
C++

5

Add the bin subdirectory of your MinGW installation to your PATH environment

variable so that you can specify these tools on the command line by their simple

names.

When the installation is complete, you will be able to run gcc, g++, ar, ranlib,

dlltool, and several other GNU tools from the Windows command line.

Preview from Notesale.co.uk

Page 17 of 322

C++

6

When we consider a C++ program, it can be defined as a collection of objects

that communicate via invoking each other's methods. Let us now briefly look

into what a class, object, methods, and instant variables mean.

 Object - Objects have states and behaviors. Example: A dog has states -

color, name, breed as well as behaviors - wagging, barking, and eating.

An object is an instance of a class.

 Class - A class can be defined as a template/blueprint that describes the

behaviors/states that object of its type support.

 Methods - A method is basically a behavior. A class can contain many

methods. It is in methods where the logics are written, data is

manipulated and all the actions are executed.

 Instant Variables - Each object has its unique set of instant variables.

An object's state is created by the values assigned to these instant

variables.

C++ Program Structure:

Let us look at a simple code that would print the words Hello World.

#include <iostream>

using namespace std;

// main() is where program execution begins.

int main()

{

 cout << "Hello World"; // prints Hello World

 return 0;

}

Let us look at the various parts of the above program:

1. The C++ language defines several headers, which contain information

that is either necessary or useful to your program. For this program, the

header <iostream> is needed.

2. The line using namespace std; tells the compiler to use the std

namespace. Namespaces are a relatively recent addition to C++.

3. BASIC SYNTAX

Preview from Notesale.co.uk

Page 18 of 322

C++

8

add(x, y);

A block is a set of logically connected statements that are surrounded by

opening and closing braces. For example:

{

 cout << "Hello World"; // prints Hello World

 return 0;

}

C++ does not recognize the end of the line as a terminator. For this reason, it

does not matter where you put a statement in a line. For example:

x = y;

y = y+1;

add(x, y);

is the same as

x = y; y = y+1; add(x, y);

C++ Identifiers

A C++ identifier is a name used to identify a variable, function, class, module, or

any other user-defined item. An identifier starts with a letter A to Z or a to z or

an underscore (_) followed by zero or more letters, underscores, and digits (0 to

9).

C++ does not allow punctuation characters such as @, $, and % within

identifiers. C++ is a case-sensitive programming language.

Thus, Manpower and manpower are two different identifiers in C++.

Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

C++ Keywords

The following list shows the reserved words in C++. These reserved words may

not be used as constant or variable or any other identifier names.

asm else new this

auto enum operator throw

Preview from Notesale.co.uk

Page 20 of 322

C++

17

A variable provides us with named storage that our programs can manipulate.

Each variable in C++ has a specific type, which determines the size and layout

of the variable's memory; the range of values that can be stored within that

memory; and the set of operations that can be applied to the variable.

The name of a variable can be composed of letters, digits, and the underscore

character. It must begin with either a letter or an underscore. Upper and

lowercase letters are distinct because C++ is case-sensitive:

There are following basic types of variable in C++ as explained in last chapter:

Type Description

bool Stores either value true or false.

char Typically a single octet (one byte). This is an integer

type.

int The most natural size of integer for the machine.

float A single-precision floating point value.

double A double-precision floating point value.

void Represents the absence of type.

wchar_t A wide character type.

C++ also allows to define various other types of variables, which we will cover in

subsequent chapters like Enumeration, Pointer, Array, Reference, Data

structures, and Classes.

Following section will cover how to define, declare and use various types of

variables.

Variable Definition in C++

A variable definition tells the compiler where and how much storage to create for

the variable. A variable definition specifies a data type, and contains a list of one

or more variables of that type as follows:

6. VARIABLE TYPES

Preview from Notesale.co.uk

Page 29 of 322

C++

21

A scope is a region of the program and broadly speaking there are three places,

where variables can be declared:

 Inside a function or a block which is called local variables,

 In the definition of function parameters which is called formal parameters.

