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MATH20101 Complex Analysis 0. Preliminaries

0. Preliminaries

§0.1 Contact details

The lecturer is Dr. Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email:
charles.walkden@manchester.ac.uk.

My office hour is: Monday 2pm-3pm. If you want to see me at another time then please
email me first to arrange a mutually convenient time.

§0.2 Course structure

§0.2.1 Lectures

There will be approximately 21 lectures in total.
The lecture notes are available on the course webpage. The course webpage Kailable
via Blackboard or directly at www.maths .manchester.ac.uk/~ cwalkde om 1 nalysis.

Please let me know of any mistakes or typos that you ﬁnd ingt

The lectures will be recorded via the Universi éﬁ ure’ system Remember
that Lecture Capture is a useful revision t@gl b@ su?sztltute for attending lectures.
The lect ﬂ) §N0nta1n th 182121‘5 e end of each section). The exercises are
@ rt of the ¢

o@sa should make a serious attempt at them.
The lecture notes alsoMcontain the solutions to the exercises. I will trust you to have
serious attempts at solving the exercises without looking at the solutions.

60.2.2 Exercise

§0.2.3 Tutorials and support classes

The tutorial classes start in Week 2. There are 5 classes for this course but you only need
go to one each week. You will be assigned to a class. Attendance at tutorial classes is
recorded and monitored by the Teaching and Learning Office. If you go to a class other
than the one you’ve been assigned to then you will normally be recorded as being absent.

I try to run the tutorial classes so that the majority of people get some benefit from
them. Each week I will prepare a worksheet. The worksheets will normally contain exercises
from the lecture notes or from past exam questions. I will often break the exercises down
into easier, more manageable, subquestions; the idea is that then everyone in the class can
make progress on them within the class. (If you find the material in the examples classes
too easy then great!—it means that you are progressing well with the course.) You still
need to work on the remaining exercises (and try past exams) in your own time!

I will not put the worksheets on the course webpage. There is nothing on the worksheets
that isn’t already contained in either the exercises, lecture notes or past exam papers that
are already on the course webpage.



MATH20101 Complex Analysis 2. Differentiation, the Cauchy-Riemann equations

Example. Let f : C — C be defined by f(z) = 1 if 2z # 0 and f(0) = 0. Then
lim,_o f(z) = 1. Here lim,_,¢ f(2) # f(0).

We will be interested in functions which do behave nicely when taking limits.

Definition. Let D be a domain and let f : D — C be a function. We say that f is
continuous at zg € D if

lim f(2) = f(z0).

z—20

We say that f is continuous on D if it is continuous at zg for all zg € D.

Continuity obeys the same rules as in MATH20101 Real Analysis. In particular, suppose
that f,g: D — C are complex functions which are continuous at zy3. Then

f(2) +9(2), f(2)9(2), ¢f(2) (c€C)

are all continuous at zg, as is f(z)/g(z) provided that g(zg) # 0.

62.4 Differentiable functions

this properly in the Real Analysis course, and some of you will have seen tiation
from first principles’ at A-level or high school Let (a, b) R_be @en iterval and
letf : (a,b) — R be a function. Let = € (a,b). The id %X0) is the slope of the

graph of f at the point zy. Heuristically, oze ﬁj (i that 1s near xg and looks at

Let us first consider how one differentiates real valued functions defined on R. Yoy will cover
‘il;‘l%

the gradient of the straight line draw b points ) and (z, f(z)) on the
graph of f; this is an ap 1@ th the slope a :E(fkr mes more accurate as x
approaches xo_ We ﬂ fis er%1 3 xg”1t this limit exists, and define the
derlvatlv o be the va %; it.

DQ ‘:101’1 Let ( )9@& interval and let xg € (a,b). A function f : (a,b) — R is

differentiable at xq 1f

z—z0 X — T
exists. We call f'(zg) the derivative of f at xg. We say that f is differentiable if it is
differentiable at all points x¢ € (a,b).

(2.4.1)

Remark. Notice that there are two ways that x can approach xy: = can either approach
xo from the left or from the right. The definition of the derivative in (2.4.1) requires the
limit to exist from both the left and the right and for the value of these limits to be the
same.

(As an aside, one could instead look at left-handed and right-handed derivatives. For
example, consider f(z) = |x| defined on R. The left-handed derivative at 0 is

fl@)—f0) .. —x
r—0— x—0 r—0— X

and the right-handed derivative at 0 is
fl@)—f0) _ . =

hm _— = hm —:1.
z—0+ z—0 z—0— T

13



MATH20101 Complex Analysis 2. Differentiation, the Cauchy-Riemann equations

Thus, to calculate dg/0x we treat y as a constant and differentiate with respect to x, and
to calculate dg/dy we treat = as a constant and differentiate with respect to y.

