Chapter 1: The Real Numbers R
NcZcQcRcC

Natural Numbers N
N:={1,23,4,..} Remark: 0 ¢ N
For Addition:

n,m€€N~ m+n € N Remark: “~»”

means “leads to”

For Multiplication:

n,m €N ~»mne N
For Ordering:

vm,n € N wemusthavethat m>n or m<n or m=n

There are several properties of natural numbers (laws that m‘ lvGQe‘fyowed)

1. Commutati\./e Law: N O"es

I m+n—n+

ii. mn= 8
2. Assoc1at1v9\la>l\l O"
eNYe %@f‘-‘"
% (mn)p =¥n(
3. Dlstrlbutlve Law:
(m+n)p=mp+np
4. Ordering:
i m>n, n>p, then m>p
i m>n>m+p>n+p
iii.h. m>n, peEN=>mp>np

Remark: Note thatp € N
must be emphasized here.

There are some limitations to natural numbers.

Problem: Solving Equations

If x + m = n, then we know that x = n — m. We look into the problem, what if m > n?
Then x is not a natural number. Therefore, we proceed to introduce integers.
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Then now we need to prove that Py, 4 is also true: piii—2qi,, = +1

LHS = (px + 2q1)* — 2(pr + qr)*
= pi + 4Dk qr + 4qi — 2Pk — 4Kk — 245

= —pi + 2q;
= —(pi — 2q3)
=F1

= RHS

Also, we have qi,1 = px + qx = k + 1. And so, with our induction steps completed, we
p—"—\/i| < iz< iz,which
an n

Adn

can safely conclude that P, = Py, and thus Vn € N, we have

is very small.

- Attempt Homework 1

Axioms for the Set of Real Numbers

Definition: = Assume that X is a set where two binary operations are addition and
multiplication. Where X = R and the two operations are the usual ones,
then we say that X is a field if the following axioms are satisfied: \4

1) The axioms of arithmetic CO *
2) The axioms of ordering tesa_\e

3) The completeness axﬁ

Axioms of Arithmetic: \N “(O 1 @ﬁseﬁl‘o’r‘;ls hold for Va,b,c € X
o e 9a0e

A2: a+b=b+a

=

A3: 3F0€eX st x+0=0+x=x Vx€eX

A4: VvxeX FJyeXstx+y=0 (iey=-x)
A5:  (a.b)c =a(b.c)

A6: a.b=b.a

A7: 3J1eX st l.x=x1=x Vx€X

A8: VxeX, x#0, IyeX st xy=1 (ley=x"1
AY: x.(y+z)=xy+xz

The axioms Al - A4 mean that X is a commutative group w.r.t. addition. 0 is called the
additive identity. The axioms A5 - A8 mean that X\{0} is a commutative group w.r.t
multiplication. 1 is called the multiplicative identity.
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Example: x, = % Prove that x,, = 0.

Proof:

Givene > 0,weneedtofindNeER st. n >N=|x,— | <e€

1
.'.‘——O’<e
n
1
=>n > —
€

As such, we let N = E, and so for any n > N we have that |x,, — 0] < €. So from the

definition of a limit we have that x,, — 0. [

Remark: Any number N larger than % would also be valid as the chosen N
is the bare minimum for the requirement above. Therefore, we can also

1 .
choose N =1+ H € N. Therefore, N can be a natural 611@ ghit

is not necessary. \e C

NoweS2,

oM
Example: Leéwl‘\@t\lﬁ x;‘f 1 e
P a0

X, does not converge to [ means that the definition of the limit where x,, = 1 cannot be

satisfied. Namely, negating the definition we get:

de>0st. VNER In>N=|x,—1l| =€

And so we begin with the same method, we let [ = 1:

1
|——1|2€
n
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Now we need to consider two cases:

1. z —1<0,thenn? > 2 — 1 is always satisfied. As such, we can take N to be any

number, and the definition of a limit will hold.

2. S—1>O,thenforn2 >§—1<:>n> E—1.AndsowejustneedtotakeN=

i1
€
R g ~1<0
Overall, we can take = 3 5 , and this will satisfy the definition of a limit,
-1 ,=—1>=0
€ )
2n?-1
and we have proof that —— - 2. u
n<+1
Algebra of Limits CO u\(

Now we have already shown how to proveﬁi t@&a}ges to a claimed limit. But
treute

how do we identify that limit? (w@tfﬂb for l_ﬁ’ C%ﬂer the previous example,
X, = 2n2_1_ The\liwwagsgl asn —>e 00 f&(‘% cgerges. Therefore, to compute the [
% ;

n2+1
2__
we cani\Xde each term by tE d@nl ant term which is n?: x,, = " 12 and we have % -0

n2

asn — oo, and so x,, = 2 by what we call the algebra of limits.