 Outside of all functions which is called global variables.

We will learn what a function is, and it's parameter in subsequent chapters. Here

let us explain what local and global variables are.

Local Variables

Variables that are declared inside a function or block are local variables. They

can be used only by statements that are inside that function or block of code.

Local variables are not known to functions outside their own. Following is the

example using local variables:

#include <iostream>

using namespace std;

int main ()

{

 // Local variable declaration:

 int a, b;

 int c;

 // actual initialization

 a = 10;

 b = 20;

 c = a + b;

 cout << c;

 return 0;

}

7. VARIABLE SCOPE

Preview from Notesale.co.uk

Page 33 of 322

C++

31

A storage class defines the scope (visibility) and life-time of variables and/or

functions within a C++ Program. These specifiers precede the type that they

modify. There are following storage classes, which can be used in a C++

Program

 auto

 register

 static

 extern

 mutable

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

 int mount;

 auto int month;

}

The example above defines two variables with the same storage class, auto can

only be used within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored

in a register instead of RAM. This means that the variable has a maximum size

equal to the register size (usually one word) and can't have the unary '&'

operator applied to it (as it does not have a memory location).

{

 register int miles;

}

The register should only be used for variables that require quick access such as

counters. It should also be noted that defining 'register' does not mean that the

variable will be stored in a register. It means that it MIGHT be stored in a

register depending on hardware and implementation restrictions.

The static Storage Class

10. STORAGE CLASSES

Preview from Notesale.co.uk

Page 43 of 322

C++

33

i is 8 and count is 7

i is 9 and count is 6

i is 10 and count is 5

i is 11 and count is 4

i is 12 and count is 3

i is 13 and count is 2

i is 14 and count is 1

i is 15 and count is 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is

visible to ALL the program files. When you use 'extern' the variable cannot be

initialized as all it does is point the variable name at a storage location that has

been previously defined.

When you have multiple files and you define a global variable or function, which

will be used in other files also, then extern will be used in another file to give

reference of defined variable or function. Just for understanding extern is used to

declare a global variable or function in another file.

The extern modifier is most commonly used when there are two or more files

sharing the same global variables or functions as explained below.

First File: main.cpp

#include <iostream>

int count ;

extern void write_extern();

main()

{

 count = 5;

 write_extern();

}

Second File: support.cpp

#include <iostream>

Preview from Notesale.co.uk

Page 45 of 322

C++

45

-= Subtract AND assignment

operator, It subtracts right

operand from the left operand

and assign the result to left

operand.

C -= A is equivalent to C = C -

A

*= Multiply AND assignment

operator, It multiplies right

operand with the left operand

and assign the result to left

operand.

C *= A is equivalent to C = C *

A

/= Divide AND assignment

operator, It divides left operand

with the right operand and

assign the result to left

operand.

C /= A is equivalent to C = C /

A

%= Modulus AND assignment

operator, It takes modulus

using two operands and assign

the result to left operand.

C %= A is equivalent to C = C

% A

<<= Left shift AND assignment

operator.

C <<= 2 is same as C = C << 2

>>= Right shift AND assignment

operator.

C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment

operator.

C &= 2 is same as C = C & 2

^= Bitwise exclusive OR and

assignment operator.

C ^= 2 is same as C = C ^ 2

|= Bitwise inclusive OR and

assignment operator.

C |= 2 is same as C = C | 2

Try the following example to understand all the assignment operators available

in C++.

Preview from Notesale.co.uk

Page 57 of 322

C++

52

do...while loop Like a ‘while’ statement, except that it tests the

condition at the end of the loop body.

nested loops You can use one or more loop inside any another

‘while’, ‘for’ or ‘do..while’ loop.

While Loop

A while loop statement repeatedly executes a target statement as long as a

given condition is true.

Syntax

The syntax of a while loop in C++ is:

while(condition)

{

 statement(s);

}

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true.

When the condition becomes false, program control passes to the line

immediately following the loop.

