Fourier Series and PDEs Mike Fuller’s Questions for Prelims

Prove uniqueness (or non-uniqueness) of the Heat equation. [5]

[1] Let T1,T5 be solutions of the IBVP T; = kT, for 0 < x < L,t > 0 subject to initial
condition T;(z,0) = f(x) on 0 < z < L, and boundary conditions T;(0,t) = T;(L,t) = 0 for
t > 0. Consider the difference D := T — T,. Then D satisfies

Di=kD,,, 0<z<L,t>0

D(z,0)=0, 0<z<1L,

and boundary conditions
D(0,t) = D(L,t) =0, t>0.

2] Let
L
I(t) - / (D(x, £)]2 da-
2 Jo
Then I(t) > 0 and 1(0) = 0. By Leibniz’s rule, the derivative of I,

L L L
I'(t) = / DD,dz =k / DD,,dx =k / [(DD,), — D3] dz,
0 0 0

the last equality coming from using the product rule: (DD, ), = D, D, + DD,,.
[1] Now carrying out the integration and using both BCs, we see CO ‘u\k

I'(t) :_K@ 2 e&a\e'
gro™ A of 2L
@a‘g%):@ = 1(1) =0

= /L[D(z, t)]*dz =0

for every ¢t > 0 and thus W =0, i.e. 77 = T, (uniqueness).

so I cannot increase.
\eWN
1] HenceP(e\, \e

Note:

¢ UNIQUENESS PROOFS always start by considering a difference D between two
solutions 17, T5.
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Fourier Series and PDEs Mike Fuller’s Questions for Prelims

Derive the one-dimensional Wave equation... [6]

Stating your assumptions, derive the wave equation for the small transverse displacements
y(x,t) of an elastic string of constant density p, under constant tension 7', where ¢ = /T'/p.

We start by assuming that |y,| < 1 and ignoring gravity and air resistance.

[1] A point initially at xi is displaced to r(z,t) = zi + y(x,t)j. The vector t :=r, =i+ y,] is
a tangent vector to the string. Since

1, 1
b= VIt =14y =yt

8

it is approximately a unit tangent from our assumption.

[1] Hence 7't is the force exerted by + on — (and the other way round for —7't). The velocity
and acceleration vectors are

v=r,=1j) and a=ry=y,j.

[1] Consider an interval [a,a + h]. We have

net force = Tt(a+ h,t) —Tt(a,t)

momentum «O{@a\e
[2] By using Newton’s Secon Lﬁ mbmz ile@'&le g h — 0 (note v; = a),

P ( e\, \e net fo¢ nge of momentum

a+h

= Tt(a+ h,t) — Tt(a,t) = %/ pv(z,t)de
. a+h

T (t(a—l— h,t})L t(a, t)) _ / pa(z.t) d

= Tt.(a,t) = pa(a,t).

O\)K

SRS

[1] Substitute for t, and a in terms of y(z,t) to get

Tyxxj = pyttj = Y = C2yxx~
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Part 11

Multivariable Calculus
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Multivariable Calculus Mike Fuller’s Questions for Prelims

Derive Gauss’ Flux Theorem using Poisson’s equation. [4]

[1] For a scalar gravitational potential ¢(r), Poisson’s equation reads
V2¢(r) = —4nGp(r).

[1] We want to derive Gauss’ Flux Theorem, which states that for a smooth and bounded
region R, which contains matter of total mass M, we have

// f-dS = —4nrGM.
dR

[1] Apply the Divergence Theorem to the LHS and use the fact that f = V¢, since ¢ is a

potential:
// f-dS:// V-de:// VZpdV
OR R R

[1] and by Poisson’s equation and the definition of total mass we get

——irG [[[ pav
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