Theorem 2.5.1 (The Cauchy-Riemann Theorem)
Let f: D — C and write f(z + 1y) = u(z,y) + iv(x,y). Suppose that f is differentiable at
zo = xo + iyo. Then

(i) the partial derivatives

ox’ Oy’ 0z’ Oy
exist at (zg, o) and

(ii) the following relations hold

0 0 0 0
5 (70 80) = 5 (30, 30). 5 (0. 90) = 5 (0. 40) (25.1)

Remark. The relationships in (2.5.1) are called the Cauchy-Riemann equations.

Proof. Recall from (2.4.2) that to calculate f’(z9) we look at points that are close to z
and then let these points tend to z. The trick is to calculate f/(z) in two diff ays: by
looking at points that converge to zg horizontally, and by looking a@@ (ﬁfc converge
to zg vertically.

Let h be real and consider zg+ h = (z¢+ h) 4—_{3@% h— 0 we have zg+h — zj.
Hence

u(wo, yo) — (o, Yo)

u(zo + h,yo) — u(xo, Yo) n Z.’U(l’o + h,y0) — v(xo, Yo)

h—0 h h
0 0
= 8Z(x07y0) +1 8;) (x07y0) (252)

Now take k to be real and consider zy + ik = z¢ + i(yo + k). Then as k — 0 we have
zo + ik — zg. Hence

f(z0 +ik) — f(20)

f'(z0) = lim

k—0 ik
— 1 u(x()ayo +k) +Z"U($0,:g0 +k) _u(x07y0) _iv(x07y0)
= lim .

k—0 ik
— lim U($07y0+ki) —U($0,y0) _i_iv(xovy()'{'k‘j) —’U($0,y0)

k—0 ik ik

ou ov
= —i— -— 2.5.3
Zay (x()vy()) + 8y(x07y0)7 ( )

recalling that 1/i = —i. Comparing the real and imaginary parts of (2.5.2) and (2.5.3)
gives the result. U
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MATH20101 Complex Analysis 3. Power series, analytic functions

Figure 3.4.1: The cut plane: this is the complex plane with the negative real axis removed.

Definition. The complex plane with the negative real-axis (including 0) removed is called
the cut plane. See Figure 3.4.1.

Proposition 3.4.3 \(
The principal logarithm Log z is continuous on the cut plane.

Proof. This follows from the fact (Whlch we sh \Qhough the proof is easy)
that the principal value of the argument us ozthe cut-plane.
an go on to show that it is

Having seen that the *( @@wh? c&ﬁuo%‘_

differentiable. = e

Py, 0ag®
principal ]oganthmeg olomorphic on the cut plane and

1
- L B
dz 8% z
Proof. Let w = Logz. Then z = expw. Let Log(z+h) = w+k. Then by Proposition 3.4.3
Log is continuous on the cut plane so we have that £ — 0 as h — 0. Then

d .. Log(z +h) — Log(z)
PR h

lim (w+ k) —

k—0 exp(w + k) — exp(w)

~ lim <e><p(w + k) — exp(w) > o

k—0 k

2 )

I
v
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MATH20101 Complex Analysis 4. Integration and Cauchy’s Theorem

As an example of a path, let zg,z; € C. Define
Y(t) = (1 —t)zo +tz1, 0<t <1 (4.2.1)

Then v(0) = 2,7(1) = 21 and the image of v is the straight line joining zp to z;. We
sometimes denote this path by [29, z1]. See Figure 4.2.1.

Z1

<0

Figure 4.2.1: The path v(¢t) = (1 —t)z9 +tz1, 0 < t < 1, describes the ﬁlg\)\éﬂommg

2o to z — 1. We sometimes denote this path by [z, 21] \
.
Definition. Let v : [a,b] — C b ea atﬁ ~ starts and ends at the
same point) then we say % l ed path or
Example. \?‘@M}ﬁlam example of %1 1@1 1s given by

p(e

This is the path that descrlbes the circle in C with centre 0 and radius 1, starting and ending
at the point 1, travelling around the circle in an anticlockwise direction. See Figure 4.2.2.

g = cost +isint, 0 <t < 2. (4.2.2)

Definition. A path v is said to be smooth if v : [a,b] — C is differentiable and 7 is

continuous. (By differentiable at a we mean that the one-sided derivative exists, similarly
at b.)

All of the examples of paths above are smooth.
We can use integrals to define the lengths of paths:

Definition. Let 7 : [a,b] — C be a smooth path. Then the length of 7y is defined to be

length(~y / 1Y (t)] dt.

Example. It is straightforward to check from (4.2.1) that
length([20, 21]) = [21 — zo].
If (¢) is the path given in (4.2.2) then

length(y) = 2.
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MATH20101 Complex Analysis 4. Integration and Cauchy’s Theorem

Figure 4.2.2: The circular path v(t) = €', 0 <t < 27. Note that it starts at 1 and travels
anticlockwise around the unit circle.