Flow Diagram Preview from Notesale.co.uk

Page 64 of 322

C++

67

 return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 16

value of a: 17

value of a: 18

value of a: 19

One good use of goto is to exit from a deeply nested routine. For example,

consider the following code fragment:

for(...) {

 for(...) {

 while(...) {

 if(...) goto stop;

 .

 .

 .

 }

 }

}

stop:

cout << "Error in program.\n";

Eliminating the goto would force a number of additional tests to be performed. A

simplebreak statement would not work here, because it would only cause the

program to exit from the innermost loop.

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The for loop is

traditionally used for this purpose. Since none of the three expressions that form

Preview from Notesale.co.uk

Page 79 of 322

C++

74

 An if can have zero to many else if's and they must come before the else.

 Once an else if succeeds, none of he remaining else if's or else's will be

tested.

Syntax

The syntax of an if...else if...else statement in C++ is:

if(boolean_expression 1)

{

 // Executes when the boolean expression 1 is true

}

else if(boolean_expression 2)

{

 // Executes when the boolean expression 2 is true

}

else if(boolean_expression 3)

{

 // Executes when the boolean expression 3 is true

}

else

{

 // executes when the none of the above condition is true.

}

Example

#include <iostream>

using namespace std;

int main ()

{

 // local variable declaration:

 int a = 100;

 // check the boolean condition

 if(a == 10)

Preview from Notesale.co.uk

Page 86 of 322

C++

80

C++ specifies that at least 256 levels of nesting be allowed for switch

statements.

Syntax

The syntax for a nested switch statement is as follows:

switch(ch1) {

 case 'A':

 cout << "This A is part of outer switch";

 switch(ch2) {

 case 'A':

 cout << "This A is part of inner switch";

 break;

 case 'B': // ...

 }

 break;

 case 'B': // ...

}

Example

#include <iostream>

using namespace std;

int main ()

{

 // local variable declaration:

 int a = 100;

 int b = 200;

 switch(a) {

 case 100:

 cout << "This is part of outer switch" << endl;

 switch(b) {

 case 200:

 cout << "This is part of inner switch" << endl;

Preview from Notesale.co.uk

Page 92 of 322

C++

85

 int result;

 if (num1 > num2)

 result = num1;

 else

 result = num2;

 return result;

}

I kept max() function along with main() function and compiled the source code.

While running final executable, it would produce the following result:

Max value is : 200

Function Arguments

If a function is to use arguments, it must declare variables that accept the

values of the arguments. These variables are called the formal parameters of

the function.

The formal parameters behave like other local variables inside the function and

are created upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a

function:

Call Type Description

Call by value This method copies the actual value of an argument

into the formal parameter of the function. In this case,

changes made to the parameter inside the function

have no effect on the argument.

Call by pointer This method copies the address of an argument into

the formal parameter. Inside the function, the address

is used to access the actual argument used in the call.

This means that changes made to the parameter

affect the argument.

Call by reference This method copies the reference of an argument into

the formal parameter. Inside the function, the

reference is used to access the actual argument used

Preview from Notesale.co.uk

Page 97 of 322

C++

89

 return 0;

}

When the above code is put together in a file, compiled and executed, it

produces the following result:

Before swap, value of a :100

Before swap, value of b :200

After swap, value of a :200

After swap, value of b :100

Call by Reference

The call by reference method of passing arguments to a function copies the

reference of an argument into the formal parameter. Inside the function, the

reference is used to access the actual argument used in the call. This means that

changes made to the parameter affect the passed argument.

To pass the value by reference, argument reference is passed to the functions

just like any other value. So accordingly you need to declare the function

parameters as reference types as in the following function swap(), which

exchanges the values of the two integer variables pointed to by its arguments.

