LESS IMPORTANT FORMULAS AND PRINCIPLES

Part 1 (Interest Theory)

Other Formulas and Principles

Dates in the US : •

Month/Day/Year

- Rebate = remboursement ou rabais
- Triennial = triennal = every three days •
- Stock index = indice boursier (en français) •
- IRA = Individual Retirement Account ٠
- Geometric mean < arithmetic mean •
- To rationalize the denominator: •

• IRA = Individual Retirement Account
• Geometric mean < arithmetic mean
• To rationalize the denominator:

$$\frac{1}{\sqrt{a}} * \frac{\sqrt{a} + b}{\sqrt{a} + b} = 0$$
• $a = b^2$
• $n! = the factorial of $n = \prod_{t=1}^{n} t$$

•
$$1 + ... + n = \frac{n(n+1)}{2}$$

•
$$1^2 + ... + n^2 = \frac{n(n+1)(2n+1)}{6}$$

Mathematically, when we do an integral, we must not have to same boundaries ٠ than the derived variable. For example, $\int_0^n f(t) e^{-\int_0^t \delta_{\mathbf{r}} d\mathbf{r}} dt$. But, this is not really important.

•
$$\frac{d}{dx}a^{x} = a^{x}\ln a$$

NB. $-a_n = \frac{f^{(n)}(0)}{n!}$ is fund with moment-generating function (MGF): $E(X^n) = f^{(n)}(0)$.

Chap. 1 (The Measurement of Interest)

Rule of 72: •

Years required to double investment = $72 \div$ (compound annual interest rate*100)

NB. -It's an approximation.

•
$$i_t = \frac{a(t) - a(t-1)}{a(t-1)} = f(t-1; t)$$

•
$$d_t = \frac{a(t) - a(t-1)}{a(t)}$$

- Amount function: A(t) = A(0)*a(t) (fonction de capitalisation en français), where A(0) = initial amount
 Accumulation function: a(t)
 Discount factor ||/a(t) = 1/(1 + r)^t (forction) actualisation en français), where r = discount rate a 9

•
$$d = d(1) < d^{(2)} < ... < \delta < ... < i^{(2)} < i^{(1)} = i$$

•
$$e^{\delta} = 1 + i = \frac{\delta^0}{0!} + \frac{\delta^1}{1!} + \frac{\delta^2}{2!} + \dots = \sum_{t=0}^{\infty} \frac{\delta^t}{t!}$$

• $\delta = \lim_{m \to \infty} d^{(m)} = \lim_{m \to \infty} i^{(m)} = \lim_{m \to \infty} m(1+i)^{\frac{1}{m}} - m = \frac{0}{0}$

$$= \frac{(1+i)^{\frac{1}{m}-1}}{1/m} \stackrel{RH}{=} \lim_{m \to \infty} \frac{\frac{(1+i)^{\frac{1}{m}}}{\frac{1}{2}\ln(1+i)}}{\frac{1}{2m^2}} = \lim_{m \to \infty} \frac{(1+i)^{\frac{1}{m}}}{\ln(1+i)^{-1}} = \ln(1+i)$$
$$= \frac{i^{1}}{\frac{1}{2}} \frac{i^{2}}{\frac{2}{2}} + \dots = \sum_{t=0}^{\infty} \frac{i^{t}}{t} - 1 - 2(\sum_{t=0}^{\infty} \frac{i^{2t+2}}{2t+2})$$
$$= -\ln(1-d) = \frac{d^{1}}{\frac{1}{2}} + \frac{d^{2}}{\frac{2}{2}} + \dots = \sum_{t=1}^{\infty} \frac{d^{t}}{t}$$

$$= \frac{d^{1} + i^{1}}{2} + \frac{d^{2} - i^{2}}{4} + \cdots$$

$$= \frac{1}{2} \left(\sum_{t=0}^{\infty} \frac{d^{t}}{t} - 1 + \sum_{t=0}^{\infty} \frac{i^{t}}{t} - 1 - 2 \left(\sum_{t=0}^{\infty} \frac{i^{2t+2}}{2t+2} \right) \right)$$
• $d = 1 - e^{-\delta} = \frac{\delta^{1}}{1!} - \frac{\delta^{2}}{2!} + \cdots = \sum_{t=0}^{\infty} \frac{\delta^{t}}{t!} - 1 - 2 \sum_{n=0}^{\infty} \frac{\delta^{2n+2}}{(2n+2)!}$

$$= 1 - \sum_{t=0}^{\infty} \frac{\delta^{t}}{t!}$$

- To find "IRR" in a multivariate function:
 - 1- Calculator method:
 - 1) Click on CF, then enter CF at t = 0.
 - 2) Click on Enter. Do the same thereafter for all CE we FU meaning frequency at t = 1, for example, for here Gate years I have the same CF.
 - 3) Click on CPT, and Fet.

