x < b if and only if the derivative f ′(x)
is a nondecreasing function on that interval.

A proof using the Mean Value Theorem will be given in class.

f ′′(x) > 0

f ′′(x) < 0

Figure 10. At an inflection point the tangent crosses the graph.
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as claimed.

13. Exercises

218. What does the Intermediate Value Theorem say?

219. What does the Mean Value Theorem say?

220. Group Problem.

If f(a) = 0 and f(b) = 0 then there is a c between
a and b such that f ′(c) = 0. Show that this follows
from the Mean Value Theorem. (Help! A proof! Relax:
this one is not difficult. Make a drawing of the situation,
then read the Mean Value Theorem again.)

221. What is a stationary point?

222. Group Problem.

How can you tell if a local maximum is a global
maximum?

223. Group Problem.

If f ′′(a) = 0 then the graph of f has an inflection
point at x = a. True or False?

224. What is an inflection point?

225. Give an example of a function for which f ′(0) = 0
even though the function f has neither a local maximum
or a local minimum at x = 0.

226. Group Problem.

Draw four graphs of functions, one for each of the
following four combinations

f ′ > 0 and f ′′ > 0 f ′ > 0 and f ′′ < 0

f ′ < 0 and f ′′ > 0 f ′ < 0 and f ′′ < 0

227. Group Problem.

Which of the following combinations are possible:

f ′(x) > 0 and f ′′(x) = 0 for all x

f ′(x) = 0 and f ′′(x) > 0 for all x

Sketch the graph of the following functions. You
should

(1) find where f , f ′ and f ′′ are positive or negative
(2) find all stationary points
(3) decide which stationary points are local max-

ima or minima
(4) decide which local max/minima are in fact

global max/minima
(5) find all inflection points
(6) find “horizontal asymptotes,” i.e. compute the

limits limx→±∞ f(x) when appropriate.

228. y = x3 + 2x2

229. y = x3 − 4x2

230. y = x4 + 27x

231. y = x4 − 27x

232. y = x4 + 2x2 − 3

233. y = x4 − 5x2 + 4

234. y = x5 + 16x

235. y = x5 − 16x

236. y =
x

x+ 1

237. y =
x

1 + x2

238. y =
x2

1 + x2

239. y =
1 + x2

1 + x

240. y = x+
1

x

241. y = x− 1

x

242. y = x3 + 2x2 + x

243. y = x3 + 2x2 − x

244. y = x4 − x3 − x

245. y = x4 − 2x3 + 2x

246. y =
√

1 + x2

247. y =
√

1− x2

248. y =
4
√

1 + x2

249. y =
1

1 + x4

The following functions are periodic, i.e. they sat-
isfy f(x+ L) = f(x) for all x, where the constant L is
called the period of the function. The graph of a periodic
function repeats itself indefinitely to the left and to the
right. It therefore has infinitely many (local) minima and
maxima, and infinitely many inflections points. Sketch
the graphs of the following functions as in the previous
problem, but only list those “interesting points” that lie
in the interval 0 ≤ x < 2π.

250. y = sinx

251. y = sinx+ cosx

252. y = sinx+ sin2 x

253. y = 2 sinx+ sin2 x
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1 1

0

x
x+ ∆x

1

Figure 2. The slice at height x is a square with side 1− x.

Therefore there is some ck in the interval [xk−1, xk] such that

volume of kth slice = (1− ck)2∆xk.

Adding the volumes of the slices we find that the volume V of the pyramid is given by

V = (1− c1)2∆x1 + · · ·+ (1− cN )2∆xN .

The right hand side in this equation is a Riemann sum for the integral

I =

∫ 1

0

(1− x)2dx

and therefore we have
I = lim

···

{
(1− c1)2∆x1 + · · ·+ (1− cN )2∆xN

}
= V.

Compute the integral and you find that the volume of the pyramid is

V =
1

3
.

3.2. General case. The “method of slicing” which we just used to compute the volume of a pyramid
works for solids of any shape. The strategy always consists of dividing the solid into many thin (horizontal)
slices, compute their volumes, and recognize that the total volume of the slices is a Riemann sum for some
integral. That integral then is the volume of the solid.

To be more precise, let a and b be the heights of the lowest and highest points on the solid, and let
a = x0 < x1 < x2 < . . . < xN−1 < xN = b be a partition of the interval [a, b]. Such a partition divides the
solid into N distinct slices, where slice number k consists of all points in the solid whose height is between
xk−1 and xk. The thickness of the kth slice is ∆xk = xk − xk−1. If

A(x) = area of the intersection of the solid with the plane at height x.

then we can approximate the volume of the kth slice by

A(ck)∆xk

where ck is any number (height) between xk−1 and xk.
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a

x

b

Slice at height xArea = A(x)

Figure 3. Slicing a solid to compute its volume. The volume of one slice is approximately the product
of its thickness (∆x) and the area A(x) of its top. Summing the volume A(x)∆x over all slices leads

approximately to the integral
∫ b
a
f(x)dx.

