Chapter 1: The Real Numbers \mathbb{R}

 $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{O} \subset \mathbb{R} \subset \mathbb{C}$

Natural Numbers ℕ

 $\mathbb{N} \coloneqq \{1, 2, 3, 4, \dots\}$

For Addition:

 $n, m \in \mathbb{N} \leadsto m + n \in \mathbb{N}$

For Multiplication:

 $n,m \in \mathbb{N} \sim mn \in \mathbb{N}$

For Ordering:

 $\forall m, n \in \mathbb{N}$ we must have that m > n or m < n or m = n

Remark: "√" means "leads to"

<u>Remark</u>: $0 \notin \mathbb{N}$

There are some limitations to natural numbers.

Problem: Solving Equations

If x + m = n, then we know that x = n - m. We look into the problem, what if $m \ge n$? Then x is not a natural number. Therefore, we proceed to introduce *integers*.

Then now we need to prove that P_{k+1} is also true: $p_{k+1}^2 - 2q_{k+1}^2 = \pm 1$

$$LHS = (p_k + 2q_k)^2 - 2(p_k + q_k)^2$$

= $p_k^2 + 4p_kq_k + 4q_k^2 - 2p_k^2 - 4p_kq_k - 2q_k^2$
= $-p_k^2 + 2q_k^2$
= $-(p_k^2 - 2q_k^2)$
= ∓ 1
= RHS

Also, we have $q_{k+1} = p_k + q_k \ge k + 1$. And so, with our induction steps completed, we can safely conclude that $P_k \Rightarrow P_{k+1}$, and thus $\forall n \in \mathbb{N}$, we have $\left|\frac{p_n}{q_n} - \sqrt{2}\right| < \frac{1}{q_n^2} < \frac{1}{n^2}$, which is very small.

Attempt Homework 1

Axioms for the Set of Real Numbers

- Definition: Assume that X is a set where two binary operations are addition and multiplication. Where $X = \mathbb{R}$ and the two operations are the usual ones, then we say that *X* is a **field** if the following axioms are satisfied:

 - 1) The axioms of arithmetic 2) The axioms of ordering 3) The completeness axion **Otesale**. **CO**. **UK etic: frOm** c = a + (b + c) **a Oe from the second se**
- Axioms of Arithmetic:
- A1:
- A2: a + b = b + a
- $\exists 0 \in X$ s.t. x + 0 = 0 + x = x $\forall x \in X$ A3:
- $\forall x \in X \quad \exists y \in X \text{ s.t. } x + y = 0 \quad (\text{i.e. } y = -x)$ A4:
- A5: (a,b)c = a(b,c)
- A6: a,b=b,a
- $\exists 1 \in X \text{ s.t. } 1.x = x.1 = x \quad \forall x \in X$ A7:
- $\forall x \in X, x \neq 0, \exists y \in X \text{ s.t. } xy = 1 \quad (\text{i.e } y = x^{-1})$ **A8**:
- $x_{1}(v + z) = x_{1}v + x_{2}z$ A9:

The axioms A1 – A4 mean that X is a commutative group w.r.t. *addition*. 0 is called the additive identity. The axioms A5 - A8 mean that $X \setminus \{0\}$ is a commutative group w.r.t *multiplication.* 1 is called the multiplicative identity.

Example: $x_n = \frac{1}{n}$. Prove that $x_n \to 0$.

Proof:

Given $\epsilon > 0$, we need to find $N \in \mathbb{R}$ s.t. $n > N \Rightarrow |x_n - l| < \epsilon$

$$\therefore \left| \frac{1}{n} - 0 \right| < \epsilon$$
$$\Rightarrow n > \frac{1}{\epsilon}$$

As such, we let $N = \frac{1}{\epsilon}$, and so for any n > N we have that $|x_n - 0| < \epsilon$. So from the definition of a limit we have that $x_n \to 0$.

 x_n does not converge to l means that the definition of the limit where $x_n \rightarrow 1$ cannot be satisfied. Namely, negating the definition we get:

$$\exists \epsilon > 0 \text{ s.t. } \forall N \in \mathbb{R}, \ \exists n > N \Rightarrow |x_n - l| \ge \epsilon$$

