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Chapter 1: The Real Numbers ℝ 

ℕ ⊂ ℤ ⊂ ℚ ⊂ ℝ ⊂ ℂ 

 

Natural Numbers ℕ 

ℕ ≔ { 1, 2, 3, 4, … }      

 

For Addition: 

 𝑛 , 𝑚 ∈  ℕ ↝   𝑚 + 𝑛 ∈  ℕ 

For Multiplication:  

 𝑛 , 𝑚 ∈  ℕ ↝ 𝑚𝑛 ∈  ℕ 

For Ordering: 

 ∀𝑚, 𝑛 ∈ ℕ  we must have that  𝑚 > 𝑛  or  𝑚 < 𝑛  or  𝑚 = 𝑛 

 

There are several properties of natural numbers (laws that must always be followed): 

1. Commutative Law: 

i. 𝑚 + 𝑛 = 𝑛 + 𝑚  

ii. 𝑚𝑛 = 𝑛𝑚 

2. Associative Law:  

i. (𝑚 + 𝑛) + 𝑝 = 𝑚 + (𝑛 + 𝑝) 

ii. (𝑚𝑛)𝑝 = 𝑚(𝑛𝑝) 

3. Distributive Law: 

i. (𝑚 + 𝑛)𝑝 = 𝑚𝑝 + 𝑛𝑝 

4. Ordering: 

i. 𝑚 > 𝑛,     𝑛 > 𝑝,    then    𝑚 > 𝑝 

ii. 𝑚 > 𝑛 ⇒ 𝑚 + 𝑝 > 𝑛 + 𝑝 

iii. 𝑚 > 𝑛,    𝑝 ∈ ℕ ⇒ 𝑚𝑝 > 𝑛𝑝 

 

There are some limitations to natural numbers. 

 

Problem: Solving Equations 

If 𝑥 + 𝑚 = 𝑛,  then we know that 𝑥 = 𝑛 − 𝑚. We look into the problem, what if 𝑚 ≥ 𝑛? 

Then 𝑥 is not a natural number. Therefore, we proceed to introduce integers. 

 

 

Remark: 0 ∉  ℕ 

Remark: “↝” 

means “leads to” 

Remark: Note that 𝑝 ∈  ℕ 

must be emphasized here. 
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Then now we need to prove that 𝑃𝑘+1 is also true: 𝑝𝑘+1
2 − 2𝑞𝑘+1

2 = ±1 

𝐿𝐻𝑆 = (𝑝𝑘 + 2𝑞𝑘)2 − 2(𝑝𝑘 + 𝑞𝑘)2 

= 𝑝𝑘
2 + 4𝑝𝑘𝑞𝑘 + 4𝑞𝑘

2 − 2𝑝𝑘
2 − 4𝑝𝑘𝑞𝑘 − 2𝑞𝑘

2 

= −𝑝𝑘
2 + 2𝑞𝑘

2 

= −(𝑝𝑘
2 − 2𝑞𝑘

2) 

= ∓1 

= 𝑅𝐻𝑆 

Also, we have 𝑞𝑘+1 = 𝑝𝑘 + 𝑞𝑘 ≥ 𝑘 + 1. And so, with our induction steps completed, we 

can safely conclude that 𝑃𝑘 ⇒ 𝑃𝑘+1, and thus ∀𝑛 ∈ ℕ, we have |
𝑝𝑛

𝑞𝑛
− √2| <

1

𝑞𝑛
2 <

1

𝑛2 , which 

is very small. 

- Attempt Homework 1 

Axioms for the Set of Real Numbers 

Definition:  Assume that 𝑋 is a set where two binary operations are addition and 

multiplication. Where 𝑋 = ℝ and the two operations are the usual ones, 

then we say that 𝑋 is a field if the following axioms are satisfied: 

1) The axioms of arithmetic 

2) The axioms of ordering 

3) The completeness axiom 

Axioms of Arithmetic: 

A1: (𝑎 + 𝑏) + 𝑐 = 𝑎 + (𝑏 + 𝑐) 