// function definition to swap the values.

void swap(int &x, int &y)

{

 int temp;

 temp = x; /* save the value at address x */

 x = y; /* put y into x */

 y = temp; /* put x into y */

 return;

}

For now, let us call the function swap() by passing values by reference as in the

following example:

#include <iostream>

using namespace std;

// function declaration

void swap(int &x, int &y);

Preview from Notesale.co.uk

Page 101 of 322

C++

92

Total value is :300

Total value is :120

Preview from Notesale.co.uk

Page 104 of 322

C++

93

Normally, when we work with Numbers, we use primitive data types such as int,

short, long, float and double, etc. The number data types, their possible values

and number ranges have been explained while discussing C++ Data Types.

Defining Numbers in C++

You have already defined numbers in various examples given in previous

chapters. Here is another consolidated example to define various types of

numbers in C++:

#include <iostream>

using namespace std;

int main ()

{

 // number definition:

 short s;

 int i;

 long l;

 float f;

 double d;

 // number assignments;

 s = 10;

 i = 1000;

 l = 1000000;

 f = 230.47;

 d = 30949.374;

 // number printing;

 cout << "short s :" << s << endl;

 cout << "int i :" << i << endl;

 cout << "long l :" << l << endl;

 cout << "float f :" << f << endl;

15. NUMBERS

Preview from Notesale.co.uk

Page 105 of 322

C++

100

 for (int j = 0; j < 10; j++)

 {

 cout << setw(7)<< j << setw(13) << n[j] << endl;

 }

 return 0;

}

This program makes use of setw() function to format the output. When the

above code is compiled and executed, it produces the following result:

Element Value

 0 100

 1 101

 2 102

 3 103

 4 104

 5 105

 6 106

 7 107

 8 108

 9 109

Arrays in C++

Arrays are important to C++ and should need lots of more detail. There are

following few important concepts, which should be clear to a C++ programmer:

Concept Description

Multi-dimensional arrays C++ supports multidimensional arrays. The

simplest form of the multidimensional array is

the two-dimensional array.

Pointer to an array You can generate a pointer to the first

element of an array by simply specifying the

array name, without any index.

Passing arrays to functions You can pass to the function a pointer to an

Preview from Notesale.co.uk

Page 112 of 322

C++

110

Preview from Notesale.co.uk

Page 122 of 322

C++

112

int main ()

{

 char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

 cout << "Greeting message: ";

 cout << greeting << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Greeting message: Hello

C++ supports a wide range of functions that manipulate null-terminated strings:

S.N. Function & Purpose

1 strcpy(s1, s2);

Copies string s2 into string s1.

2 strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3 strlen(s1);

Returns the length of string s1.

4 strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than

0 if s1>s2.

5 strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

6 strstr(s1, s2);

Preview from Notesale.co.uk

Page 124 of 322

C++

115

str3 : Hello

str1 + str2 : HelloWorld

str3.size() : 10

Preview from Notesale.co.uk

Page 127 of 322

C++

127

using namespace std;

const int MAX = 3;

int main ()

{

 int var[MAX] = {10, 100, 200};

 int *ptr[MAX];

 for (int i = 0; i < MAX; i++)

 {

 ptr[i] = &var[i]; // assign the address of integer.

 }

 for (int i = 0; i < MAX; i++)

 {

 cout << "Value of var[" << i << "] = ";

 cout << *ptr[i] << endl;

 }

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of var[0] = 10

Value of var[1] = 100

Value of var[2] = 200

You can also use an array of pointers to character to store a list of strings as

follows:

#include <iostream>

using namespace std;

const int MAX = 4;

int main ()

{

Preview from Notesale.co.uk

Page 139 of 322

C++

147

}

When the above code is compiled and executed, it will prompt you to enter a

name. You enter a value and then hit enter to see the following result:

Please enter your name: cplusplus

Your name is: cplusplus

The C++ compiler also determines the data type of the entered value and

selects the appropriate stream extraction operator to extract the value and store

it in the given variables.

The stream extraction operator >> may be used more than once in a single

statement. To request more than one datum you can use the following:

cin >> name >> age;

This will be equivalent to the following two statements:

cin >> name;

cin >> age;

The Standard Error Stream (cerr)

The predefined object cerr is an instance of ostream class. The cerr object is

said to be attached to the standard error device, which is also a display screen

but the object cerr is un-buffered and each stream insertion to cerr causes its

output to appear immediately.