And so we begin with the same method, we let l = 1:

$$\left|\frac{1}{n} - 1\right| \ge \epsilon$$
$$\left|\frac{1 - n}{n}\right| \ge \epsilon$$

Now we need to consider two cases:

- 1. $\frac{3}{\epsilon} 1 < 0$, then $n^2 > \frac{3}{\epsilon} 1$ is always satisfied. As such, we can take *N* to be any number, and the definition of a limit will hold.
- 2. $\frac{3}{\epsilon} 1 > 0$, then for $n^2 > \frac{3}{\epsilon} 1 \Leftrightarrow n > \sqrt{\frac{3}{\epsilon} 1}$. And so we just need to take N = $\sqrt{\frac{3}{\epsilon}-1}$

Overall, we can take = $\begin{cases} \mathbb{R} & ,\frac{3}{\epsilon} - 1 < 0\\ \sqrt{\frac{3}{\epsilon} - 1} & ,\frac{3}{\epsilon} - 1 \ge 0 \end{cases}$, and this will satisfy the definition of a limit,

and we have proof that $\frac{2n^2-1}{n^2+1} \rightarrow 2$.

Algebra of Limits

le.co.uk Now we have already shown how to prove a sequence converges to a claimed limit. But how do we identify that limit? (what a sublitude for *l*)? Constiler the previous example, $x_n = \frac{2n^2 - 1}{n^2 + 1}$. The limit is writtened as $n \to \infty$ in (x_0 converges. Therefore, to compute the *l* we can divide each term by the **dominant term** which is $n^2: x_n = \frac{2 - \frac{1}{n^2}}{1 + \frac{1}{n^2}}$ and we have $\frac{1}{n^2} \to 0$

as $n \to \infty$, and so $x_n \to 2$ by what we call the *algebra of limits*.

When computing limits, it is useful to identify null sequences, which are sequences which tend to 0 as $n \to \infty$. There are 3 forms of expressions a dominant term can take, namely: $\{n^p, a^n, n!\}$ in increasing order of dominance. Note that p > 0and |a| > 1. To compute complicated limits we are usually required to identify to dominant term and divide all terms by it. This will procure some

Examples of null sequences:
1. $\left(\frac{1}{n^p}\right)$, for $p > 0$
2. (c^n) , for $ c < 1$
3. $(n^p c^n)$, for $p > 0$ and $ c < 1$
4. $\left(\frac{c^n}{n!}\right)$, for $c \in \mathbb{R}$
5. $\left(\frac{n^p}{n!}\right)$, for $p > 0$
Notice the null sequences are any term divided by the dominant term

null sequences which we can use, along with the algebra of limits, to compute the overall limit of a sequence.

Theorem: Let $\langle x_n \rangle$, $\langle y_n \rangle$ and $\langle z_n \rangle$ be three sequences s.t. we have $x_n \leq y_n \leq z_n$ and if $x_n \rightarrow l$, $z_n \rightarrow l$ then $y_n \rightarrow l$. *This is known as the sandwich theorem*.

Proof:

Given $\epsilon>0\,$, $\,\exists N_1\in\mathbb{R}\,$ s.t. $n>N_1\Rightarrow |x_n-l|<\epsilon.$ This means that:

$$\Leftrightarrow -\epsilon < x_n - l < \epsilon$$
$$\Leftrightarrow l - \epsilon < x_n < l + \epsilon$$

Similarly, $\exists N_2 \in \mathbb{R}$ s.t. $n > N_2 \Rightarrow |z_n - l| < \epsilon$. Again this means that:

$$\Leftrightarrow l - \epsilon < z_n < l + \epsilon$$

Combining the two, we take $N = \max\{N_1, N_2\}$, and so for n > N we have:

Note that we cannot use the algebra of limits here without thinking. This is because $(-1)^n$ **does not converge**. This will be proven later on. However, using the sandwich theorem we can show that x_n converges.

$$\left|\frac{(-1)^n}{n^2}\right| = \frac{1}{n^2}$$
$$\cdot \frac{1}{n^2} \le \frac{(-1)^n}{n^2} \le \frac{1}{n^2}$$

However since $\frac{1}{n^2} = \frac{1}{n} \times \frac{1}{n}$, we have that $\frac{1}{n^2} \to 0$ because $\frac{1}{n} \to 0$. Using the same reasoning, we have $-\frac{1}{n^2} \to 0$ also. By the sandwich theorem, $\frac{(-1)^n}{n^2} \to 0$ as well.