A2: 𝑎 + 𝑏 = 𝑏 + 𝑎 

A3: ∃0 ∈ 𝑋   s.t.  𝑥 + 0 = 0 + 𝑥 = 𝑥     ∀𝑥 ∈ 𝑋 

A4: ∀𝑥 ∈ 𝑋    ∃𝑦 ∈ 𝑋  s.t.  𝑥 + 𝑦 = 0    (i.e. 𝑦 = −𝑥) 

A5: (𝑎. 𝑏)𝑐 = 𝑎(𝑏. 𝑐) 

A6: 𝑎. 𝑏 = 𝑏. 𝑎 

A7: ∃1 ∈ 𝑋  s.t.   1. 𝑥 = 𝑥. 1 = 𝑥    ∀𝑥 ∈ 𝑋 

A8: ∀𝑥 ∈ 𝑋,    𝑥 ≠ 0,   ∃𝑦 ∈ 𝑋  s.t.  𝑥𝑦 = 1    (i.e 𝑦 = 𝑥−1) 

A9: 𝑥. (𝑦 + 𝑧) = 𝑥. 𝑦 + 𝑥. 𝑧 

The axioms A1 – A4 mean that 𝑋 is a commutative group w.r.t. addition. 0 is called the 

additive identity. The axioms A5 – A8  mean that 𝑋\{0} is a commutative group w.r.t 

multiplication. 1 is called the multiplicative identity. 

These axioms hold for ∀𝑎, 𝑏, 𝑐 ∈ 𝑋 
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Example:  𝑥𝑛 =
1

𝑛
 .  Prove that 𝑥𝑛 → 0. 

Proof: 

Given 𝜖 > 0, we need to find 𝑁 ∈ ℝ  s.t.  𝑛 > 𝑁 ⇒ |𝑥𝑛 − 𝑙| < 𝜖 

∴ |
1

𝑛
− 0| < 𝜖 

⇒ 𝑛 >
1

𝜖
 

As such, we let 𝑁 =
1

𝜖
 , and so for any 𝑛 > 𝑁 we have that |𝑥𝑛 − 0| < 𝜖. So from the 

definition of a limit we have that 𝑥𝑛 → 0.       ∎ 

 

 

 

 

Example: Let us prove that 𝑥𝑛 =
1

𝑛
↛ 1. 

Proof: 

𝑥𝑛 does not converge to 𝑙 means that the definition of the limit where 𝑥𝑛 → 1 cannot be 

satisfied. Namely, negating the definition we get: 

∃𝜖 > 0  s.t.  ∀𝑁 ∈ ℝ, ∃𝑛 > 𝑁 ⇒ |𝑥𝑛 − 𝑙| ≥ 𝜖 

And so we begin with the same method, we let 𝑙 = 1: 

|
1

𝑛
− 1| ≥ 𝜖 

|
1 − 𝑛

𝑛
| ≥ 𝜖 

Remark: Any number 𝑁 larger than 
1

𝜖
 would also be valid as the chosen 𝑁 

is the bare minimum for the requirement above. Therefore, we can also 

choose 𝑁 = 1 + [
1

𝜖
] ∈ ℕ. Therefore, 𝑁 can be a natural number, though it 

is not necessary.   
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Now we need to consider two cases: 

1. 
3

𝜖
− 1 < 0 , then 𝑛2 >

3

𝜖
− 1 is always satisfied. As such, we can take 𝑁 to be any 

number, and the definition of a limit will hold. 

2. 
3

𝜖
− 1 > 0 , then for 𝑛2 >

3

𝜖
− 1 ⇔ 𝑛 > √

3

𝜖
− 1 . And so we just need to take 𝑁 =

√
3

𝜖
− 1. 

Overall, we can take = {

ℝ            ,
3

𝜖
− 1 < 0

√
3

𝜖
− 1     ,

3

𝜖
− 1 ≥ 0

 , and this will satisfy the definition of a limit, 

and we have proof that 
2𝑛2−1

𝑛2+1
→ 2 .      ∎ 

 

Algebra of Limits 

Now we have already shown how to prove a sequence converges to a claimed limit. But 

how do we identify that limit? (what to substitute for 𝑙)? Consider the previous example, 

𝑥𝑛 =
2𝑛2−1

𝑛2+1
.  The limit is obtained as 𝑛 → ∞ if 〈𝑥𝑛〉 converges. Therefore, to compute the 𝑙 

we can divide each term by the dominant term which is 𝑛2: 𝑥𝑛 =
2−

1

𝑛2

1+
1

𝑛2

 and we have 
1

𝑛2 → 0 

as 𝑛 → ∞, and so 𝑥𝑛 → 2 by what we call the algebra of limits.  