The total volume of all slices is therefore approximately

V ≈ A(c1)∆x1 + · · ·+A(cN )∆xN .

While this formula only holds approximately, we expect the approximation to get better as we make the
partition finer, and thus

(62) V = lim
···

{
A(c1)∆x1 + · · ·+A(cN )∆xN

}
.

On the other hand the sum on the right is a Riemann sum for the integral I =
∫ b
a
A(x)dx, so the limit is

exactly this integral. Therefore we have

(63) V =

∫ b

a

A(x)dx.

Figure 4. Cavalieri’s principle. Both solids consist of a pile of horizontal slices. The solid on the right
was obtained from the solid on the left by sliding some of the slices to the left and others to the right.
This operation does not affect the volumes of the slices, and hence both solids have the same volume.

3.3. Cavalieri’s principle. The formula (63) for the volume of a solid which we have just derived
shows that the volume only depends on the areas A(x) of the cross sections of the solid, and not on the
particular shape these cross sections may have. This observation is older than calculus itself and goes back at
least to Bonaventura Cavalieri (1598 – 1647) who said: If the intersections of two solids with a horizontal
plane always have the same area, no matter what the height of the horizontal plane may be, then the two
solids have the same volume.

This principle is often illustrated by considering a stack of coins: If you put a number of coins on top of
each other then the total volume of the coins is just the sum of the volumes of the coins. If you change the
shape of the pile by sliding the coins horizontally then the volume of the pile will still be the sum of the
volumes of the coins, i.e. it doesn’t change.
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y = (x− 1)2

A B

rin

rin

rout

rout

x

1

1 2

y

Area= πr2
out − πr2

in

SIDE VIEW:

TOP VIEW:

Figure 6. Computing the volume of the solid you get when you revolve the region R around the y-axis.
A horizontal cross section of the solid is a “washer” with inner radius rin, and outer radius rout.

1

1 2

R

Solution: The region we have to revolve around the y-axis consists of all points above the parabola
y = (x− 1)2 but below the line y = 1.

If we intersect the solid with a plane at height y then we get a ring shaped region, or “annulus”, i.e. a
large disc with a smaller disc removed. You can see it in the figure below: if you cut the region R horizontally
at height y you get the line segment AB, and if you rotate this segment around the y-axis you get the grey
ring region pictured below the graph. Call the radius of the outer circle rout and the radius of the inner circle
rin. These radii are the two solutions of

y = (1− r)2

so they are

rin = 1−√y, rout = 1 +
√
y.

The area of the cross section is therefore given by

A(y) = πr2
out − πr2

in = π
(
1 +
√
y
)2 − π(1−√y)2 = 4π

√
y.
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As before the slices are ring shaped regions but the inner and outer radii are now given by

rin = 1 + xin = 2−√y, rout = 1 + xout = 2 +
√
y.

The volume is therefore given by

V =

∫ 1

0

(
πr2

out − πr2
in

)
dy = π

∫ 1

0

8
√
y dy =

16π

3
.

4.3. Problem 3: Revolve R around the line y = 2. Compute the volume of the solid you get when
you revolve the same region R around the line y = 2.

Solution: This time the line around which we rotate R is horizontal, so we slice the solid with planes
perpendicular to the x-axis.

A typical slice is obtained by revolving the line segment AB about the line y = 2. The result is again an
annulus, and from the figure we see that the inner and outer radii of the annulus are

rin = 1, rout = 2− (1− x)2.

The area of the slice is therefore

A(x) = π
{

2− (1− x)2
}2 − π12 = π

{
3− 4(1− x)2 + (1− x)4

}
.

The x values which occur in the solid are 0 ≤ x ≤ 2, and so its volume is

V = π

∫ 2

0

{
3− 4(1− x)2 + (1− x)4

}
dx

= π
[
3x+ 4

3 (1− x)3 − 1
5 (1− x)5

]2
0

= 56
15π

h

r
∆r5. Volumes by cylindrical shells

Instead of slicing a solid with planes you can also try to decompose it into
cylindrical shells. The volume of a cylinder of height h and radius r is πr2h
(height times area base). Therefore the volume of a cylindrical shell of height
h, (inner) radius r and thickness ∆r is

πh(r + ∆r)2 − πhr2 = πh(2r + ∆r)∆r

≈ 2πhr∆r.

Now consider the solid you get by revolving the region

R = {(x, y) | a ≤ x ≤ b, 0 ≤ y ≤ f(x)}

around the y-axis. By partitioning the interval a ≤ x ≤ b into many small intervals we can decompose the
solid into many thin shells. The volume of each shell will approximately be given by 2πxf(x)∆x. Adding the
volumes of the shells, and taking the limit over finer and finer partitions we arrive at the following formula
for the volume of the solid of revolution:

(65) V = 2π

∫ b

a

xf(x) dx.