Series Tests

Here we will introduce tests which allow us to determine whether a series converges, without the need to compute partial sums.

Example: $\sum_{n=1}^{\infty} \frac{2^n}{3^n+17}$. We know that $\frac{2^n}{3^n+17} < \frac{2^n}{3^n} = \left(\frac{2}{3}\right)^n$ and $\sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^n$ converges (geometric series), and so $\sum_{n=1}^{\infty} \frac{2^n}{3^n+17}$ should converge.

Theorem: If $0 \le a_n \le b_n \forall n \in \mathbb{N}$ and $\sum b_n$ converges, then $\sum a_n$ also converges with $\sum a_n \le a$ $\sum b_n$.

Corollary: If $0 \le a_n \le b_n \forall n \in \mathbb{N}$ and $\sum a_n$ diverges, then $\sum b_n$ also diverges.

This is known as the comparison test.

Given that $0 \le a_n \le b_n$, we know that $\langle A_N \rangle$ and $\langle B_N \rangle$ are increasing sequences. We know that $\langle B_N \rangle$ converges to sup B_N (due to its increasing property). Therefore:

$$B_{\infty} = \lim_{N \to \infty} B_N = \sup B_N = \sum_{n=1}^{\infty} b_n$$

But $A_N \leq B_N$ since $a_n \leq b_n$, $\forall n$. Thus, $A_N \leq B_N \leq \sup B_N = B_\infty$. So the sequence of partial sums $\langle A_N \rangle$ is increasing and bounded above, and therefore it must be convergent.

Thus, $\sum_{n=1}^{\infty} a_n$ converges. The limit of $\langle A_N \rangle$ is $\sup A_N \leq \sup B_N$.

Page 33 of 83

Proof (ii):

Assume $\lim_{n\to\infty} \frac{|a_{n+1}|}{|a_n|} = l > 1$, then we choose $\epsilon > 0$ s.t. $l - \epsilon > 1$. Then $\exists N \in \mathbb{N}$ s.t. $\forall n > N \Rightarrow \left|\frac{|a_{n+1}|}{|a_n|} - l\right| < \epsilon$, by definition of a limit.

$$\begin{aligned} \left|\frac{|a_{n+1}|}{|a_n|} - l\right| &< \epsilon \Leftrightarrow l - \epsilon < \frac{|a_{n+1}|}{|a_n|} < l + \epsilon \end{aligned}$$
$$\Rightarrow |a_{n+1}| > |a_n|(l - \epsilon)$$

Similar to the proof in (i) we consider $k \in \mathbb{N}$ s.t. $n \ge N + k$.

$$|a_{N+k}| \ge |a_{N+k-1}|(l-\epsilon) \ge |a_{N+k-2}|(l-\epsilon)^2 \dots \ge |a_{N+1}|(l-\epsilon)^{k-1}$$

As $|a_{N+1}| > 0$ and $l - \epsilon > 1$, then as $k \to \infty$ we have $(l - \epsilon)^{k-1} \to \infty$, and as such $|a_{N+1}|(l - \epsilon)^{k-1} \to +\infty$. But we have:

$$|a_{N+1}|(l-\epsilon)^{k-1} \le |a_{n+k}| \textbf{CO.UK}$$

Therefore we have $|a_{N+k}| \to +\infty$ as $k \to \infty$ **OLESA**
We substitute in $n = N + k$ by definition, and so we obtain $\forall n > N$, $|a_n| \to +\infty$ as $n \to \infty$.
As such as $a_{1} \ge 0$ to $\sum a_{n}$ diverges **OLE**

Theorem: Suppose $\sqrt[n]{|a_n|} \to l \ge 0$ as $n \to \infty$, then:

- i. $l < 1 \implies \sum a_n$ is absolutely convergent
- ii. $l > 1 \Rightarrow \sum a_n$ is divergent and $|a_n| \to +\infty$
- iii. l = 1 remains inconclusive

This is known as the Root Test.

