- Secondary markets can be *exchanges* (all offers are considered simultaneously and the price is set by supply and demand) or *over the counter (OTC)* markets (traders seek counterparties in a less organized manner);
- Terminology:
 - Broker: middleman who connects sellers and buyers;
 - Dealer: trades on his own account;
 - Market maker: offers buying and selling prices to other market participants;
 - Specialist: matches buying and selling offers according to auction mechanism but may also trade on his own account;

3. Double auctions

- Most exchanges are *double auctions* where both buyers and sellers bid for securities and the *most generous* offers are selected to participate in trades;
- Exchanges can be call auctions or continuous auctions:
 - (1) In a call auction, the market is cleared *once* at the end of a bidding period by matching the maximum amount of buying and selling offers;
 - (2) In a continuous auction, a new offer is matched *immediately* with existing offers if possible, otherwise, the new offer is added to the *limit order book*;
- Call auctions:
 - Selling offers: a piecewise constant non-decreasing function $x \rightarrow s(x)$, the supply cure;
 - Buying offers: a piecewise constant non-increasing function $x \rightarrow d(x)$, the demand curve;
 - The market is cleared by matching maximum number of trades: $\overline{x} = \sup \{x | s(x) \le d(x)\}$, and the interval $[\lim_{x\uparrow\overline{x}} d(x), \lim_{x\downarrow\overline{x}} s(x)]$ consists of the market clearing prices;
 - Market clearing can be interpreted as finding the social optimum: $S(x) = \int_0^x s(z)dz$ and $D(x) = \int_0^x d(z)dz$ may be interpreted as the cost of producing x units, and the value of constant g x units;
 - *Market is cleared* by minimizing the difference S(x) D(x);

• Convex analysis:

- For a real valued function f on an interval the rollowing are equivalent:
- (a) f is convex,

(b) There is a non – decreasing function
$$\emptyset: I \to R$$
 suce that $f(x) = f(\overline{x}) + \int_{\overline{x}}^{x} \emptyset(z) dz$ for all $x, \overline{x} \in I$

(c) f is differentiate on I except of a countable set, its derivative f' is non – decreasing and (b, holds with $\emptyset = f'$;

Proof of $(b) \Rightarrow (a)$: Let $x_i \in I$ such that $x_1 < x_2$ and $\alpha_i > 0$ such that $\alpha_1 + \alpha_2 = 1$.

With
$$x = \alpha_1 x_1 + \alpha_2 x_2$$
, we have: $f(x) - f(x_1) = \int_{x_1} \phi(z) dz \le \int_{x_1} \phi(x) dz = \phi(x)(x - x_1)$
And $f(x_1) - f(x) = \int_{x_1}^{x_2} \phi(z) dz \ge \int_{x_1}^{x_2} \phi(x) dz = \phi(x)(x_1 - x)$

And
$$f(x_2) - f(x) = \int_x^{x_2} \phi(z) dz \ge \int_x^{x_2} \phi(x) dz = \phi(x)(x_2 - x)$$

Multiply the inequalities by α_1 and $-\alpha_2$ and add up: $f(x) \le \alpha_1 f(x_1) + \alpha_2 f(x_2)$, thus f is convex. - Note that \emptyset in (b) is not unique: any \emptyset with $f'_- \le \emptyset \le f'_+$ will do;

- Subgradient: A $v \in R$ is a subgradient at \overline{x} if $v \in [f'_{-}(\overline{x}), f'_{+}(\overline{x})]$; and the set of subfradients of f at \overline{x} is known as the subdifferential of f at \overline{x} and is denoted by $\partial f(\overline{x})$; Note that an $\overline{x} \in I$ minimizes f over I if and only if $0 \in \partial f(\overline{x})$;
- Back to market clearing, an \overline{x} minimizes S(x) D(x) iff $0 \in \partial (S D)(\overline{x})$, which means:

$$0 \in [s_{-}(\overline{x}) - d_{-}(\overline{x}), s_{+}(\overline{x}) - d_{+}(\overline{x})]$$

- Limit order book (LOB): where the offers remaining after market clearing are recorded; LOB gives the marginal prices for buying or selling a given quantity at the best available prices;
- Flatter the curve s, more liquid the market;
- Continuous auction: market is cleared very frequently;
- Limit sell orders above the best ask-price and limit buy orders below the best bid-price *increase liquidity*; A *market order* is an order to buy/sell a given amount at the best available prices, which *reduce liquidity*;

• Price per share
$$\tilde{S}(x) = \frac{S(x)}{x}$$
, the convexity of S gives us: if $x_1 < x_2$