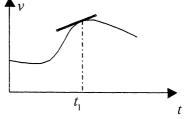
Preview from Notesale.co.uk page 2 of 47

The acceleration of the particle is the rate of change of its velocity and is the vector $a = \frac{dv}{dt}i$. If the velocity is increasing $\frac{dv}{dt}$ is positive and if the velocity is decreasing $\frac{dv}{dt}$ is negative. If |a| is denoted by *a* then $a = \frac{dv}{dt}$ and $v = \int a dt$ Also $a = \frac{dv}{dt} = \frac{d^2x}{dt^2}$ and $\frac{d^2x}{dt^2}$ is sometimes denoted by \ddot{x} .



gradient of graph at $t = t_1$ $=\frac{dv}{dt}$ = acceleration area under graph t = 0 to $t = t_1$ = $\int v dt$ = displacement at $t = t_1$

The area under an acceleration/time graph from t = 0 to $t = t_1$ is

$$\int_{0}^{t_{1}} adt =$$
velocity at $t = t_{1}$

Note

Students should be familiar with the dot notation for differentiating with respective to time. This is not used in all textbooks. Of the textbooks listed S&T 225 and B&C use this notation while the others do not.

WORKED EXAMPLES

Example 1

A body moves along the x-axis with velocity, measured in ms^{-1} , given by

$$v = (3t^2 - 18t + 15)i,$$

where i is the unit vector in the positive direction of the x-axis and t is the time in seconds from the start of the motion.

- At the start of the motion the displacement of the body from the origin is 30 m. Find:
- a) the initial speed of the body;
- b) the values of t for which the body is at rest;
- c) the acceleration of the body when t = 6;
- d) the displacement of the body from O when t = 3.

Solution

- a) $v = 3t^2 18t + 15$. When t = 0, v = 15 ms⁻¹
- b) $v = 3(t^2 6t + 5) = 3(t 1)(t 5) = 0$ when t = 1, 5: body is at rest after 1 second and after 5 seconds from the start
- c) $a = \frac{dv}{dt} = 6t 18$ When t = 6, $a = 36 18 = 18 \text{ ms}^{-1}$

d)
$$x = \int v dt = t^3 - 9t^2 + 15t + c$$
 Now $x = 30$ when $t = 0$ so $c = 30$

 $x = t^3 - 9t^2 + 15t + 30$ When t = 3, x = 27 - 81 + 45 + 30 : displacement from Q

Example 2 A body moves along the *x*-axis from rest at 10 or \emptyset hwith acceler ms^{-2} given by a = (2 - a)where *i* is the unit we second of with acceleration, measured in

seconds from the start of the motion.

- a) Show that its speed increases to a maximum value and then decreases.
- b) Find
 - i) the time till the body is instantaneously at rest again
 - the time before it again passes through its starting point ii)

Solution

a) $\frac{dv}{dt} = a = (2 - \sqrt{t})$

for 0 < t < 4, a > 0 and so v is increasing. When t = 4, v has a stationary value and for t > 4, v is decreasing. At t = 4, v has a maximum value

$$v = \int adt = \int (2 - \sqrt{t})dt = 2t - \frac{2}{3}t^{\frac{3}{2}} + c$$
 when $t = 0, v = 0$ thus $c = 0$

Mathematics Support Materials: Mechanics 1 (AH)

When
$$t = 4$$
, $v_p = 4i + 12j$ so speed $= |v_p| = \sqrt{4^2 + 12^2} = \sqrt{160} = 12.65 \text{ms}^{-1}$
 $\dot{r}_p = 4i + \frac{3t^2}{4}j$ $\Rightarrow a_p = \ddot{r} = \frac{3}{2}t\dot{j}$

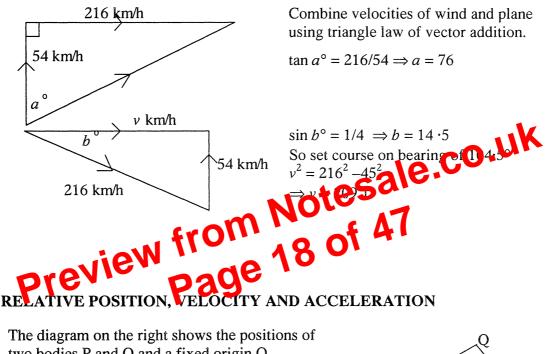
EFFECTS OF WINDS AND CURRENTS

Worked Example

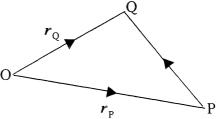
A wind is blowing from the north at 54 km/h. A plane can fly at 216 km/h.

- a) If the pilot steers due east, on what bearing will the plane travel?
- b) What course should the pilot set in order to fly due east? Calculate the actual speed of the plane.

Solution



two bodies P and Q and a fixed origin O. With respect to O, P and Q have instantaneous position vectors r_P and r_Q . The instantaneous position vector of Q relative to P is \overrightarrow{PQ} .