Often we will want to integrate over a number of paths joined together. One could make

the latter a path by constructing a suitable reparametrisation, but in practice ghis makes
things complicated; in particular the joins may not be smooth. It is snn er t\& name
to several smooth paths joined together. \

..,7n Where the end-point
%ezrlte

point of «; then we call v a closed contour.

Definition. A contour 7 is a collection of smq@@

of v, coincides with the start point of 'yr

oM,
If?efe\’l\@\wj\c!n;‘misgtehgg

TItus a contour is a patl that i$"Smooth except at finitely many places. A contour looks
like a smooth path but with finitely many corners.

Example. Let 0 < e < R. Define

v :le,R] = C 7 (t) =t,
o : [0, 1] — C Yo (t) = Re't,
31 [-R,—e] = C  y(t) =t,
v : [—m, 0] = C Y4(t) = ce

Then v =1 + 72 + 3 + 74 is a closed contour (see Figure 4.2.3).
Definition. The length of a contour v = ~; + --- + 7, is defined to be
length(y) = length(y1) + - - - + length(~,).

Suppose that 7 : [a,b] — C is a path that starts at y(a) and ends at v(b). Then we can
consider the reverse of this path, where we start at v(b) and, travelling backwards along -,
end at y(a). More formally, we make the following definition.
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MATH20101 Complex Analysis 4. Integration and Cauchy’s Theorem

Figure 4.4.1: If f[a,b] — R is negative on some subset of [a, b] then the area underneath
that part of the graph is negative. When f is replaced by |f|, this area becomes positive.

e
preV\e oage

Figure 4.4.2: The graph of f is contained inside the rectangle of width b — a and height
M. Hence the area underneath the graph is at most M (b — a).

Lemma 4.4.1
Let u,v : [a,b] — R be continuous functions. Then

b b
/ u(t)+iv(t)dt‘§ / lu(t) + iv(t)] dt. (4.4.3)

Proof. Write X
/ u(t) + iv(t) dt = X +iY.

Then
X24+Y? = (X —iY)(X +1iY)

b
- /(X—zY)( (1) + iv(t)) dt

= /Xu )+ Yo(t dt+z/ Xo(t u(t) dt.
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MATH20101 Complex Analysis 4. Exercises for Part 4

Exercises for Part 4

Exercise 4.1
Draw the following paths:

(i) v() =e 0<t<m,

(ii) y(t) =1+i+2e", 0<t<2n,
(iii) v(t) =t+icosht, =1 <t <1,
(iv) «y(t) = cosht +isinht, —1 <¢ < 1.

Exercise 4.2
Find the values of

)
r—y+ix“dz
/ uk
where z = x + ity and 7y is:

(i) the straight line joining 0 to 1 + i;
(ii) the imaginary axis f b IX_B'Z
(iii) the line pa axis f ‘X

M) = 242" 0<t<2m,

Yolt) = i+te ™ 0<t< /2

Draw the paths 1, 7s.
From the definition [ f = f:f('y(t))’y’(t) dt, calculate

dz dz
0 [ F50 [ S
’le_2 ,yz(z—z)3
Exercise 4.4

Evaluate fv |z|2 dz where 7 is the circle |z — 1| = 1 described anticlockwise.

Exercise 4.5
For each of the following functions find an anti-derivative and calculate the integral along
any smooth path from 0 to i:

(i) f:C—C, f(z) = 2®sinz;
(i) f:C—C, f(z) = ze™.
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MATH20101 Complex Analysis 5. Cauchy’s Integral Formula

f has a Taylor series expansion given by

© ),
fy =3 L@ g

n!
n=0

Furthermore, if 0 < r < R and C,(t) = zy + re, 0 <t < 2m, then

f(")(zo) — "_'/ (A dz.

2mi z — zp)"Hl

Remark. This version of Taylor’s Theorem is false in the case of real analysis in the
following sense: there are functions that are differentiable an arbitrary number of times
but that are not equal to their Taylor series. For example, if

—1/x?
f(:c)z{ 8 mz’ox#o

then f is differentiable arbitrarily many times. However, one can check (by differentiation
from first principles) that £ (0) = 0 for all n, so f has Taylor series 0 at 0. As f # 0 near
0, it follows that f is not equal to its Taylor series.

Definition. If, for each zy € D, a function f : D — C is equal to its Tﬂ\(@rles at
zp on some open disc then we say that f is analytic. (It follpws fr 5.2.1 that
all complex differentiable functions are analytic; howev gﬁ- n the remark above

shows that not all infinitely real- dlfferentﬁf 6 @ analytlc
Proof of Theorem 5.2. ‘ (ﬁ rkcyll for al& lﬁ%"zhave

69 Q W
PEJ%\!‘% pad®

m+1
- (22)
h™ zZ—2p
1+ ot =
z— 2 (2 — 29)™ 1 h
Z — 20
m+1
EN
Z— 20
B z—zy—h X (2= 20)
Hence
L S U U L Rt
z—(20+h) z—20—h z—2z (2—20)? (2 —20)™t1 " (2 — 20)™t (2 — 20 — h)’