The method of proof follows a similar concept to the ratio test.

However, what we are more interested in is the application of these tests. For instance, let us look at **power series**.

Example: $f(x) = 1 + x^2 \cos\left(\frac{1}{x}\right)$

Claim: $\lim_{x \to 0} f(x) = 1$

Proof:

Given $\epsilon > 0$, we need to find $\delta > 0$ s.t. $|x - 0| < \delta \Rightarrow |f(x) - 1| < \epsilon$.

$$|x| < \delta \Rightarrow \left| x^2 \cos\left(\frac{1}{x}\right) - 1 \right| < \epsilon$$

Notice that $\forall x$, $\left|x^2 \cos\left(\frac{1}{x}\right)\right| \le x^2$, so it is enough to achieve that $x^2 < \epsilon$. Therefore, take $\delta = \sqrt{\epsilon}$, so we have:

$$|x| < \delta \Rightarrow |x^2| < \delta^2 = \epsilon$$

$$|f(x) - 1| = \left| x^2 \cos\left(\frac{1}{x}\right) - l \right| \le x^2 < \epsilon$$

And therefore, when $x \to 0$, $f(x) \to 1$. However, **Stechal** f(x) is not defined at 0, though we need not consider this Notice as we tackieverable as such, we need to pick δ skillfully such that we have the origin Populating condition happenee that $|f(x) - l| < \epsilon$. However, finding such δ is not always easy. Let us take a look at other examples, and their respective methods of proof.

Example: Consider the function $f(x) = \begin{cases} 2x & , x < 1 \\ 1 & , x = 1 \\ 4 - x & , x > 1 \end{cases}$

Claim: $\lim_{x \to 1^-} f(x) = 2$

Proof:

Given $\epsilon > 0$, we need to find $\delta > 0$ s.t. $x \in (1 - \delta, 1) \Rightarrow |f(x) - 2| < \epsilon$. We have:

$$x < 1$$
, $|x - 1| < \delta \Rightarrow |2x - 2|$
= $2|x - 1| < \epsilon$

This is as $x_n - c \to 0$, we have $\exp(x_n - c) \to 1$ because we have proved that $\exp(x)$ is continuous at x = 0 in step 1.

As such, $\exp(x_n) \rightarrow \exp(c)$ as $x_n \rightarrow c$, and so by definition of continuity, $\exp(x)$ is continuous on any $c \in \mathbb{R}$.

Theorem: Suppose g is continuous at $c \in \mathbb{R}$, and if f is continuous at g(c), then $f \circ g$ is continuous at *c*. (Recall that $f \circ g = f(g(x))$)

Proof:

Suppose $x_n \to c$, then $g(x_n) \to g(c)$ since g is continuous. Now since:

$$f \circ g(x_n) = f(g(x_n)) \rightarrow f(g(c)) = f \circ g(c)$$

 $\Rightarrow f \circ g(x)$ is continuous at c.

Suppose $a, b \in \mathbb{R}$ and $f: [a, b] \to \mathbb{R}$ is continuous. If we want to study the **image** (or the range) of the function *f*, then we must look at the collection of all the values *f* will take.

$$f([a,b]) = \{f(x) | x \in [a,b]\}$$

Theorem 1: If $f:[a,b] \to \mathbb{R}$ is continuous, then f is bounded. This means that:

1. $\exists M = \sup f([a, b])$

2. $\exists m = \inf f([a, b])$

Theorem 2: Every continuous function $f:[a,b] \to \mathbb{R}$ attains a maximum and minimum:

 $\exists x_{\max}, x_{\min} \in [a, b] \text{ s. t. } M = f(x_{\max}) \text{ and } m = f(x_{\min})$