The cerr is also used in conjunction with the stream insertion operator as shown

in the following example.

#include <iostream>

using namespace std;

int main()

{

 char str[] = "Unable to read....";

 cerr << "Error message : " << str << endl;

}

When the above code is compiled and executed, it produces the following result:

Preview from Notesale.co.uk

Page 159 of 322

C++

148

Error message : Unable to read....

The Standard Log Stream (clog)

The predefined object clog is an instance of ostream class. The clog object is

said to be attached to the standard error device, which is also a display screen

but the object clog is buffered. This means that each insertion to clog could

cause its output to be held in a buffer until the buffer is filled or until the buffer

is flushed.

The clog is also used in conjunction with the stream insertion operator as shown

in the following example.

#include <iostream>

using namespace std;

int main()

{

 char str[] = "Unable to read....";

 clog << "Error message : " << str << endl;

}

When the above code is compiled and executed, it produces the following result:

Error message : Unable to read....

You would not be able to see any difference in cout, cerr and clog with these

small examples, but while writing and executing big programs the difference

becomes obvious. So it is good practice to display error messages using cerr

stream and while displaying other log messages then clog should be used.

Preview from Notesale.co.uk

Page 160 of 322

C++

153

 return 0;

}

void printBook(struct Books book)

{

 cout << "Book title : " << book.title <<endl;

 cout << "Book author : " << book.author <<endl;

 cout << "Book subject : " << book.subject <<endl;

 cout << "Book id : " << book.book_id <<endl;

}

When the above code is compiled and executed, it produces the following result:

Book title : Learn C++ Programming

Book author : Chand Miyan

Book subject : C++ Programming

Book id : 6495407

Book title : Telecom Billing

Book author : Yakit Singha

Book subject : Telecom

Book id : 6495700

Pointers to Structures

You can define pointers to structures in very similar way as you define pointer to

any other variable as follows:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined

pointer variable. To find the address of a structure variable, place the ‘&’

operator before the structure's name as follows:

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must

use the -> operator as follows:

struct_pointer->title;

Let us re-write above example using structure pointer, hope this will be easy for

you to understand the concept:

Preview from Notesale.co.uk

Page 165 of 322

C++

155

 // Print Book1 info, passing address of structure

 printBook(&Book2);

 return 0;

}

// This function accept pointer to structure as parameter.

void printBook(struct Books *book)

{

 cout << "Book title : " << book->title <<endl;

 cout << "Book author : " << book->author <<endl;

 cout << "Book subject : " << book->subject <<endl;

 cout << "Book id : " << book->book_id <<endl;

}

When the above code is compiled and executed, it produces the following result:

Book title : Learn C++ Programming

Book author : Chand Miyan

Book subject : C++ Programming

Book id : 6495407

Book title : Telecom Billing

Book author : Yakit Singha

Book subject : Telecom

Book id : 6495700

The typedef Keyword

There is an easier way to define structs or you could "alias" types you create.

For example:

typedef struct

{

 char title[50];

 char author[50];

 char subject[100];

 int book_id;

}Books;

Preview from Notesale.co.uk

Page 167 of 322

C++

156

Now, you can use Books directly to define variables of Books type without using

struct keyword. Following is the example:

Books Book1, Book2;

You can use typedef keyword for non-structs as well as follows:

typedef long int *pint32;

pint32 x, y, z;

x, y and z are all pointers to long ints.