When computing limits, it is useful to identify null Exambles of null sequences:

sequences, which are sequences which tend to 0

1. (i) ,forp >0
as n — oo, There are 3 forms of expressions a n
. p 2. (c™),for|c| <1
dominant term can take, namely: {n? , a™ , n!}in 3. (nfcn). forp >0and|c| <1
. . . 4. (<), forceR
increasing order of dominance. Note that p > 0 (n;o) ore
5. (%) ,forp >0

and |a| > 1. To compute complicated limits we

Notice the null sequences are any

are usually required to identify to dominant term A :
term divided by the dominant term.

and divide all terms by it. This will procure some

null sequences which we can use, along with the algebra of limits, to compute the overall

limit of a sequence.
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Theorem: Let (x,,), (y,) and (z,,) be three sequences s.t. we have x,, < y,, < z,, and if

X, = L,z, = 1 theny, — l. This is known as the sandwich theorem.

Proof:
Givene >0, IN; € R s.t. n > N; = |x,, — | < €. This means that:

S —€e<x,—1l<e€

eSl-e<x, <l+e€

Similarly, 3N, € R s.t. n > N, = |z, — l| < €. Again this means that:
Sl-e<z,<l+e€

Combining the two, we take N = max{N;, N,}, and so for n > N we have:

l—e<xp, <y, <z,<l+e

sl-e<y, <l+e u\(

And so by definition of limits, we have
\|\|‘“Oﬂx‘*‘.x cﬁﬁyx
eV\eT 5a0e 2
Examy S nsider x,, = 1) ? 11

916

Note that we cannot use the algebra of limits here without thinking. This is because (—1)"
does not converge. This will be proven later on. However, using the sandwich theorem we

can show that x,, converges.

D71

nZz | n?
1 (D" 1
TR S Tw S

. 1 1 1 1 1 . .
However since == X —,we have thatﬁ — 0 because —~ = 0. Using the same reasoning,

(="
2
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Series Tests

Here we will introduce tests which allow us to determine whether a series converges,

without the need to compute partial sums.

n n n 2 n 2 n
Example: },_ 1525 We know that 3n+17<3—n=(§) and Y, (E) converges

. . 2n
(geometric series), and so Y5 peY should converge.

Theorem: If 0 < a,, < b,, Vn € Nand } b, converges, then Y a, also converges with Ya,, <

2bn.
Corollary: If 0 < a,, < b, Vn € N and }a,, diverges, then ) b,, also diverges.

This is known as the comparison test.

Proof of theorem:

Denote the partial sums: NO

An important part of this proof is
P ( e\, xg:\% p age that since a,, = 0 Vn, then the
N

sequence of partial sums Ay is
increasing (Sy4+1 — Sy = any1 = 0).
BN = z le

n=1

Given that 0 < a, < b,,, we know that (Ay) and (By) are increasing sequences. We know

that (By) converges to sup By (due to its increasing property). Therefore:
By = lim By = supBy = Z b,

But Ay < By since a, < b, ,Vn. Thus, Ay < By < sup By = B,. So the sequence of

partial sums (Ay) is increasing and bounded above, and therefore it must be convergent.

Thus, Yo, a,, converges. The limit of (4y) is sup Ay < sup By. [
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Proof (ii):

Assume lim lana] _ l > 1, then we choose € >0 s.t. Il —e€ > 1. Then N € N s.t. Vn >

n-oo |anl

|aTL+1| _ l
lan|

N =

< €, by definition of a limit.

|an 41l |aniql

—1
lan|

<eovol—-€e<

lan|

= |api1l > lay|(l—€)

Similar to the proofin (i) we consider k € Ns.t.n > N + k.

<l+e€

lan skl = layir—11(L =€) = lay k-2 — 5)2 w2 |aygq (L= G)k_l

As |ay;1l >0 and [ —€ > 1, then as k —» oo we have (I —€)*¥ ! = oo, and as such

lay+1](l — €)¥™1 - 400, But we have:

lay 1|1 — €)% < |anyrl \e CO *

Therefore we have |ay | = +oask - Otesa

We substitute inn,= l\\;!q b&&g}man&@e iingn > N, |a,| » +o0asn — oo,
7 div

As sum ebdo&e eﬁsage

Uk

Theorem: Suppose 4/|a,| = | = 0asn — oo, then:

i. [<1 = Ya,isabsolutely convergent
ii. [>1 = Ya,isdivergentand |a,| = +o

ili. | = 1 remains inconclusive

This is known as the Root Test

The method of proof follows a similar concept to the ratio test.