2- Bisert A stathod: (if we have opposite signs)
1) Evaluate the function with two different "i"s.

- 2) Calculate the middle point and, then evaluate the function at this point.
- 3) Do the same thing until having f(i) = 0.
- 3- Newton-Raphson method (recursion method):
 - 1) $F(i) = a + b(1+i) + ... z(1+i)^y = 0$
 - 2) Find f'(i).
 - 3) Find "i" in this: $x_{s+1} = x_s \frac{f(x_s)}{f(x_{s+1})}$.
- Accumulation methods :
 - Compound interest:

Total	\$5,000	\$670.52	\$4,329.48	

NB. -i = 5% in this example.

Sinking fund = fonds d'amortissement (en français) •

Chap. 7 (Bonds)

Price of a bond = book value: •

-with linear method:

 $\mathbf{B}_{t} = \mathbf{F}\mathbf{r} - \mathbf{t}^{*}\mathbf{P}_{t},$

where $P_t = adjustment = \frac{P-C}{n}$,

NB. –The method we use for the FM Exam is the 2nd one (the actuarial method).

Price between 2 coupons: •

$$B_{t+k}^f = B_{t+k}^m + \operatorname{Fr}_{t}, \qquad 0 < k < 1$$

= flat price = book value between two coupons (prix uniforme en français)

= actual price = full price = price-plus-accrued

= theoretical dirty price =
$$\begin{cases} B_t (1+i)^k, & \text{with assumption 1} \\ B_t (1+ik), & \text{with assumption 2} \\ B_t (1+i)^k, & \text{with assumption 3} \end{cases}$$

- Arbitrage opportunity: •
 - 1) $F \neq F(S)$: if D or i \checkmark => Profit_T (stock) > Profit_T (forward)

NB. –Buy low and sell high.

2) observed P_K or $C_K \neq$ (theoretical) P_K or C_K with Put/call parity:

 $PV(F) + P_k = PV(K) + C_k$

NB. –Buy one side and sell the other₀ and do the opposite_T.

Chap. 10 (Introduction to Derivatives)

- Financial engineering = construction of a financial product from other products •
- Go-between = intermediary •
- •
- Short selling (vente à découvert en français) = Sector of a stock that the seller doesn't own •
- odities, currency index, bonds, etc. Underly n 2 Number of shares of a stock at time $t = e^{-\delta(T-t)}$
- -A (option)_t = Ask price (option)_t (prix du vendeur (option)_t = cours vendeur $(option)_t - en français)$

-B (option)_t = Bid price (option)_t (prix de l'acheteur (option)_t = cours acheteur

 $(option)_t - en français)$

NB. -Same thing for a stock.

Chap. 11 (Forward Contracts)

Forward contract (contrat à livrer en français) = agreement to enter into a ٠ transaction at a pre-specified time and price

 $Profit_T = payoff - FV(premium),$

where payoff = $-S_T - max(0; K - S_T) = -max(0; S_T - K) - FV(Z)$

 $premium = -S_0 - P_k = -C_k - Z$

 $-Z = \begin{cases} borrowing \text{ or selling a zero } -\text{ coupon bond}_{0} \\ lending \text{ or buying a zero } -\text{ coupon bond}_{T} \end{cases} = -PV(K)$

Chap. 16 (Put/Call Parity; Combining Options)

- American, European, Bermudan options or the greeks, for example, have nothing • to do with the geographic location
- European option = option which may be exercised only at the expiration date of • the option, i.e. at a single pre-defined point in time.
- American option = option which may be exercised at inverse before the expiration date. Bermudan option = a type of exotic option that can be exercised only on ٠
- Preville

Reasons for Using	Comments	
Strategy		
Expect stock price to rise;	-	
don't want insurance		
Expect stock price to rise;		
want insurance if it	-	
declines		
	Definite return (no stock	
To borrow or lend money	market risk)	
	Reasons for UsingStrategyExpect stock price to rise;don't want insuranceExpect stock price to rise;want insurance if itdeclinesTo borrow or lend money	