When computing limits, it is useful to identify null 

sequences, which are sequences which tend to 0 

as 𝑛 → ∞. There are 3 forms of expressions a 

dominant term can take, namely: {𝑛𝑝 , 𝑎𝑛  , 𝑛!} in 

increasing order of dominance. Note that 𝑝 > 0 

and |𝑎| > 1. To compute complicated limits we 

are usually required to identify to dominant term 

and divide all terms by it. This will procure some 

null sequences which we can use, along with the algebra of limits, to compute the overall 

limit of a sequence. 

Examples of null sequences: 

1. (
1

𝑛𝑝) , for 𝑝 > 0 

2. (𝑐𝑛), for |𝑐| < 1 
3. (𝑛𝑝𝑐𝑛), for 𝑝 > 0 and |𝑐| < 1 

4. (
𝑐𝑛

𝑛!
) , for 𝑐 ∈ ℝ 

5. (
𝑛𝑝

𝑛!
) , for 𝑝 > 0 

Notice the null sequences are any 
term divided by the dominant term. 
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Theorem: Let 〈𝑥𝑛〉 , 〈𝑦𝑛〉 and 〈𝑧𝑛〉 be three sequences  s.t. we have 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 and if 

𝑥𝑛 → 𝑙 , 𝑧𝑛 → 𝑙  then 𝑦𝑛 → 𝑙 . This is known as the sandwich theorem. 

Proof: 

Given 𝜖 > 0  , ∃𝑁1 ∈ ℝ  s.t.  𝑛 > 𝑁1 ⇒ |𝑥𝑛 − 𝑙| < 𝜖. This means that: 

⇔ −𝜖 < 𝑥𝑛 − 𝑙 < 𝜖 

⇔ 𝑙 − 𝜖 < 𝑥𝑛 < 𝑙 + 𝜖 

Similarly, ∃𝑁2 ∈ ℝ  s.t.  𝑛 > 𝑁2 ⇒ |𝑧𝑛 − 𝑙| < 𝜖. Again this means that: 

⇔ 𝑙 − 𝜖 < 𝑧𝑛 < 𝑙 + 𝜖 

Combining the two, we take 𝑁 = max{𝑁1, 𝑁2} , and so for 𝑛 > 𝑁 we have: 

𝑙 − 𝜖 < 𝑥𝑛 ≤ 𝑦𝑛 ≤ 𝑧𝑛 < 𝑙 + 𝜖 

⇒ 𝑙 − 𝜖 < 𝑦𝑛 < 𝑙 + 𝜖 

⇒ |𝑦𝑛 − 𝑙| < 𝜖 

And so by definition of limits, we have 𝑦𝑛 → 𝑙.     ∎ 

 

Example: Consider 𝑥𝑛 =
(−1)𝑛

𝑛2 = {−1,
1

4
, −

1

9
,

1

16
, … } 

Note that we cannot use the algebra of limits here without thinking. This is because (−1)𝑛 

does not converge. This will be proven later on. However, using the sandwich theorem we 

can show that 𝑥𝑛 converges. 

|
(−1)𝑛

𝑛2
| =

1

𝑛2
 

−
1

𝑛2
≤

(−1)𝑛

𝑛2
≤

1

𝑛2
 

However since 
1

𝑛2
=

1

𝑛
×

1

𝑛
 , we have that 

1

𝑛2
→ 0 because 

1

𝑛
→ 0. Using the same reasoning, 

we have −
1

𝑛2 → 0 also. By the sandwich theorem, 
(−1)𝑛

𝑛2 → 0 as well. 
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Series Tests 

Here we will introduce tests which allow us to determine whether a series converges, 

without the need to compute partial sums. 