Fix h such that 0 < |h| < R and suppose, for the moment, that |h| < r < R. Then
Cauchy’s Integral formula, together with the above identity, gives

f(zo+h)
1 f(z)
% CTZ—(Z0+h)dZ

o8



MATH20101 Complex Analysis 5. Cauchy’s Integral Formula

Hence |1/p(z)| < 2/K™ for all z € C, so that p is a bounded holomorphic function on C.
By Liouville’s Theorem (Theorem 5.3.2), this implies that p is constant, a contradiction.
g

Proof of Corollary 5.3.4. Let p(z) be a degree n polynomial with coefficients in C. By
Theorem 5.3.3 we can find o € C such that p(a;) = 0. Write p(z) = (z — a1)q(z) where
q(z) is a degree n— 1 polynomial with coefficients in C. The proof then follows by induction
on n. O
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MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

Now ' is a simple closed loop. To use Cauchy’s Residue Theorem, we need to know
the poles and residues of f(z). Now

7)== 1
(22 1)(224+4) (z—i)(z+0)(z —2i)(z+ 26)°
Hence f(z) has simple poles at z = +i, —i,+2i, —2i. If we take R > 2 then the poles

at z = 4,2i lie inside I'r (note that the poles at z = —i, —2i lie outside I'g). Now by
Lemma 7.4.1,

Res(f,i) = lim(z—i)f(2)

zZ—1

, 1
R P P P
1
T 6
and
Res(f.20) = lim (=~ 20)/(:)
= | 1
T G )E i)+ 2)
-1

= o \)\(

Hence by Cauchy’s Residue Theorem

/{_RR} f(2), dz + N @@a\e ’

{
\eWN
?Vea\Lhow thatP ag - . 750

R—o0 SR

then we will have that

o0 1
/_ L @rD@ o T RE [_Rﬂf (2)dz =5

To complete the calculation, we show that (7.5.6) holds. We shall use the Estimation
Lemma. Let z be a point on Sg. Note that |z] = R. Hence

(22 + 1) (2% +4)| = (B? — 1)(R®* - 4)

so that
1 1

< .
(22 +1)(22 +4) ' ~ (R2—-1)(R?2—4)
Hence, by the Estimation Lemma,

1
. f(z)dz| < =1 1) length(SR)
B TR
R GERIE

— 0

as R — oo, which is what we wanted to check.
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MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

Remark. As a general method, to evaluate

/_I;f(a:)dx

one uses the following steps:
(i) Check that f(x) satisfies the hypotheses of Lemma 7.5.1.
(ii) Construct a ‘D-shaped’ contour I'g as in Figure 7.5.3.

)
)
(iii) Find the poles and residues of f(z) that lie inside I'r when R is large.
(iv) Use Cauchy’s Residue Theorem to write down fFR f(z)d=.

)

(v) Split this integral into an integral over [—R, R] and an integral over Sg. Use the
Estimation Lemma to conclude that the integral over Sr converges to 0 as R — oc.

For a particular example, one may need to make small modifications to the above process,
but the general method is normally as above.

Remark. It is very easy to lose minus signs or factors of 2w when doing these computa-
tions. You should always check that your answer makes sense. For example, if I missed
out a factor of 7 in the above then I would have obtained an express&@

e 1
/ (:c2 O@@S
This is obviously wrong: ﬁ 1de is a real m 52teas the (incorrect) right-
hand side is ima W S y, in t ntegrand on the left-hand side is
a pOSlth XI, é so the i 1 be posfmve hence if the right-hand side is

there muPea somewhere in the calculation.

§7.5.3 Trigonometric integrals

We can use Cauchy’s Residue Theorem to calculate integrals of the form

2

Q(cost,sint) dt (7.5.7)
0

where @ is some function. (Integrands such as cos? tsin®t — Tsint, or cost 4+ sin’t, etc, fall
into this category.)
The first step is to turn (7.5.7) into a complex integral. Set z = €. Then

-1 -1

o PTF
sint = :
’ 2

cost =

Also [0,27] transforms into the unit circle C1(t) = e, 0 < ¢t < 27. Finally, note that
dz = ie' dt so that

dz

iz

27 -1 -1
z+z z—z dz
t,sint) dt = —.
/0 Q(cost,sint) /ClQ< 5 o ) -

83

Hence




MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

Remark. The above illustrates a more general method. For example, one can also eval-
uate integrals of the form

/ Q(cost,sint) dt
0

by using the substitution z = €2, In this case, as t varies from 0 to m then z describes the
unit circle in C with centre 0 and radius 1 described anti-clockwise.