And $f(x_{\min}) = m \le f(x) \le M = f(x_{\max}) \ \forall x \in [a, b].$

Notice that we are dealing with a **closed interval** [a, b] here. $f: [a, b] \rightarrow \mathbb{R}$ is continuous if

i. At any point
$$c \in (a, b)$$
 we have $\lim_{x \to c} f(x) = f(c)$

ii.
$$\lim_{x \to a^+} f(x) = f(a) \text{ and } \lim_{x \to b^-} f(x) = f(b)$$

Proof of Theorem 1:

Assume *f* is not bounded, say *f* is unbounded above. Then this means that $\nexists M \in \mathbb{R}$ s.t. $f(x) \le M \forall x \in [a, b]$ by using the definition of an upper bound. In particular, $\forall n \in \mathbb{N}$, $\exists x = x_n \in [a, b]$ s.t. $f(x_n) > M$.

Therefore, based on our assumption that *f* is unbounded, as $n \to +\infty$, then $f(x_n) \to +\infty$.

Since $x \in [a, b]$, then we know $\langle x_n \rangle$ is bounded, we can use the **bolzano-weiestrass** theorem and find a convergent subsequence. So let this subsequence be $\langle x_{j_n} \rangle$:

Now suppose $x_{\infty} < a$, then because $x_{j_n} \to x_{\infty}$, $\forall \epsilon > 0$, for sufficiently large *n*, we have x_{j_n} lies in the ϵ -neighbourhood of x_{∞} by definition of a limit of a sequence.

$$x_{j_n} \in (x_{\infty} - \epsilon, x_{\infty} + \epsilon)$$

If we choose a small $\epsilon > 0$ s.t. $x_{\infty} + \epsilon < a$, this contradicts the statement that $x_{j_n} \in [a, b]$. \blacksquare

And so, we know that $x_{\infty} \in [a, b]$. Since we are given that f is **continuous** within [a, b], then it is continuous at x_{∞} , and by definition of continuity we have $f(x_{j_n}) \to f(x_{\infty})$. But $f(x_{\infty})$ is supposed to be a real number, and therefore this contradicts that $f(x_n) \to +\infty$.

Therefore, *f* is bounded.

Proposition: $\exp(x)$ *is a bijection from* \mathbb{R} *to* $(0, +\infty)$

Proof:

Suppose x' > x, then x' = x + h, h > 0.

Therefore, $\frac{\exp(x')}{\exp(x)} = \frac{\exp(x)\exp(h)}{\exp(x)} = \exp(h) > 1$ because h > 0.

So this implies that $\exp(x') > \exp(x)$. Thus, exp is strictly increasing and therefore, exp is **injective**, meaning that $\exp(x) = y$ where *y* cannot have more than one solution. We now need to show that $\exp(x)$ is surjective.

Claim: exp is surjective on the interval $(0, +\infty)$. This means that $\forall y > 0$, *there is at least one solution for x for which* exp(*x*) *equals to a particular value y.* (We use the intermediate value theorem)

Proof of Claim:
Since
$$\exp(x) \ge 1 + x$$
, we have for $x > 0$:
Since $\exp(x) \ge 1 + x$, we have for $x > 0$:
Since $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have for $x > 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$:
 $\exp(x) \ge 1 + x$, we have $x \ge 0$.

Therefore, because we know $\lim_{x \to +\infty} \exp(x) = +\infty$, then $\exists h \in \mathbb{R}$ s.t. $\forall x > h$, we have $\exp(h) \ge \overline{y} \Rightarrow \exp(x) > \overline{y}$. In particular, $\exp(h + 1) > \overline{y}$.

We also know that since $\exp(x) = \frac{1}{\exp(-x)} \to 0$ as $x \to -\infty$. Therefore, $\exists h \in \mathbb{R}$ s.t. $\forall x < h$, we have $\exp(h) \le \overline{y} \Rightarrow \exp(x) < \overline{y}$. In particular, $\exp(h - 1) < \overline{y}$.

By the intermediate value theorem,

$$\exists \overline{x} \in [h-1, h+1]$$
 s.t. $\exp(\overline{x}) = \overline{y}$ (surjection)

Therefore, exp: $\mathbb{R} \to (0, +\infty)$ is a bijection.