Example: ∑
2𝑛

3𝑛+17
∞
𝑛=1 . We know that 

2𝑛

3𝑛+17
<

2𝑛

3𝑛 = (
2

3
)

𝑛

 and ∑ (
2

3
)

𝑛
∞
𝑛=1  converges 

(geometric series), and so ∑
2𝑛

3𝑛+17
∞
𝑛=1  should converge. 

 

Theorem: If 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 ∀𝑛 ∈ ℕ and ∑𝑏𝑛 converges, then ∑𝑎𝑛 also converges with ∑𝑎𝑛 ≤

∑𝑏𝑛. 

Corollary: If 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 ∀𝑛 ∈ ℕ and ∑𝑎𝑛 diverges, then ∑𝑏𝑛 also diverges. 

This is known as the comparison test. 

Proof of theorem: 

Denote the partial sums: 

𝐴𝑁 = ∑ 𝑎𝑛

𝑁

𝑛=1

 

𝐵𝑁 = ∑ 𝑏𝑛

𝑁

𝑛=1

 

Given that 0 ≤ 𝑎𝑛 ≤ 𝑏𝑛 , we know that 〈𝐴𝑁〉 and 〈𝐵𝑁〉 are increasing sequences. We know 

that 〈𝐵𝑁〉 converges to sup 𝐵𝑁 (due to its increasing property). Therefore: 

𝐵∞ = lim
𝑁→∞

𝐵𝑁 = sup 𝐵𝑁 = ∑ 𝑏𝑛

∞

𝑛=1

 

But 𝐴𝑁 ≤ 𝐵𝑁 since 𝑎𝑛 ≤ 𝑏𝑛 , ∀𝑛. Thus, 𝐴𝑁 ≤ 𝐵𝑁 ≤ sup 𝐵𝑁 = 𝐵∞. So the sequence of 

partial sums 〈𝐴𝑁〉 is increasing and bounded above, and therefore it must be convergent. 

Thus, ∑ 𝑎𝑛
∞
𝑛=1  converges. The limit of 〈𝐴𝑁〉 is sup 𝐴𝑁 ≤ sup 𝐵𝑁.   ∎ 

An important part of this proof is 

that since 𝑎𝑛 ≥ 0 ∀𝑛, then the 

sequence of partial sums 𝐴𝑁 is 

increasing (𝑆𝑁+1 − 𝑆𝑁 = 𝑎𝑛+1 ≥ 0). 
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Proof (ii): 

Assume lim
𝑛→∞

|𝑎𝑛+1|

|𝑎𝑛|
= 𝑙 > 1, then we choose 𝜖 > 0 s.t. 𝑙 − 𝜖 > 1. Then ∃𝑁 ∈ ℕ s.t. ∀𝑛 >

𝑁 ⇒ |
|𝑎𝑛+1|

|𝑎𝑛|
− 𝑙| < 𝜖, by definition of a limit. 

|
|𝑎𝑛+1|

|𝑎𝑛|
− 𝑙| < 𝜖 ⇔ 𝑙 − 𝜖 <

|𝑎𝑛+1|

|𝑎𝑛|
< 𝑙 + 𝜖 

⇒ |𝑎𝑛+1| > |𝑎𝑛|(𝑙 − 𝜖) 

Similar to the proof in (i) we consider 𝑘 ∈ ℕ s.t. 𝑛 ≥ 𝑁 + 𝑘. 

|𝑎𝑁+𝑘| ≥ |𝑎𝑁+𝑘−1|(𝑙 − 𝜖) ≥ |𝑎𝑁+𝑘−2|(𝑙 − 𝜖)2 … ≥ |𝑎𝑁+1|(𝑙 − 𝜖)𝑘−1 

As |𝑎𝑁+1| > 0 and 𝑙 − 𝜖 > 1, then as 𝑘 → ∞ we have (𝑙 − 𝜖)𝑘−1 → ∞, and as such 

|𝑎𝑁+1|(𝑙 − 𝜖)𝑘−1 → +∞. But we have: 

|𝑎𝑁+1|(𝑙 − 𝜖)𝑘−1 ≤ |𝑎𝑛+𝑘| 

Therefore we have |𝑎𝑁+𝑘| → +∞ as 𝑘 → ∞.  