However, what we are more interested in is the application of these tests. For instance,

let us look at power series.
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Example: f(x) = 1 + x? cos G)
Claim: lim f(x) = 1

x—0
Proof:

Givene > 0,weneedtofind§ > 0s.t. [x — 0| <& = |f(x) — 1] <e.

x| < & =

X cos( )—1|<€

Notice that Vx, |x2 cos (§)| < x?, so it is enough to achieve that x? < €. Therefore,

take § = V€, so we have:

x| <6 = |x?| <62 =¢

1
X cos( >—l|<x <e€

If(x)—1] =

co V¥
And therefore, when x = 0, f(x) — 1. HOW{@@&)&%(J@ is not defined at 0,

though we need not conmderﬁ\ N “ 8A [
Notice as we tﬂ%@\u ;S such, W@ q p1c96 skillfully such that we have the

origin@)&uﬁing condltlon@ hat |f(x) — l| < e. However, finding such § is not

always easy. Let us take a look at other examples, and their respective methods of proof.

2x , x <1
Example: Consider the function f(x) = {1 , x=1
4—x , x>1

Claim: lim f(x) =2
x—-1"
Proof:

Given € > 0,weneedtofindd > 0st.x € (1—-6,1) = |f(x) — 2| < €. We have:

x<1,|lx—1<8§ = |2x — 2|
=2lx—1| <e
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This is as x,, — ¢ = 0, we have exp(x,, — c¢) — 1 because we have proved

that exp(x) is continuous at x = 0 in step 1.

As such, exp(x,) — exp(c) as x, — ¢, and so by definition of continuity,

exp(x) is continuous on any ¢ € R. [ ]

Theorem: Suppose g is continuous at ¢ € R, and if f is continuous at g(c), then fog is

continuous at c. (Recall that fog = f(g (x)))

Proof:

Suppose x, — c, then g(x,) = g(c) since g is continuous. Now since:
fogla) =f(g(xn)) = f(g() = fogle)
= f o g(x) is continuous at c. O \’\4

Example: \/W is continuous. NO‘,@Sa\e .
 o\N ﬁ( Om 0‘ 8A

M@M

Suppose a,b € R and f: [a, b] = R is continuous. If we want to study the image (or the

range) of the function f, then we must look at the collection of all the values f will take.

f(la,b]) ={f ()| x € [a, b]}

Theorem 1: If f: [a, b] —» R s continuous, then f is bounded. This means that:

1. AM = sup f([a, b])
2. Am =inf f([a, b])

Theorem 2: Every continuous function f: [a, b] —» R attains a maximum and minimum:
EIxmax »Xmin € [a, b] s.t.M = f(xmax) andm = f(xmin)

And f(xXmin) =m < f(x) S M = f(xmax) VX € [a, b].
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Notice that we are dealing with a closed interval [a, b] here. f: [a, b] = R is continuous if
i. Atany pointc € (a,b) we have lim f(x) = f(c)
X—C

i, Jim f(x) = f(@and lim f(x) = f(b)

Proof of Theorem 1:

Assume f is not bounded, say f is unbounded above. Then this means that AM € R s.t.
f(x) < M Vx € [a, b] by using the definition of an upper bound. In particular, Vn € N,
dx = x, € [a,b] s.t. f(x,) > M.

Therefore, based on our assumption that f is unbounded, as n - +oo, then f(x,) = +oo.

Since x € [a, b], then we know (x,) is bounded, we can use the bolzano-weiestrass

theorem and find a convergent subsequence. So let this subsequence be (x; _):
D X, Xeo = lim(x;) uK

X

Claim: x,, € [a,b]

Proof of claim: ‘ @l\J\I "( Om 2’( O“ 8A
éi&peed}\ - [ﬁf)‘&q@l HIET Xo, < a 0T X0 > b. That means x., lies

ide the interval

Now suppose x,, < a, then because Xj, = X, V€ >0, for sufficiently large n, we

have x;_lies in the e-neighbourhood of x,, by definition of a limit of a sequence.

Xj, € (Xeo — €, X0 + €)

If we choose a small € > 0 s.t. x,, + € < a, this contradicts the statement that

x;j € [a,b]. Therefore, x., € [a, b]. ]

And so, we know that x,, € [a, b]. Since we are given that f is continuous within [a, b],
then it is continuous at x,, and by definition of continuity we have f(xjn) - f(x»). But

f(x4) is supposed to be a real number, and therefore this contradicts that f(x,,) - +oo.