§7.5.4 Summation of series

Recall that cotmz = cosmz/sinmz. Then cot 7wz has a pole whenever sinwz = 0, i.e.
whenever z = n, n € Z. First note that sin7z has a simple zero at z = n (as sin’ 7z =
mcosmz # 0 when z = n). Hence cot mz has a simple pole at z = n. By Lemma 7.4.1(ii)

we have )
cos
Res(cot mz,n) = —— = —.
TCosSTN T

This suggests a method for summing infinite series of the form Y °°, a,. Let f(z) be a
meromorphic function defined on C such that f(n) = a,. Consider the function f(z) cot 7z.
Then, if f(n) # 0, we have

Res(f(z) cot mz,n) = a?"

and we can use Cauchy’s Residue Theorem to calculate y | a,. xal KNG will
show how to use this method to calculate > 2, 1/n 96

There are two technicalities to overcome. Flrst of aa@\@d oose a good contour
to integrate around. We will want to uge emma along this contour, so

we will need some bounds on \ f(z ndly, f(z have poles of its own and
these will need to be tak m In the Vg&f , to calculate Y00, 1/n?
we will take f as anp 6

ere we use a square contour. Let Cy denote

e o Shge
<N+2> <N+2>,<N+%>+i<N+%>,
—<N~I—%>+i<N+%>, —<N~|—%> —i<N+%>

(see Figure 7.5.4). This is a square with each side having length 2N + 1. (The factors of
1/2 are there so that the sides of this square do not pass through the integer points on the
real axis.)

Lemma 7.5.2
There is a bound, independent of N, on cot wz where z € Cl, i.e. there exists M > 0 such
that for all N and all z € C, we have |cot mz| < M.

Proof. Consider the square Cy. This has two horizontal sides and two vertical sides,
parallel to the real and imaginary axes, respectively.

Consider first the horizontal sides. Let z = x + iy be a point on one of the horizontal
sides of Cy. Then |y| > 1/2. Hence

e’lﬂ'Z + e—Zﬂ'Z

|cotmz| = |——
eZ’TI'Z_e—ZT('Z
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MATH20101 Complex Analysis 8. Solutions to Part 1

claimed to have never learned complex analysis but could perform many real integrals using
a trick called ‘differentiation under the integral sign’. See http://ocw.mit.edu/courses/
mathematics/18-304-undergraduate-seminar-in-discrete-
mathematics-spring-2006/projects/integratnfeynman.pdf for an account of this, if
you're interested.
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MATH20101 Complex Analysis 9. Solutions to Part 2

(ii) (a) Here

ou Oov Ou v
ey YT e
so that the Cauchy-Riemann equations are satisfied.
(b) Here
ou  —z2?+y?> Ou —2xy
ZRlC T T
ov 2xy ov —x2 + 92

T R TR TRl
Hence Ou/0x = 0v/dy and du/dy = —0v/dz so that the Cauchy-Riemann
equations hold.

(ili) When f(2) = |z| we have f(x+iy) = \/22 + y? so that u(z,y) = /22 + y2, v(z,y) =
0. Then for (z,y) # (0,0) we have

Ow_ __x _Ow_ _y Ov_, 0v_,
O (22 +y2)1/2" dy (a2 +y2)V/27 Oz T Oy

If the Cauchy-Riemann equations hold then z/(x? + 3?)Y/2 = 0, y/(2? + y?)1/? = 0
which imply that x = y = 0, which is impossible as we are assumlng\iw ,Y)

(0,0).
At (z,y) = (0,0) we have a\e
which does not exist @ha‘c if h d&%}%en |h|/h — 1; however,
if h — 0, h<\N‘ —h/h 2
Heéw \ rentlabl Q
Rtlon 24

) Here
Ou 2 2 2
%:333 -3 8—:33: —3y°,
and 5 5
u v
8_y = —6xy, I 6xy
so that the Cauchy-Riemann equations hold.
(ii) Here
ou 4
% = m(—$5 + 10$3y2 — 5117:[/4),
v 4
a—y = m(—x5 + 10x3y2 — 5$y4),
and
ou 4
a—y = m(—5$4 + 10$2y3 — y5),
ov 4
% = m(&fél — 10x2y3 + y5)
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MATH20101 Complex Analysis 10. Solutions to Part 3

10. Solutions to Part 3

Solution 3.1
Let z, € C. Let

Sp = sz, Ty = ZRe(zk), Yn = Zlm(zk)
k=0 k=0 k=0

denote the partial sums of z,, Re(z,), Im(z,), respectively. Let s = > 27 zp, ¢ =
YoreoRe(zr), y = > pe o Im(zy), if these exist.
Suppose that 7 z, is convergent. Let ¢ > 0. Then there exists N such that if n > N
we have [s — s,| < e. As
|z —ap] <|s—sn| <e,

and

‘y yn‘<|5_5n|<€ K
(using the facts that | Re(w)| < |w| and | Im(w)| < |w| for any comple 1@) m provided
n > N, it follows that > Re(zx) and > 2 Im( zk exis Q 6
Let ¢ > 0. Choose N;