We substitute in 𝑛 = 𝑁 + 𝑘 by definition, and so we obtain ∀𝑛 > 𝑁, |𝑎𝑛| → +∞ as 𝑛 → ∞. 

As such, 𝑎𝑛 ↛ 0 so ∑𝑎𝑛 diverges.       ∎ 

 

Theorem: Suppose √|𝑎𝑛|𝑛 → 𝑙 ≥ 0 as 𝑛 → ∞, then: 

i. 𝑙 < 1 ⇒ ∑𝑎𝑛 is absolutely convergent 

ii. 𝑙 > 1 ⇒ ∑𝑎𝑛 is divergent and |𝑎𝑛| → +∞ 

iii. 𝑙 = 1 remains inconclusive 

This is known as the Root Test.  

The method of proof follows a similar concept to the ratio test. 

However, what we are more interested in is the application of these tests. For instance, 

let us look at power series. 
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Example: 𝑓(𝑥) = 1 + 𝑥2 cos (
1

𝑥
) 

Claim: lim
𝑥→0

𝑓(𝑥) = 1 

Proof: 

 Given 𝜖 > 0, we need to find 𝛿 > 0 s.t. |𝑥 − 0| < 𝛿 ⇒ |𝑓(𝑥) − 1| < 𝜖.  

|𝑥| < 𝛿 ⇒ |𝑥2 cos (
1

𝑥
) − 1| < 𝜖 

Notice that ∀𝑥, |𝑥2 cos (
1

𝑥
)| ≤ 𝑥2, so it is enough to achieve that 𝑥2 < 𝜖. Therefore, 

take 𝛿 = √𝜖, so we have: 

|𝑥| < 𝛿 ⇒ |𝑥2| < 𝛿2 = 𝜖 

|𝑓(𝑥) − 1| = |𝑥2 cos (
1

𝑥
) − 𝑙| ≤ 𝑥2 < 𝜖 

And therefore, when 𝑥 → 0, 𝑓(𝑥) → 1. However, note that 𝑓(𝑥) is not defined at 0, 

though we need not consider this.      ∎ 

Notice as we tackle proofs as such, we need to pick 𝛿 skillfully such that we have the 

original bounding condition implying that |𝑓(𝑥) − 𝑙| < 𝜖. However, finding such 𝛿 is not 

always easy. Let us take a look at other examples, and their respective methods of proof. 

 

Example: Consider the function 𝑓(𝑥) = {
2𝑥         ,   𝑥 < 1
1           ,   𝑥 = 1
4 − 𝑥   ,   𝑥 > 1

 

Claim: lim
𝑥→1−

𝑓(𝑥) = 2 

Proof: 

 Given 𝜖 > 0, we need to find 𝛿 > 0 s.t. 𝑥 ∈ (1 − 𝛿, 1) ⇒ |𝑓(𝑥) − 2| < 𝜖. We have: 

𝑥 < 1  , |𝑥 − 1| < 𝛿 ⇒ |2𝑥 − 2| 

= 2|𝑥 − 1| < 𝜖 
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This is as 𝑥𝑛 − 𝑐 → 0, we have exp(𝑥𝑛 − 𝑐) → 1 because we have proved 

that exp(𝑥) is continuous at 𝑥 = 0 in step 1. 

As such, exp(𝑥𝑛) → exp(𝑐) as 𝑥𝑛 → 𝑐, and so by definition of continuity, 

exp(𝑥) is continuous on any 𝑐 ∈ ℝ.     ∎ 

 

Theorem: Suppose 𝑔 is continuous at 𝑐 ∈ ℝ, and if 𝑓 is continuous at 𝑔(𝑐), then 𝑓∘𝑔 is 

continuous at 𝑐. (Recall that 𝑓∘𝑔 = 𝑓(𝑔(𝑥))) 

Proof: 

Suppose 𝑥𝑛 → 𝑐, then 𝑔(𝑥𝑛) → 𝑔(𝑐) since 𝑔 is continuous. Now since: 

𝑓 ∘ 𝑔(𝑥𝑛) = 𝑓(𝑔(𝑥𝑛)) → 𝑓(𝑔(𝑐)) = 𝑓 ∘ 𝑔(𝑐) 

⇒ 𝑓 ∘ 𝑔(𝑥) is continuous at 𝑐.      ∎ 

Example: √exp(𝑥) + 17 is continuous. 