Page **62** of **83**

4) $f(x) = x^{17}$,

$$f'(c) = \lim_{h \to 0} \frac{(c+h)^{17} - c^{17}}{h}$$
$$= \lim_{h \to 0} \frac{(\sum_{r=0}^{17} c^r h^{17r}) - c^{17}}{h}$$
$$= \lim_{h \to 0} \frac{c^{17} + 17c^{16}h + h^2 {\binom{17}{2}}c^{15} \dots - c^{17}}{h}$$
$$= \lim_{h \to 0} \frac{17c^{16}h}{h} = 17c^{16}$$

Therefore, $f'(x) = 17x^{16}$

5)
$$f(x) = \frac{1}{x}$$
, $x \neq 0$

$$f'(c) = \lim_{h \to 0} \frac{\frac{1}{c+h} - \frac{1}{c}}{h}$$
$$= \lim_{h \to 0} \frac{\left(\frac{c-c-h}{c(c+h)}\right)}{h}$$
Bale.CO.UK
$$from \int_{h \to 0} \frac{1}{c(c+h)} = \frac{1}{x^2}$$
Therefore, $f'(x) = -\frac{1}{x^2}$

In general, $(x^n) = nx^{n-1}$ (to be proved later).

6)
$$f(x) = |x| = \begin{cases} x, x > 0 \\ -x, x < 0 \end{cases}$$

Let $c = 0$. Then $\frac{f(c+h) - f(c)}{h} = \frac{|h|}{h} = \begin{cases} 1, h > 0 \\ -1, h < 0 \end{cases}$

Then there is no limit as $h \to 0$ so |x| is not differentiable at x = 0.

We know that $e^x \ge 1 + x$ and that $e^x = \frac{1}{e^{-x}} \le \frac{1}{1-x}$, x < 1, so: $1 + x \le e^x \le \frac{1}{1 - x}$, -1 < x < 1

Now how do we find the derivative of e^x at x = 0?

Theorem: Suppose p(x) and q(x) are differentiable at x = c, and

$$p(c) = q(c) = L$$
$$p'(c) = q'(c) = m$$

Assume that:

$$p(x) \le f(x) \le q(x)$$

This is known as the Sandwich Theorem for derivatives. Proof: We have $L = p(c) \le f(c) \le h(c) - L = 0$ for the formula of t Holds in a neighbourhood of *c*. Then *f* is differentiable at *c* and f'(c) = m.

$$p(c+h) - L \le f(c+h) - f(c) \le q(c+h) - L$$
$$p(c+h) - p(c) \le f(c+h) - f(c) \le q(c+h) - q(c)$$

Suppose h > 0, then:

$$\frac{p(c+h)-p(c)}{h} \leq \frac{f(c+h)-f(c)}{h} \leq \frac{q(c+h)-q(c)}{h}$$

As $\lim_{h \to 0^+} \frac{p(c+h) - p(c)}{h} = p'(c) = \lim_{h \to 0^+} \frac{q(c+h) + q(c)}{h} = q'(c) = m$. So $\lim_{h \to 0^+} \frac{f(c+h) - f(c)}{h} = m$ via the sandwich theorem for limits.

Theorems for Differentiable Functions

Theorem: Suppose a < b, and $f: [a, b] \to \mathbb{R}$, f is continuous on [a, b] and differentiable on (a, b). Assume also that f(b) = f(a), then:

$$\exists c \in (a, b) \text{ s.t. } f'(c) = 0$$

This is known as Rolle's Theorem.

Proof:

f is continuous on [a, b] \Rightarrow *f* attains its maximal and minimal values

 \Rightarrow \exists a global maximum x_{max} and a global minimum x_{min} .

<u>Case 1:</u>

Then at least one of the numbers $f(x_{\text{max}})$ or $f(x_{\text{min}})$ is different from f(a) = f(b).

Thus, x_{max} or x_{min} are inside (a, b), so this is a **local extremum**, so $f'(x_{\text{max}}) = 0$ or $f'(x_{\min}) = 0.$