Example 8:

Solve the Equation $\sqrt{x+4} = 2 + \sqrt{x}$

Steps

Steps	
1: Isolate a radical	$\sqrt{x+4} = 2 + \sqrt{x}$
(have a radical on each side of the equation)	
2: Square both sides of the equation.	$\left(\sqrt{x+4}\right)^2 = \left(2+\sqrt{x}\right)^2$
Write out the binomial twice and multiply	$x + 4 = (2 + \sqrt{x})(2 + \sqrt{x})$
	$x + 4 = 4 + 2\sqrt{x} + 2\sqrt{x} + (\sqrt{x})^2$
	$x + 4 = 4 + 4\sqrt{x} + x$
3: Isolate the second remaining radical	$0 = 4\sqrt{x}$
4: Reduce the coefficients	$0 = \sqrt{x}$
5: Square both sides	$(0)^2 = (\sqrt{x})^2$
6: Solve for the variable	0 = x
7: Verify the answer (check)	$\sqrt{x+4} = 2 + \sqrt{x}$
	$\sqrt{(0)+4}=2+\sqrt{0}$
	$\sqrt{4} = 2 + 0$
	2 = 2
8: Solution set	{0}

Example 9: Solve the Equation $\sqrt{2x+7} = 1 + \sqrt{x+3}$

Steps

J1Eps	
1: Isolate a radical (have a radical on each side of the equation)	$\sqrt{2x+7} = 1 + \sqrt{x+3}$
2: Square both sides of the equation.	$(\sqrt{2x+7})^2 = (1+\sqrt{x+3})^2$
Write out the binomial twice and multiply	$2x + 7 = (1 + \sqrt{x + 3}) (1 + \sqrt{x + 3})$
	$2x + 7 = 1 + \sqrt{x + 3} + \sqrt{x + 3} + (\sqrt{x + 3})^2$
	$2x + 7 = 1 + 2\sqrt{x + 3} + x + 3$
3: Isolate the second remaining radical	$x + 3 = 2\sqrt{x + 3}$
4: Reduce the coefficients by their GCF	GCF = 1, therefore cannot reduce
5: Square both sides 6: Solve for the variable .uk Notesale. Preview from Notesale. Preview page 6 of 6	$(x + 3)^2 = (2\sqrt{x + 3})^2$
	$x^2 + 6x + 9 = 4(x + 3)$
6: Solve for the variable .UK	$x^2 + 6x + 9 = 4x + 12$
Notesalo	$x^2 + 2x - 3 = 0$
view from 6 of 6	(x + 3)(x - 1) = 0
Previo Pago	x + 3 = 0 $x - 1 = 0$
	x = -3 $x = 1$
7: Verify the answer (check)	$\sqrt{2x+7} = 1 + \sqrt{x+3} \qquad \sqrt{2x+7} = 1 + \sqrt{x+3}$
	$ \sqrt{2(-3) + 7} = 1 + \sqrt{-3 + 3} \qquad \sqrt{2(1) + 7} = 1 + \sqrt{1 + 3} $ $ \sqrt{1} = 1 + \sqrt{0} $ $ \sqrt{9} = 1 + \sqrt{4} $
8: Solution set	{-3, 1}

If you wish here is another solving video: Solving double radical equations ex 2