If the region R is not the region under the graph, but rather the region
between the graphs of two functions f(x) ≤ g(x), then we get

V = 2π

∫ b

a

x
{
g(x)− f(x)

}
dx.
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11.2. Kinetic energy. Newton’s famous law relating the force exerted on an object and its motion
says F = ma, where a is the acceleration of the object, m is its mass, and F is the combination of all forces
acting on the object. If the position of the object at time t is x(t), then its velocity and acceleration are
v(t) = x′(t) and a(t) = v′(t) = x′′(t), and thus the total force acting on the object is

F (t) = ma(t) = m
dv

dt
.

The work done by the total force is therefore

(72) W =

∫ tb

ta

F (t)v(t)dt =

∫ tb

ta

m
dv(t)

dt
v(t) dt.

Even though we have not assumed anything about the motion, so we don’t know anything about the velocity
v(t), we can still do this integral. The key is to notice that, by the chain rule,

m
dv(t)

dt
v(t) =

d 1
2mv(t)2

dt
.

(Remember that m is a constant.) This says that the quantity

K(t) = 1
2mv(t)2

is the antiderivative we need to do the integral (72). We get

W =

∫ tb

ta

m
dv(t)

dt
v(t) dt =

∫ tb

ta

K ′(t) dt = K(tb)−K(ta).

In Newtonian mechanics the quantity K(t) is called the kinetic energy of the object, and our computation
shows that the amount by which the kinetic energy of an object increases is equal to the amount of work done
on the object.

12. Work done by an electric current

current

= I(t)

voltage = V(t)

If at time t an electric current I(t) (measured in Ampère) flows through an electric
circuit, and if the voltage across this circuit is V (t) (measured in Volts) then the energy
supplied tot the circuit per second is I(t)V (t). Therefore the total energy supplied during
a time interval t0 ≤ t ≤ t1 is the integral

Energy supplied =

∫ t1

t0

I(t)V (t)dt.

(measured in Joule; the energy consumption of a circuit is defined to be how much energy
it consumes per time unit, and the power consumption of a circuit which consumes 1 Joule per second is said
to be one Watt.)

If a certain voltage is applied to a simple circuit (like a light bulb) then the current flowing through that
circuit is determined by the resistance R of that circuit by Ohm’s law2 which says

I =
V

R
.

2http://en.wikipedia.org/wiki/Ohm’s_law
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So if we always choose δ ≤ 1, then we will always have

|x3 − 27| ≤ 37δ for |x− 3| < δ.

Hence, if we choose δ = min
{

1, 1
37
ε
}

then |x− 3| < δ

guarantees |x3 − 27| < ε.

44 f(x) =
√
x, a = 4, L = 2.

You have
√
x− 2 =

(
√
x− 2)(

√
x+ 2)√

x+ 2
=

x− 4√
x+ 2

and therefore

(73) |f(x)− L| = 1√
x+ 2

|x− 4|.

Once again it would be nice if we could replace 1/(
√
x+2)

by a constant, and we achieve this by always choosing
δ ≤ 1. If we do that then for |x− 4| < δ we always have
3 < x < 5 and hence

1√
x+ 2

<
1√

3 + 2
,

since 1/(
√
x+ 2) increases as you decrease x.

So, if we always choose δ ≤ 1 then |x−4| < δ guarantees

|f(x)− 2| < 1√
3 + 2

|x− 4|,

which prompts us to choose δ = min
{

1, (
√

3 + 2)ε
}

.

A smarter solution: We can replace 1/(
√
x + 2) by a

constant in (73), because for all x in the domain of f we
have

√
x ≥ 0, which implies

1√
x+ 2

≤ 1

2
.

Therefore |
√
x − 2| ≤ 1

2
|x − 4|, and we could choose

δ = 2ε.

45 Hints:
√
x+ 6− 3 =

x+ 6− 9√
x+ 6 + 3

=
x− 3√
x+ 6 + 3

so
|
√
x+ 6− 3| ≤ 1

3
|x− 3|.

46 We have ∣∣∣∣1 + x

4 + x
− 1

2

∣∣∣∣ =

∣∣∣∣x− 2

4 + x

∣∣∣∣ .
If we choose δ ≤ 1 then |x − 2| < δ implies 1 < x < 3
so that

1

7
< we don’t care

1

4 + x
<

1

5
.

Therefore ∣∣∣∣x− 2

4 + x

∣∣∣∣ < 1
5
|x− 2|,

so if we want |f(x) − 1
2
| < ε then we must require

|x− 2| < 5ε. This leads us to choose

δ = min {1, 5ε} .
51 The equation (7) already contains a function f , but

that is not the right function. In (7) ∆x is the variable,
and g(∆x) = (f(x + ∆x) − f(x))/∆x is the function;
we want lim∆x→0 g(∆x).

67 A( 2
3
,−1); B( 2

5
, 1); C( 2

7
,−1); D(−1, 0); E(− 2

5
,−1).

68 False! The limit must not only exist but also be equal
to f(a)!

69 There are of course many examples. Here are two:
f(x) = 1/x and f(x) = sin(π/x) (see §7.3)

70 False! Here’s an example: f(x) = 1
x

and g(x) =

x − 1
x

. Then f and g don’t have limits at x = 0, but
f(x) + g(x) = x does have a limit as x→ 0.

71 False again, as shown by the example f(x) = g(x) = 1
x

.

79 sin 2α = 2 sinα cosα so the limit is
limα→0

2 sinα cosα
sinα

= limα→0 2 cosα = 2.

Other approach:
sin 2α

sinα
=

sin 2α
2α

sinα
α

· 2α

α
. Take the limit

and you get 2.

80 3
2

.

81 Hint: tan θ = sin θ
cos θ

. Answer: the limit is 1.

82 tan 4α
sin 2α

= tan 4α
4α
· 2α

sin 2α
· 4α

2α
= 1 · 1 · 2 = 2

83 Hint: multiply top and bottom with 1 + cosx.

84 Hint: substitute θ = π
2
− ϕ, and let ϕ → 0. Answer:

−1.

90 Substitute θ = x − π/2 and remember that cosx =
cos(θ + π

2
) = − sin θ. You get

lim
x→π/2

x− π
2

cosx
= lim
θ→0

θ

− sin θ
= −1.

91 Similar to the previous problem, once you use tanx =
sin x
cos x

. The answer is again −1.

93 Substitute θ = x− π. Then limx→π θ = 0, so

lim
x→π

sinx

x− π = lim
θ→0

sin(π + θ)

θ
= − lim

θ→0

sin θ

θ
= −1.

Here you have to remember from trigonometry that
sin(π + θ) = − sin θ.

95 Note that the limit is for x→∞! As x goes to infinity
sinx oscillates up and down between −1 and +1. Divid-
ing by x then gives you a quantity which goes to zero.
To give a good proof you use the Sandwich Theorem like
this:

Since −1 ≤ sinx ≤ 1 for all x you have

−1

x
≤ sinx

x
≤ 1

x
.

Since both −1/x and 1/x go to zero as x → ∞ the
function in the middle must also go to zero. Hence

lim
x→∞

sinx

x
= 0.

97 No. As x → 0 the quantity sin 1
x

oscillates between
−1 and +1 and does not converge to any particular value.
Therefore, no matter how you choose k, it will never be
true that limx→0 sin 1

x
= k, because the limit doesn’t

exist.

98 The function f(x) = (sinx)/x is continuous at all
x 6= 0, so we only have to check that limx→0 f(x) = f(0),
i.e. limx→0

sin x
2x

= A. This only happens if you choose

A = 1
2

.
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7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other sepa-
rate and independent documents or works, in or on a volume of a
storage or distribution medium, is called an “aggregate” if the copy-
right resulting from the compilation is not used to limit the legal
rights of the compilation’s users beyond what the individual works
permit. When the Document is included in an aggregate, this Li-
cense does not apply to the other works in the aggregate which are
not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one
half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate,
or the electronic equivalent of covers if the Document is in electronic
form. Otherwise they must appear on printed covers that bracket
the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may dis-
tribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special per-
mission from their copyright holders, but you may include transla-
tions of some or all Invariant Sections in addition to the original
versions of these Invariant Sections. You may include a transla-
tion of this License, and all the license notices in the Document,
and any Warranty Disclaimers, provided that you also include the
original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between
the translation and the original version of this License or a notice
or disclaimer, the original version will prevail.
If a section in the Document is Entitled “Acknowledgements”, “Ded-
ications”, or “History”, the requirement (section 4) to Preserve its
Title (section 1) will typically require changing the actual title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document
except as expressly provided under this License. Any attempt oth-
erwise to copy, modify, sublicense, or distribute it is void, and will
automatically terminate your rights under this License.
However, if you cease all violation of this License, then your license
from a particular copyright holder is reinstated (a) provisionally, un-
less and until the copyright holder explicitly and finally terminates
your license, and (b) permanently, if the copyright holder fails to
notify you of the violation by some reasonable means prior to 60
days after the cessation.
Moreover, your license from a particular copyright holder is rein-
stated permanently if the copyright holder notifies you of the vi-
olation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate
the licenses of parties who have received copies or rights from you
under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same
material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License “or any later version” applies to it, you have the option of
following the terms and conditions either of that specified version
or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify
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