Therefore, f is bounded. ]
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Proposition: exp(x) is a bijection from R to (0, +)
Proof:
Suppose x" > x,thenx' = x + h, h > 0.

Therefore exp(x’) _ exp(x) exp(h)
] eXp(x) - eXp(x)

= exp(h) > 1 because h > 0.

So this implies that exp(x') > exp(x). Thus, exp is strictly increasing and therefore, exp
is injective, meaning that exp(x) = y where y cannot have more than one solution. We

now need to show that exp(x) is surjective.

Claim: exp is surjective on the interval (0, +0). This means that Vy > 0, there is at least
one solution for x for which exp(x) equals to a particular value y. (We use the

intermediate value theorem)

Proof of Claim: u\‘
e

(O ema; O
&) <‘oew\e|:|avp a0e 2

1
exp(x) = m S (0,1)

Therefore, because we know lirln exp(x) = +oo, then3h € Rs.t. Vx > h,we have
X—>4+ 00

exp(h) =y = exp(x) > y. In particular, exp(h + 1) > y.

We also know that since exp(x) = — 0 as x - —oo. Therefore, 3h € Rs.t.

exp(-x)

Vx < h, we have exp(h) <y = exp(x) < y.In particular, exp(h — 1) <.
By the intermediate value theorem,
dx € [h — 1, h + 1] s.t. exp(x) = y (surjection)

Therefore, exp: R — (0, +00) is a bijection. [
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4) fx) =x,

(c + h)Y — V7

f'lc) = lim

h
1Z C.rhl7r _ C.17
o G
h—0 h
¢ 4+ 17c'°h 4+ h? (127)615 e—ct
= lim
h—0 h
17c'®h
= lim = 17c1®
h—0 h

Therefore, f'(x) = 17x1°

5) f(x)=% , x#0

1 1
' _ .. c+h
F©) = im
(c—c—h)
c(c+h)

Therefore, f'(x) = — =

x2

In general, (x™) = nx"™"! (to be proved later).

6) F(x) = Ixl = {7229

fle+h)—f(c) _ |l _ { 1 ,h>0
——=

n ~ |-1,h<o0

Let ¢ = 0. Then

Then there is no limit as h — 0 so |x| is not differentiable at x = 0.
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We know that e* > 1 + x and that e* =i<i,x< 1, so:

e~ T

1
1+x<e*< , —1<x<1
1—x

Now how do we find the derivative of e* at x = 0?

Theorem: Suppose p(x) and q(x) are differentiable at x = ¢, and

p(c) =q(c) =1L
p'(c)=q'(c)=m

Assume that:
p(x) < f(x) < qx)
Holds in a neighbourhood of c. Then f is differentiable at c and f'(c) = m.

This is known as the Sandwich Theorem for derivatives. Sa\e .

N
Proof: \,\e\l\l -‘( Om ?) O“ 8A
e

Ry R
Wehave L = p(c) < f(c) < q(c) = L,so f(c) = L. Therefore,

p(c+h)—L<f(c+h)—f(c)<qlc+h)—L
p(c+h)—p(c) < f(c+h)—f(c) <q(c+h)—q(c)

Suppose h > 0, then:

ple+h) —p(©) _fle+h)—f(©) _alc+h) —a()
h - h - h

As lim 27O _ iy = iy 4O

=q'(c) =m.So lim
h—0% h h-0* h h—-0t

sandwich theorem for limits.

fle+h)—f(c)
h

= myviathe
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Theorems for Differentiable Functions

Theorem: Suppose a < b,and f: [a, b] = R, f is continuous on [a, b] and differentiable on
(a, b). Assume also that f(b) = f(a), then:

dc € (a,b)st. f'(c)=0

This is known as Rolle’s Theorem.

Proof:
f is continuous on [a,b] = f attains its maximal and minimal values

= 3 a global maximum x,,, and a global minimum x,;, .

Case 1: CO ‘ UK
f (max) = f (Xmin) \e *

Then f(x) is constant and f' ﬁ‘ MQ {11%&6 (a,b).
Case 2: \e\N
eV
(xmin) < f(xmax)
Then at least one of the numbers f (xax) OF f (Xmin) is different from f(a) = f(b).

Thus, Xpmax OF Xmin are inside (a, b), so this is a local extremum, so f'(x.x) = 0 or

f’(xmin) = 0. [ |
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