Conversely, suppose that > 27 Re(z) and
such that if n > Nj then |z — xn| < 6/2 h that Ny then |y —yn| < /2.
Then if n > maX{Nl,Ng}{r ?
[z — 2] %@% IQ ynl <e.
H@ (ﬁ 2k convel? age

Solution 3.2
Recall that a formula for the radius of convergence R of > anz
lim;, oo [@n+1|/|an| (if this limit exists).

n

is given by 1/R =

(i) Here a,, = 2" /n so that

lani1] 2" n 2n 5 1
= —_— = — = —
lay| n+127 n+1 R

as n — oo. Hence the radius of convergence is R = 1/2.
(ii) Here a,, = 1/n! so that

|an+1| _ 7’L' _ 1 0= i
|an] (n+1)! n+1 R

as n — o0o. Hence the radius of convergence is R = oo and the series converges for all
z e C.
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MATH20101 Complex Analysis 10. Solutions to Part 3

(iii) Here a,, = n! so that
|
anr| _ 0t 1
|an| n! R
as n — oo. Hence the radius of convergence is R = 0 and the series converges for
z =0 only.

(iv) Here a, = nP so that

P
|an+1|_(n+1)p_<n+1> _}lpzlzé

lan] — nP n

as n — 0o. Hence the radius of convergence is R = 1.

Solution 3.3
To see that the expression in Proposition 3.2.2(i) does not converge, note that

n

Ani1 if n is even,

Gn

n+1
3 n

Hence lim,, .o |an+1/an| = 0 if we let n — oo through the subsequence of even values of n
but limy, o |ap+1/an| = 0o if we let n — oo through the subsequence of o es of n.

Hence lim;,, . |an+1/an| does not exist. 0
To see that the expression in Proposition 3.2.2(ii doega*@w@e note that

anl & mn is ad
Hence lim,,_oq|a | &x Q exist, & % %62
Note éw‘ Pan < 1/2é %D;O

n=0

on
n=0

which converges provided that |z/2| < 1, i.e. if |z| < 2. Hence, by the comparison test,
Yoo anz" converges for |z| < 2.

Solution 3.4
(i) We know that for |z| < 1

o
E 2" =
n=0

(this is the sum of a geometric progression). Hence

() =) ()= (59) ().

Using Proposition 3.1.2 we can easily see that the coefficient of 2"~! in the above

product is equal to n. Hence
(1_Z> §:n2
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and
ou

. v .
— = coszsinhy, e —cos zsinh y,
x

dy
so that the Cauchy-Riemann equations are satisfied.

Alternatively, one could note that
) m
cosz = sin (z + 5)

. ™ . ™ .
= sin (:17 + 5) cosh y + ¢ cos (:1: + 5) sinh y

= cosxcoshy — isinzsinhy.

(iii) Here we have that

sinhz = sinh(x + i)
1 . .
_ 5 (ex—l—zy o e—(m—i—zy))
1

= §(emeiy — e %emW)
1
= —((e"cosy —e “cosy) +i(e”siny+e “siny))

2 u\(
and v(z,y

= sinhz cosy + ¢ cosh x sin y.

cO-
Hence the real and imaginary parts of sinh z are éa\%in cos Yy
cosh z siny, respectively. N Ote

o o 2
iew “%)ﬂ\fzﬁﬁ’hﬁ

P ?1 P agze— sinh z siny, % = sinh z sin y,
x

so that the Cauchy-Riemann equations are satisfied.

) =

(One can also argue, assuming the results of (i), by using the fact that sinhz =
—isiniz.)

(iv) Here we have that

coshz = cosh(z + iy)
_ 1 (em—i-iy 4 e—(:v—i—iy))
2
1 T T —x —1
— 5(6 e Y +e e y)
1
= 5((€x cosy+e “cosy)+i(e”siny —e Tsiny))
= coshxcosy + isinhxsiny.

Hence the real and imaginary parts of cosh z are u(z,y) = coshz cosy and v(z,y) =
sinh x sin y, respectively.

Now
ou

oz

(% .
— = sinhx cosy,

Jy

= sinh z cos ¥,
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Hence

1 1—-w
1—z+4 22 1—w?
= 1-—w) (14w +uwb+w”+--)
= l-w+w —w+u® —w 4.
= 1--D+GE-102-G-1D+E-1)=--1)"+

provided |z — 1| < 1.

Solution 6.4
Let f(z) =1/(z — 1)2

(i)

Pre

(iii)

Note that 1/(z — 1)? is already a Laurent series centred at 1. Hence f has Laurent
series

valid on the annulus {z € C |0 < |z — 1|}.