Preview from Notesale.co.uk

Page 168 of 322

C++

165

 void setLength(double len);

 double getLength(void);

};

// Member functions definitions

double Line::getLength(void)

{

 return length ;

}

void Line::setLength(double len)

{

 length = len;

}

// Main function for the program

int main()

{

 Line line;

 // set line length

 line.setLength(6.0);

 cout << "Length of line : " << line.getLength() <<endl;

 // set line length without member function

 line.length = 10.0; // OK: because length is public

 cout << "Length of line : " << line.length <<endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Length of line : 6

Length of line : 10

The private Members

Preview from Notesale.co.uk

Page 177 of 322

C++

169

 SmallBox box;

 // set box width using member function

 box.setSmallWidth(5.0);

 cout << "Width of box : "<< box.getSmallWidth() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Width of box : 5

Constructor & Destructor

A class constructor is a special member function of a class that is executed

whenever we create new objects of that class.

A constructor will have exact same name as the class and it does not have any

return type at all, not even void. Constructors can be very useful for setting

initial values for certain member variables.

Following example explains the concept of constructor:

#include <iostream>

using namespace std;

class Line

{

 public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor

 private:

 double length;

};

// Member functions definitions including constructor

Preview from Notesale.co.uk

Page 181 of 322

C++

173

}

The Class Destructor

A destructor is a special member function of a class that is executed whenever

an object of it's class goes out of scope or whenever the delete expression is

applied to a pointer to the object of that class.

A destructor will have exact same name as the class prefixed with a tilde (~)

and it can neither return a value nor can it take any parameters. Destructor can

be very useful for releasing resources before coming out of the program like

closing files, releasing memories etc.

Following example explains the concept of destructor:

#include <iostream>

using namespace std;

class Line

{

 public:

 void setLength(double len);

 double getLength(void);

 Line(); // This is the constructor declaration

 ~Line(); // This is the destructor: declaration

 private:

 double length;

};

// Member functions definitions including constructor

Line::Line(void)

{

 cout << "Object is being created" << endl;

}

Line::~Line(void)

{

Preview from Notesale.co.uk

Page 185 of 322

C++

176

 cout << "Normal constructor allocating ptr" << endl;

 // allocate memory for the pointer;

 ptr = new int;

 *ptr = len;

}

Line::Line(const Line &obj)

{

 cout << "Copy constructor allocating ptr." << endl;

 ptr = new int;

 *ptr = *obj.ptr; // copy the value

}

Line::~Line(void)

{

 cout << "Freeing memory!" << endl;

 delete ptr;

}

int Line::getLength(void)

{

 return *ptr;

}

void display(Line obj)

{

 cout << "Length of line : " << obj.getLength() <<endl;

}

// Main function for the program

int main()

{

 Line line(10);

 display(line);

Preview from Notesale.co.uk

Page 188 of 322

C++

184

Constructor called.

Box2 is equal to or larger than Box1

Pointer to C++ Classes

A pointer to a C++ class is done exactly the same way as a pointer to a

structure and to access members of a pointer to a class you use the member

access operator -> operator, just as you do with pointers to structures. Also as

with all pointers, you must initialize the pointer before using it.

Let us try the following example to understand the concept of pointer to a class:

#include <iostream>

using namespace std;

class Box

{

 public:

 // Constructor definition

 Box(double l=2.0, double b=2.0, double h=2.0)

 {

 cout <<"Constructor called." << endl;

 length = l;

 breadth = b;

 height = h;

 }

 double Volume()

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

Preview from Notesale.co.uk

Page 196 of 322

C++

187

{

 Box Box1(3.3, 1.2, 1.5); // Declare box1

 Box Box2(8.5, 6.0, 2.0); // Declare box2

 // Print total number of objects.

 cout << "Total objects: " << Box::objectCount << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Constructor called.

Constructor called.

Total objects: 2

Static Function Members

By declaring a function member as static, you make it independent of any

particular object of the class. A static member function can be called even if no

objects of the class exist and the static functions are accessed using only the

class name and the scope resolution operator ::.

A static member function can only access static data member, other static

member functions and any other functions from outside the class.

Static member functions have a class scope and they do not have access to

the this pointer of the class. You could use a static member function to

determine whether some objects of the class have been created or not.