 

Properties of Continuous Functions 

Suppose 𝑎, 𝑏 ∈ ℝ  and 𝑓: [𝑎, 𝑏] → ℝ is continuous. If we want to study the image (or the 

range) of the function 𝑓, then we must look at the collection of all the values 𝑓 will take.  

𝑓([𝑎, 𝑏]) = {𝑓(𝑥)| 𝑥 ∈ [𝑎, 𝑏]} 

Theorem 1: If 𝑓: [𝑎, 𝑏] → ℝ is continuous, then 𝑓 is bounded. This means that: 

1. ∃𝑀 = sup 𝑓([𝑎, 𝑏]) 

2. ∃𝑚 = inf 𝑓([𝑎, 𝑏]) 

Theorem 2: Every continuous function 𝑓: [𝑎, 𝑏] → ℝ attains a maximum and minimum: 

∃𝑥max , 𝑥min ∈ [𝑎, 𝑏] 𝑠. 𝑡. 𝑀 = 𝑓(𝑥max) and 𝑚 = 𝑓(𝑥min)  

And 𝑓(𝑥min) = 𝑚 ≤ 𝑓(𝑥) ≤ 𝑀 = 𝑓(𝑥max) ∀𝑥 ∈ [𝑎, 𝑏].  
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Notice that we are dealing with a closed interval [𝑎, 𝑏] here. 𝑓: [𝑎, 𝑏] → ℝ is continuous if 

i. At any point 𝑐 ∈ (𝑎, 𝑏) we have lim
𝑥→𝑐

𝑓(𝑥) = 𝑓(𝑐) 

ii. lim
𝑥→𝑎+

𝑓(𝑥) = 𝑓(𝑎) and lim
𝑥→𝑏−

𝑓(𝑥) = 𝑓(𝑏) 

Proof of Theorem 1: 

Assume 𝑓 is not bounded, say 𝑓 is unbounded above. Then this means that ∄𝑀 ∈ ℝ s.t. 

𝑓(𝑥) ≤ 𝑀 ∀𝑥 ∈ [𝑎, 𝑏] by using the definition of an upper bound. In particular, ∀𝑛 ∈ ℕ,  

∃𝑥 = 𝑥𝑛 ∈ [𝑎, 𝑏] s.t. 𝑓(𝑥𝑛) > 𝑀. 

Therefore, based on our assumption that 𝑓 is unbounded, as 𝑛 → +∞,  then 𝑓(𝑥𝑛) → +∞. 

Since 𝑥 ∈ [𝑎, 𝑏], then we know 〈𝑥𝑛〉 is bounded, we can use the bolzano-weiestrass 

theorem and find a convergent subsequence. So let this subsequence be 〈𝑥𝑗𝑛
〉: 

𝑥𝑗𝑛
→ 𝑥∞  ,   𝑥∞ = lim(𝑥𝑗𝑛

) 

Claim: 𝑥∞ ∈ [𝑎, 𝑏] 

Proof of claim: 

Suppose that this is not true. Then either 𝑥∞ < 𝑎 or 𝑥∞ > 𝑏. That means 𝑥∞ lies 

outside the interval [𝑎, 𝑏].  

Now suppose 𝑥∞ < 𝑎, then because 𝑥𝑗𝑛
→ 𝑥∞ , ∀𝜖 > 0, for sufficiently large 𝑛, we 

have 𝑥𝑗𝑛
 lies in the 𝜖-neighbourhood of  𝑥∞ by definition of a limit of a sequence. 

𝑥𝑗𝑛
∈ (𝑥∞ − 𝜖, 𝑥∞ + 𝜖) 

If we choose a small 𝜖 > 0 s.t. 𝑥∞ + 𝜖 < 𝑎, this contradicts the statement that     

𝑥𝑗𝑛
∈ [𝑎, 𝑏]. Therefore, 𝑥∞ ∈ [𝑎, 𝑏].     ∎ 

And so, we know that 𝑥∞ ∈ [𝑎, 𝑏]. Since we are given that 𝑓 is continuous within [𝑎, 𝑏], 

then it is continuous at 𝑥∞, and by definition of continuity we have 𝑓(𝑥𝑗𝑛
) → 𝑓(𝑥∞). But 

𝑓(𝑥∞) is supposed to be a real number, and therefore this contradicts that 𝑓(𝑥𝑛) → +∞. 

Therefore, 𝑓 is bounded.        ∎ 
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Proposition: exp(𝑥) is a bijection from ℝ to (0, +∞) 

Proof: 

Suppose 𝑥′ > 𝑥, then 𝑥′ = 𝑥 + ℎ, ℎ > 0. 

Therefore, 
exp(𝑥′)

exp(𝑥)
=

exp(𝑥) exp(ℎ)

exp(𝑥)
= exp(ℎ) > 1 because ℎ > 0. 

So this implies that exp(𝑥′) > exp(𝑥). Thus, exp is strictly increasing and therefore, exp 

is injective, meaning that exp(𝑥) = 𝑦 where 𝑦 cannot have more than one solution. We 

now need to show that exp(𝑥) is surjective. 

Claim: exp is surjective on the interval (0, +∞). This means that ∀𝑦 > 0, there is at least 

one solution for 𝑥 for which exp(𝑥) equals to a particular value 𝑦. (We use the 

intermediate value theorem) 

Proof of Claim: 

Since exp(𝑥) ≥ 1 + 𝑥,  we have for 𝑥 > 0: 

exp(𝑥) > 1 

exp(0) = 1 

And for 𝑥 < 0 we have: 

exp(𝑥) =
1

exp(−𝑥)
∈ (0,1) 

Therefore, because we know lim
𝑥→+∞

exp(𝑥) = +∞, then ∃ℎ ∈ ℝ s.t. ∀𝑥 > ℎ , we have 

exp(ℎ) ≥ 𝑦 ⇒ exp(𝑥) > 𝑦. In particular, exp(ℎ + 1) > 𝑦. 

We also know that since exp(𝑥) =
1

exp(−𝑥)
→ 0 as 𝑥 → −∞. Therefore, ∃ℎ ∈ ℝ s.t.         

∀𝑥 < ℎ, we have exp(ℎ) ≤ 𝑦 ⇒ exp(𝑥) < 𝑦. In particular, exp(ℎ − 1) < 𝑦.  

By the intermediate value theorem, 

∃𝑥 ∈ [ℎ − 1, ℎ + 1] s.t. exp(𝑥) = 𝑦 (surjection) 

Therefore, exp: ℝ → (0, +∞) is a bijection.      ∎ 
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4) 𝑓(𝑥) = 𝑥17, 

𝑓′(𝑐) = lim
ℎ→0

(𝑐 + ℎ)17 − 𝑐17

ℎ
 

= lim
ℎ→0

(∑ 𝑐𝑟ℎ17𝑟17
𝑟=0 ) − 𝑐17

ℎ
 

= lim
ℎ→0

𝑐17 + 17𝑐16ℎ + ℎ2(17
2

)𝑐15 … − 𝑐17

ℎ
 

= lim
ℎ→0

17𝑐16ℎ

ℎ
= 17𝑐16 

 Therefore, 𝑓′(𝑥) = 17𝑥16 

5) 𝑓(𝑥) =
1

𝑥
   ,   𝑥 ≠ 0 

𝑓′(𝑐) = lim
ℎ→0

1
𝑐 + ℎ

−
1
𝑐

ℎ
 

= lim
ℎ→0

(
𝑐 − 𝑐 − ℎ
𝑐(𝑐 + ℎ)

)

ℎ
 

= lim
ℎ→0

−1

𝑐(𝑐 + ℎ)
 

= −
1

𝑐2
 

 Therefore, 𝑓′(𝑥) = −
1

𝑥2 

In general, (𝑥𝑛) = 𝑛𝑥𝑛−1 (to be proved later). 

6) 𝑓(𝑥) = |𝑥| = { 𝑥
−𝑥

,
,

𝑥>0
𝑥<0

 

Let 𝑐 = 0. Then 
𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
=

|ℎ|

ℎ
= { 1

−1
,
,
ℎ>0
ℎ<0

 

Then there is no limit as ℎ → 0 so |𝑥| is not differentiable at 𝑥 = 0. 
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We know that 𝑒𝑥 ≥ 1 + 𝑥 and that 𝑒𝑥 =
1

𝑒−𝑥 ≤
1

1−𝑥
 , 𝑥 < 1 , so: 

1 + 𝑥 ≤ 𝑒𝑥 ≤
1

1 − 𝑥
       ,      − 1 < 𝑥 < 1 

Now how do we find the derivative of 𝑒𝑥 at 𝑥 = 0? 

 

 

Theorem: Suppose 𝑝(𝑥) and 𝑞(𝑥) are differentiable at 𝑥 = 𝑐, and  

𝑝(𝑐) = 𝑞(𝑐) = 𝐿 

𝑝′(𝑐) = 𝑞′(𝑐) = 𝑚 

Assume that: 

𝑝(𝑥) ≤ 𝑓(𝑥) ≤ 𝑞(𝑥) 

Holds in a neighbourhood of 𝑐. Then 𝑓 is differentiable at 𝑐 and 𝑓′(𝑐) = 𝑚. 

This is known as the Sandwich Theorem for derivatives. 

 

Proof: 

We have 𝐿 = 𝑝(𝑐) ≤ 𝑓(𝑐) ≤ 𝑞(𝑐) = 𝐿, so 𝑓(𝑐) = 𝐿. Therefore, 

𝑝(𝑐 + ℎ) − 𝐿 ≤ 𝑓(𝑐 + ℎ) − 𝑓(𝑐) ≤ 𝑞(𝑐 + ℎ) − 𝐿 

𝑝(𝑐 + ℎ) − 𝑝(𝑐) ≤ 𝑓(𝑐 + ℎ) − 𝑓(𝑐) ≤ 𝑞(𝑐 + ℎ) − 𝑞(𝑐) 

Suppose ℎ > 0, then: 

𝑝(𝑐 + ℎ) − 𝑝(𝑐)

ℎ
≤

𝑓(𝑐 + ℎ) − 𝑓(𝑐)

ℎ
≤

𝑞(𝑐 + ℎ) − 𝑞(𝑐)

ℎ
 

As lim
ℎ→0+

𝑝(𝑐+ℎ)−𝑝(𝑐)

ℎ
= 𝑝′(𝑐) = lim

ℎ→0+

𝑞(𝑐+ℎ)+𝑞(𝑐)

ℎ
= 𝑞′(𝑐) = 𝑚. So lim

ℎ→0+

𝑓(𝑐+ℎ)−𝑓(𝑐)

ℎ
= 𝑚 via the 

sandwich theorem for limits. 
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Theorems for Differentiable Functions 

Theorem: Suppose 𝑎 < 𝑏, and 𝑓: [𝑎, 𝑏] → ℝ, 𝑓 is continuous on [𝑎, 𝑏] and differentiable on 

(𝑎, 𝑏). Assume also that 𝑓(𝑏) = 𝑓(𝑎), then: 

∃𝑐 ∈ (𝑎, 𝑏) s.t. 𝑓′(𝑐) = 0 

This is known as Rolle’s Theorem.  

 

Proof: 

𝑓 is continuous on [𝑎, 𝑏] ⇒ 𝑓 attains its maximal and minimal values 

⇒ ∃ a global maximum 𝑥max and a global minimum 𝑥min . 

Case 1: 

 𝑓(𝑥max) = 𝑓(𝑥min) 

 Then 𝑓(𝑥) is constant and 𝑓′(𝑥) = 0 ∀𝑥. Take arbitrary 𝑐 ∈ (𝑎, 𝑏). 

Case 2: 

 𝑓(𝑥min) < 𝑓(𝑥max) 

 Then at least one of the numbers 𝑓(𝑥max) or 𝑓(𝑥min) is different from 𝑓(𝑎) = 𝑓(𝑏). 

Thus, 𝑥max or 𝑥min are inside (𝑎, 𝑏), so this is a local extremum, so 𝑓′(𝑥max) = 0 or 

𝑓′(𝑥min) = 0.         ∎ 
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