Now
$$\overrightarrow{PQ} = \overrightarrow{PO} + \overrightarrow{OQ}$$
 and

So
$$\overrightarrow{PQ} = r_Q - r_P$$

Mathematics Support Materials: Mechanics 1 (AH)

RESOURCES/EXAMPLES

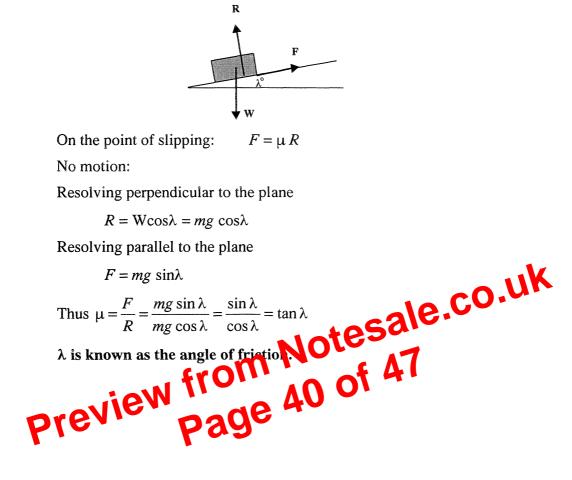
S&T	Chapter 1 (Vectors) Pages 9 –12; Chapter 10 Page 210 Chapter 2 (Distance, Velocity and Acceleration) Pages 21 – 23; Chapter 10 Pages 219 – 229 Chapter 16 (Use of Calculus) Pages 393-399; Ex 16.4, N ^{os} 15 – 20, 33 – 38 Chapter 10 (Resultant Velocity and Relative Velocity) Pages 223 – 247;Ex 10A (omit N° 2) EXs10B-G, 10H(A/B)
RCS	Chapter 4 (Kinematics in one dimension) Pages 59, 60, 64 – 66 (using forces) Chapter 2 (Kinematics) Pages 38, 39: Ex 2J, Page 40, Ex 2K, N ^{os} 1 – 6 Chapter 15 (Relative Motion) Page 269 Ex15A;Pages 286 – 294, Ex 15B, 15C, 15D
TG	Chapter 3 (Vectors and Forces) Pages 29 – 31 (using forces); Chapter 5 (Motion and Vectors) Pages 62 - 66 Ex5.1B; Ex 5.2A N ^{os} 1, 6, 7 Chapter 21 (Relative Motion) Pages 368 – 374;Ex 21.1A N ^o 1 – 10;Ex 21.1B, N ^o 1–5, 7-10 Page 374 Consolidation Ex (A/B) Chapter 7 (Motion with Variable Forces and Acceleration) Pages 95 – 98; Ex 7.1A, N ^{os} 1,2,5,8; Pages 99,100; Ex 7.1B, N ^{os} 1,56(7)316 Page 103;Ex 7.2A, N ^{os} 1,2; Pages 104,105; FA7.2B, N ^{os} 1,5,6
B&C	 Chapter 2 (Jeccul). Components and Kest Itants) Pages 19 – 22; Chep el 13 Pages 420 – 422 Chapter 13 (Resultant Merion: Relative Motion) Pages 420 – 431; Ex 13a; Page 424, Ex 13b N^{os} 1,2; Ex 13c Pages 440 – 444, Ex 13e; Pages 448,449 Ex 13(A/B) Chapter 4 (Velocity and Acceleration) Pages 134,136
OG	Chapter 6 (Vectors,) Page 292, Page 295, questions 6, 18 Chapter 7 (Kinematics of a Particle) Pages 394 – 396 Pages 386-390; Ex 7.2:1, N ^{os} 1,2,3,13,21,22,26 Pages 391,393; Ex 7.2:2, N ^{os} 1 – 6,8,9,10,19,21 Pages 398 - 400, Ex 7.2.3, N ^{os} 2, 4–7, 10–40, 42–52, 53–64

Mathematics Support Materials: Mechanics 1 (AH)

ANGLE OF FRICTION

A block of mass *m* kilograms rests on a plane, which is gradually tilted until the block is on the point of moving down the plane. Suppose the angle of the plane to the horizontal is λ when the block is on the point of slipping and the coefficient of friction between the block and the plane is μ .

Since the block is on the point of moving down the plane, friction is acting up the plane.



Now,
$$\mu = \tan\lambda$$
, so $T = \frac{\mu mg}{\cos\theta + \mu \sin\theta} = \frac{\frac{\sin\lambda}{\cos\lambda}mg}{\cos\theta + \frac{\sin\lambda}{\cos\lambda}\sin\theta} = \frac{\mu mg \sin\lambda}{\cos\theta \cos\lambda + \sin\theta \sin\lambda}$

Thus $T = \frac{\mu mg \sin \lambda}{\cos(\theta - \lambda)}$ and so T has a minimum value of $\mu mg \sin \lambda$ when $\theta = \lambda$