Let us try the following example to understand the concept of static function

members:

#include <iostream>

using namespace std;

class Box

{

 public:

 static int objectCount;

 // Constructor definition

Preview from Notesale.co.uk

Page 199 of 322

C++

191

 void setHeight(int h)

 {

 height = h;

 }

 protected:

 int width;

 int height;

};

// Derived class

class Rectangle: public Shape

{

 public:

 int getArea()

 {

 return (width * height);

 }

};

int main(void)

{

 Rectangle Rect;

 Rect.setWidth(5);

 Rect.setHeight(7);

 // Print the area of the object.

 cout << "Total area: " << Rect.getArea() << endl;

 return 0;

}

When the above code is compiled and executed, it produces the following result:

Preview from Notesale.co.uk

Page 203 of 322

C++

193

 Private Inheritance: When deriving from a private base

class, public and protected members of the base class

become private members of the derived class.

Multiple Inheritance

A C++ class can inherit members from more than one class and here is the

extended syntax:

class derived-class: access baseA, access baseB....

Where access is one of public, protected, or private and would be given for

every base class and they will be separated by comma as shown above. Let us

try the following example:

#include <iostream>

using namespace std;

// Base class Shape

class Shape

{

 public:

 void setWidth(int w)

 {

 width = w;

 }

 void setHeight(int h)

 {

 height = h;

 }

 protected:

 int width;

 int height;

};

// Base class PaintCost

class PaintCost

{

Preview from Notesale.co.uk

Page 205 of 322

C++

196

C++ allows you to specify more than one definition for a function name or

an operator in the same scope, which is called function

overloading and operator overloading respectively.

An overloaded declaration is a declaration that is declared with the same name

as a previously declared declaration in the same scope, except that both

declarations have different arguments and obviously different definition

(implementation).

When you call an overloaded function or operator, the compiler determines the

most appropriate definition to use, by comparing the argument types you have

used to call the function or operator with the parameter types specified in the

definitions. The process of selecting the most appropriate overloaded function or

operator is called overload resolution.

Function Overloading in C++

You can have multiple definitions for the same function name in the same scope.

The definition of the function must differ from each other by the types and/or

the number of arguments in the argument list. You cannot overload function

declarations that differ only by return type.

Following is the example where same function print() is being used to print

different data types:

#include <iostream>

using namespace std;

class printData

{

 public:

 void print(int i) {

 cout << "Printing int: " << i << endl;

 }

 void print(double f) {

 cout << "Printing float: " << f << endl;

 }

25. OVERLOADING (OPERATOR &
FUNCTION)

Preview from Notesale.co.uk

Page 208 of 322

C++

206

class Box

{

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

public:

 double getVolume(void)

 {

 return length * breadth * height;

 }

 void setLength(double len)

 {

 length = len;

 }

 void setBreadth(double bre)

 {

 breadth = bre;

 }

 void setHeight(double hei)

 {

 height = hei;

 }

 // Overload + operator to add two Box objects.

 Box operator+(const Box& b)

 {

 Box box;

 box.length = this->length + b.length;

 box.breadth = this->breadth + b.breadth;

 box.height = this->height + b.height;

 return box;

Preview from Notesale.co.uk

Page 218 of 322

C++

215

 void operator=(const Distance &D)

 {

 feet = D.feet;

 inches = D.inches;

 }

 // method to display distance

 void displayDistance()

 {

 cout << "F: " << feet << " I:" << inches << endl;

 }

};

int main()

{

 Distance D1(11, 10), D2(5, 11);

 cout << "First Distance : ";

 D1.displayDistance();

 cout << "Second Distance :";

 D2.displayDistance();

 // use assignment operator

 D1 = D2;

 cout << "First Distance :";

 D1.displayDistance();

 return 0;

}

When the above code is compiled and executed, it produces the following result:

First Distance : F: 11 I:10

Second Distance :F: 5 I:11

First Distance :F: 5 I:11

Function Call () Operator Overloading

Preview from Notesale.co.uk

Page 227 of 322

C++

216

The function call operator () can be overloaded for objects of class type. When

you overload (), you are not creating a new way to call a function. