
Fourier Series and PDEs Mike Fuller’s Questions for Prelims

Prove uniqueness (or non-uniqueness) of the Heat equation. [5]

[1] Let T1, T2 be solutions of the IBVP Tt = κTxx for 0 < x < L, t > 0 subject to initial
condition Ti(x, 0) = f(x) on 0 ≤ x ≤ L, and boundary conditions Ti(0, t) = Ti(L, t) = 0 for
t > 0. Consider the difference D := T1 − T2. Then D satisfies

Dt = κDxx, 0 < x < L, t > 0

D(x, 0) = 0, 0 ≤ x ≤ L,

and boundary conditions
D(0, t) = D(L, t) = 0, t > 0.

[2] Let

I(t) =
1

2

∫ L

0

[D(x, t)]2 dx.

Then I(t) ≥ 0 and I(0) = 0. By Leibniz’s rule, the derivative of I,

I ′(t) =

∫ L

0

DDt dx = κ

∫ L

0

DDxx dx = κ

∫ L

0

[
(DDx)x −D2

x

]
dx,

the last equality coming from using the product rule: (DDx)x = DxDx +DDxx.

[1] Now carrying out the integration and using both BCs, we see

I ′(t) = −κ
∫ L

0

D2
x dx ≤ 0,

so I cannot increase.

[1] Hence
0 ≤ I(t) ≤ I(0) = 0 ⇒ I(t) = 0

⇒
∫ L

0

[D(x, t)]2 dx = 0

for every t ≥ 0 and thus W = 0, i.e. T1 = T2 (uniqueness).

Note:

• UNIQUENESS PROOFS always start by considering a difference D between two
solutions T1, T2.
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Fourier Series and PDEs Mike Fuller’s Questions for Prelims

Derive the one-dimensional Wave equation... [6]

Stating your assumptions, derive the wave equation for the small transverse displacements
y(x, t) of an elastic string of constant density ρ, under constant tension T , where c =

√
T/ρ.

We start by assuming that |yx| � 1 and ignoring gravity and air resistance.

[1] A point initially at xi is displaced to r(x, t) = xi + y(x, t)j. The vector t := rx = i + yxj is
a tangent vector to the string. Since

|t| =
√

1 + y2
x = 1 +

1

2
y2
x −

1

8
y4
x + · · · ,

it is approximately a unit tangent from our assumption.

[1] Hence T t is the force exerted by + on − (and the other way round for −T t). The velocity
and acceleration vectors are

v = rt = ytj and a = rtt = yttj.

[1] Consider an interval [a, a+ h]. We have

net force = T t(a+ h, t)− T t(a, t)

momentum =

∫ a+h

a

ρv(x, t) dx.

[2] By using Newton’s Second Law, then Leibniz’ rule and letting h→ 0 (note vt = a),

net force = rate of change of momentum

⇒ T t(a+ h, t)− T t(a, t) =
d

dt

∫ a+h

a

ρv(x, t) dx

⇒ T

(
t(a+ h, t)− t(a, t)

h

)
=

1

h

∫ a+h

a

ρa(x, t) dx

⇒ T tx(a, t) = ρa(a, t).

[1] Substitute for tx and a in terms of y(x, t) to get

Tyxxj = ρyttj⇒ ytt = c2yxx.
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Part II

Multivariable Calculus
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Multivariable Calculus Mike Fuller’s Questions for Prelims

Derive Gauss’ Flux Theorem using Poisson’s equation. [4]

[1] For a scalar gravitational potential φ(r), Poisson’s equation reads

∇2φ(r) = −4πGρ(r).

[1] We want to derive Gauss’ Flux Theorem, which states that for a smooth and bounded
region R, which contains matter of total mass M , we have∫∫

∂R

f · dS = −4πGM.

[1] Apply the Divergence Theorem to the LHS and use the fact that f = ∇φ, since φ is a
potential: ∫∫

∂R

f · dS =

∫∫∫
R

∇ · f dV =

∫∫∫
R

∇2 φ dV

[1] and by Poisson’s equation and the definition of total mass we get

= −4πG

∫∫∫
R

ρ dV

= −4πGM.
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