Note that f(z) = 1/(z — 1)? is holomorphic on the disc {z € C | |z| < 1}. Therefore
we can apply Taylor’s theorem and expand f as a power series u\(

valid on the disc {z € C | |z| < 1}. ( To coefﬁ(nents recall that if f
has Taylor series ZZO 0 anz"™ then n' He% an easily compute that

f™(z) = w SO that f( f; Hence a, = n+ 1.
Alternatlvely, given S a Taylor series is a particular
case \’ erles we see 12 Laurent series
P&ge+2z+3z+ 4 (n+1)2" +

valid on the disc {z € C | |z| < 1}.

f(2)=14+22+322+-. n+1t

Note that
1 1 1

(z—1)2 _?(1_1)2'

z

Replacing z by 1/z in the first part of the computation in (ii) above, we see that

1 2 3 n+1
72:1+—+—2+~'+ +
I

provided |1/z| < 1, i.e. provided |z| > 1. Multiplying by 1/2% we see that

ZTL

12 3 n—1

valid on the annulus {z € C | |z| > 1}.

Solution 6.5
Recall that a function f(z) has a pole at zy if f is not differentiable at zy (indeed, it may
not even be defined at z).
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(i) The poles of 1/(22+1) occur when the denominator vanishes. Now 2241 = (z—i)(z+4)
so the denominator has zeros at z = +i and both zeros are simple. Hence the poles
of 1/(2% + 1) occur at z = +i and both poles are simple.

(ii) The poles occur at the roots of the polynomial z* + 16 = 0. Let z = re®. Then we
have

2 =t = —16 = 16€'".

Hence r = 2, 40 = w+ 2kn, k € Z. We get distinct values of z for £k = 0,1,2,3. Hence
the poles are at

ikm

26%4_ 2

, k=0,1,2,3,
or in algebraic form

V2(1 +14), V2(1 =), V2(=1+1), V2(~1—1).
All the poles are simple.

(iii) The poles occur at the roots of z* + 222 41 = (22 +1)2 = (2 +14)?(z — i)2. The roots
of this polynomial are at z = +i, each with multiplicity 2. Hence the poles occur at
z = =i and each pole is a pole of order 2.

iv) The poles occur at the roots of 22 + z — 1, i.e. at z = (=1 £ 5 alkd Mh poles
C
L)
.

are simple.
Solution 6.6 te
(i) Since NO
0™ gy
\|\I i@t m 4 1)!22m+1
P ua}ltlon @ y mon-zero term in the principal part of its Laurent
series. Hence we{Tav olated essential singularity at z = 0.

(ii) By Exercise 5.1, the function sin? z has Taylor series

1)n+1 22nz2n

oo (_
Z 2 (2n)!

n=1

Hence . 6
1 2 2

3.2, 3

Z “sin Z—Z —2-4!Z+2'6!

so that 273 sin? z has a simple pole at z = 0.

(iii) Since

B 22 A
cosz=1— o1 + o
we have
cosz — 1 —1 + 22
22 2 4)

so that there are no terms in the principal part of the Laurent series. Hence 0 is a
removable singularity.
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14. Solutions to Part 7

Solution 7.1
(i) The function f(z) = 1/2(1 — 22) is differentiable except when the denominator van-
ishes. The denominator vanishes whenz = 0, &1 and these are all simple zeros. Hence
there are simple poles at z = 0,4+1. Then by Lemma 7.4.1(i) we have

1 . 1
Res(f,0) = lim 2o = lim ;5 = 1
1 —1 —1
1) = lim(z—1)———7 = lim ——— = —;
Res(f, ) ZLIIll(Z )2(1 —2;2) zli?l Z(1+Z) 2’
Res(f,—1) = lim (z+1) L = lim ! -t
N = T

(ii) Let f(z) = tanz = sinz/cos z. Both sin z and cos z are differentiable on C, so f(z)
is differentiable except when the denominator is 0. Hence f has poles at z where
cosz = 0, i.e. there are poles at (n + 1/2)m, n € Z. These poles ﬂ%ple (as
(n+1/2)7 is a simple zero of cos z). By Lemma 7.4.1(ii) we SB‘C@ .

sin(n .

Res(f, (n+1/2)7) = = —1.

172)m

(iii) Let f(z) = (sinz)/22 d&are dlﬁeﬁn 1 % the poles occur when
22 =0. By COW aylor e adi n z7around 0 we have that
preV\®s cj@ )
2

42
z 3' 50
Hence z = 0 is a simple pole and Res(f,0) = 1.

(iv) Let f(2) = z/(1 + z%). This has poles when the denominator vanishes, i.e. when
2* = —1. To solve this equation, we work in polar coordinates. Let z = re?. Then
2* = —1 implies that r*e*” = ™. Hence r = 1 and 40 = 7 + 2kn. Hence the four

quartic roots of —1 are:

ei7r/47 e3i7r/47 e—i7r/47 e—3i7r/4'
These are all simple zeros of 24 = —1. Hence by Lemma 7.4.1(ii) we have that
Res(f, 20) = 20/423 = 1/422 so that
, 1 1 —i
i /4 _ - -
Res(£.e") = R =5~ 7
: 1 1 1
3im/4 _ - - _Z
Res(£, ™) = J@m = 5~ 1
, 1 1 i
—im/4 S
Res(f,e™™) = @ = TH T 1
1 1 —

