Chapter 4

PRINCIPLE OF MATHEMATICAL INDUCTION

Mathematics is the queen of science and number theory is the queen of mathematics.

CO UK

Mathematics passes not only truth west Supreme beau

- Bertrand Russell

1

1.1 Introduction

We have suited one method of rea only deductive reasoning

For example, consider the following statements:

(1)
$$1 + 2 + 3 + ... + 100 = 5050$$

(2)
$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$

(3) Let
$$n = 100$$
 in (2). $1 + 2 + 3 + ... + 100 = \frac{(100)(101)}{2} = (50)(101) = 5050$

Here we want to prove that sum of all integers from 1 to 100 is 5050. We have a general result $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$. We take n = 100 in it and get the required result. Here, we apply a general principle to deduce a particular result.

Consider (1) If 3 divides product ab, then 3 divides a or 3 divides b. (2) If p is a prime and p divides ab then p divides a or p divides b. (3) Let p = 3 in (2) as 3 is a prime. Hence, if 3 divides product ab, then 3 divides a or 3 divides b.

Here also we apply a general principle to deduce a particular result.

- (1) Amitabh Bachchan is a good actor.
- (2) Actors are awarded national Padma honour in their category, if selected.
- (3) Amitabh Bachchan was selected and got *Padma* honour.

Let
$$7x + 5y = k$$
 for $k \ge 24$, $x \in \mathbb{N} \cup \{0\}$, $y \in \mathbb{N} \cup \{0\}$.

Now,
$$5 \cdot 3 - 7 \cdot 2 = 1$$

$$\therefore$$
 7(x - 2) + 5(y + 3) = k + 1 (Adding (i) and (ii))

Here $y + 3 \in \mathbb{N} \cup \{0\}$ and $x - 2 \in \mathbb{N} \cup \{0\}$ if $x \neq 0$ or 1.

Let x = 0. Then $5y = k \ge 24$. Thus $y \ge 5$, using (i).

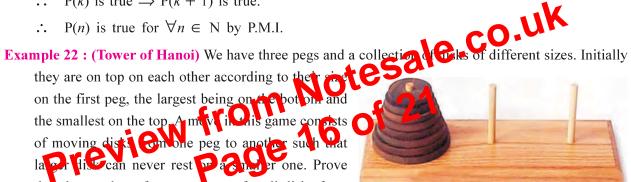
$$7 \cdot 3 - 5 \cdot 4 = 1$$
 and $5y = k$ gives on adding. (iii)

$$7 \cdot 3 + 5(y - 4) = k + 1$$

Here
$$x = 3 \ge 0, y - 4 \ge 0$$
 $(y \ge 5)$

 \therefore P(k + 1) is true, if x = 0

Let x = 1. Hence, 7 + 5y = k, using (i).


Then $5y = k - 7 \ge 17$. Thus $y \ge 4$

$$\therefore 7 \cdot 3 - 5 \cdot 4 = 1 \text{ and } 7 + 5y = k \text{ gives on adding.}$$
 (iv)

$$7(4) + 5(y - 4) = k + 1$$
 with $y - 4 \ge 0$ and $x = 4$ (Adding in (iv))

- \therefore P(k + 1) is true.
- \therefore P(k) is true \Rightarrow P(k + 1) is true.

the smallest on the top. A move it was game consists of moving disk. Com one peg to another such that la car fill can never rest or a stanter one. Prove that the number of moves to transfer all disks from

first peg to the last peg using the second peg as intermediate is $2^n - 1$, $n \in \mathbb{N}$.

Solution: Let P(n): The number of moves to transfer all disks from first peg to the last peg using the second peg as intermediate is $2^n - 1$, $n \in \mathbb{N}$.

Let n = 1, obviously there is only one move.

$$\therefore$$
 P(1) is true. $2^1 - 1 = 1$. (p(k))

Suppose there are $2^k - 1$ moves to transfer k disks as required.

First we move top k disks to the second peg using the third peg as the intermediate one. This will take $2^k - 1$ moves. Now move the last disk to the third peg. This is one move. Now move k disks from second peg to the third peg in $2^k - 1$ moves.

- The total number moves is $2^k 1 + 1 + 2^k 1 = 2 \cdot 2^k 1 = 2^{k+1} 1$
- P(k + 1) is proved.
- \therefore P(k) is true \Rightarrow P(k + 1) is true.
- \therefore P(n) is true, $\forall n \in \mathbb{N}$ by P.M.I.

16 **MATHEMATICS-2** **Example 23:** Prove $\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62n}{165} \in \mathbb{N}, n \in \mathbb{N}$ (to be done after chapter 3)

Solution: Let $P(n): \frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62n}{165} \in \mathbb{N}, n \in \mathbb{N}$

For
$$n = 1$$
, $\frac{n^{11}}{11} + \frac{n^5}{5} + \frac{n^3}{3} + \frac{62n}{165} = \frac{15 + 33 + 55 + 62}{165} = \frac{165}{165} = 1$

 \therefore P(1) is true.

Let P(k) be true. Hence, $\frac{k^{11}}{11} + \frac{k^5}{5} + \frac{k^3}{3} + \frac{62k}{165} \in N$

Let n = k + 1.

Consider
$$\left(\frac{(k+1)^{11}}{11} + \frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac{62(k+1)}{165}\right) - \left(\frac{k^{11}}{11} + \frac{k^5}{5} + \frac{k^3}{3} + \frac{62k}{165}\right)$$

$$= \frac{1}{11}((k+1)^{11} - k^{11}) + \frac{1}{5}((k+1)^5 - k^5) + \frac{1}{3}((k+1)^3 - k^3) + \frac{62}{165}$$

$$= \frac{1}{11}\left(1 + \binom{11}{1}k + \binom{11}{2}k^2 + \dots + \binom{11}{10}k^{10}\right) + \frac{1}{5}\left(1 + \binom{5}{1}k + \binom{5}{2}k^2 + \dots + \binom{5}{4}k^4\right)$$

$$+ \frac{1}{3}\left(1 + \binom{3}{1}k + \binom{3}{2}k^2\right) + \frac{62}{165}$$

3 divides
$$\binom{3}{r}$$
 for $r = 1, 2$

and
$$\frac{1}{11} + \frac{1}{5} + \frac{1}{3} + \frac{62}{165} = 1$$

:. The R.H.S. in (1) represents a natural number.

Also
$$\frac{k^{11}}{11} + \frac{k^5}{5} + \frac{k^3}{3} + \frac{62k}{165} \in N$$

$$\therefore \frac{(k+1)^{11}}{11} + \frac{(k+1)^5}{5} + \frac{(k+1)^3}{3} + \frac{62(k+1)}{165}$$
$$= \frac{k^{11}}{11} + \frac{k^5}{5} + \frac{k^3}{3} + \frac{62k}{165} + \text{a natural number } \in \mathbb{N}$$

- \therefore P(k + 1) is true.
- \therefore P(k) is true \Rightarrow P(k + 1) is true.
- P(n) is true for $\forall n \in \mathbb{N}$ by P.M.I.