Res(f,e” %™/ = TR LT
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(ii) Here we have the same integrand as in (i) but integrated over the smaller circle Cs 5.
This time only the pole z = 2 lies inside Cy /5. Hence

1
———dz = 2mi Res(f,2) = —2mi.
/05/22:2—52:4—6 (£,2)

(iii) Let f denote the integrand. Note that

az az

1+22 (z+i)z—1i)

Hence f has simple poles at z = +i. Now

az ia

e e o
R = lm 2 im &=
eS(f,Z) Zli)l}/ (Z_Z)(z+z) z1—>Hiz—{—Z 23
. . (24 i)e e e
R _ — 1 _— = 1 = - °

_ e
Solution 7.3 .ﬁxo " le

Suppose [ has\w ’l% id on the annulus {z € C | R; <
|2P¢ eorem ﬂe ients a,, are given by
Y CH
" 2mi o, (z—z)ntt

where C, is a circular path described anticlockwise centred at zg and with radius r, where
r is chosen such that Ry < r < Rs.

(i) We calculate that Laurent series of f(z) = 1/z(z — 1) valid on the annulus {z € C |
0 < |z| < 1}. Here zg = 0. Choose r € (0,1). We have that

1 f()d 1 1

= ——dz
210 Jo 2t 2mi Jo 22 (2 — 1)

n

where C) is the circular path with centre 0 and radius r € (0,1), described once
anticlockwise.

It is straightforward to locate the singularities of the integrand. For all n € Z the
integrand has a simple pole at 1. When n > —1, the integrand also has a pole of
order n 4 2 at 0.

For n = —2,-3,... the integrand has no poles inside C, when r < 1. Hence, by
Cauchy’s Residue Theorem, a,, = 0 for n = —2,—3,.... For n > —1, the pole at 0 lies
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This has poles where the denominator vanishes, i.e. at z = tia,£ib, and all of these
poles are simple. If R is taken to be larger than b then the poles inside I'g occur at z = ia, b.
We can calculate

‘ B (z —ia)ze?”
Resfie) = Jim, o

iz

= lim ¢
z—1a (Z + ’LCL)(Z2 + b2)
B tae”®
~ 2ia(b? — a?)
2(b? —a?)
Similarly,
, (2 — ib)ze'*
b) = lim
Res(f,ib) o (z — zb)(z +ib)(22 + a?)

= lim =

z—ib (z +ib) (22 + a?)

e m ‘ot £ 152

£¥O o)
\ WfdzJ&é A— 1z
P(e\, ¢ d%—: 2m (Res(f,ia) + Res(f, ib))

27 —a _
)

provided that R > b.
Now if z is a point on Sy then |z| > R. Hence
(22 +a®)(2* + 6%)] = (|2 — a®)(|2]* = b°) = (R? — a®)(R® — V).

Also, writing z = x 4 iy so that 0 < y < R, we have that |e??| = |e!@tW)| = |e—¥Tio| =
le7¥| < 1. Hence
R

|f(2)] < (R? — a?)(R2 — b?)

By the Estimation Lemma,

R T R?
length(Sg) = =) (=)

A s Ty ooy

which tends to zero as R — oo. Hence

Iy

_ —-a __ b
/[—R,R] fdz= 7(1)2 — a7 (e e ).
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By taking the imaginary part, we see that

R rsinx T
dr = —a _ ,=b )
[eraerm - e

(As a check to see if we have made a mistake, note that the real part is zero. Hence

/°° T COST de — 0
Coo (@2 Fa?) (22 +02) T

This is obvious as the integrand is an even function, and so must integrate (from —oo to
00) to zero.)

Solution 7.8
Denote by C the unit circle C(t) = €', 0 < t < 27.

(i) Substitute z = €. Then dz = ie dt = iz dt so that dt = dz/iz and [0, 271] transforms
to C. Also, cost = (z + 271)/2. Hence

/2ﬂ2cos3t+3cosztdt :/ (Z+Z_1)3 + 3(Z+Z_1)2 @
0 C 4 4 7

Now ) CO .

YR\
HenC\, \e\|\|
P(e /0@2&93%8225(#

/1 1+3+3+3+3+2z+22d
= -\ t—=+-—=++-+—+— Z.
o1 \42% 423 422 22 4 4 4

Now the integrand has a pole of order 4 at z = 0, which is inside C, and no other
poles. We can immediately read off the residue at z = 0 as the coefficient of 1/z,
namely 3/2i. Hence by the Residue Theorem

27 3
/ 2cos®t + 3cos?tdt = 2mi— = 3.
0 2’l

(ii) As before, substitute z = e*. Then dt = dz/iz, cost = (z + 271)/2 and [0, 27]
transforms to C'. Hence

S| 1 dz 1 4z
TrooZi = Sy il v enrse e
o 1+cos?t cl+(z+2z12/4iz i Jo2t+622+1

Let
4z

16 = aeast
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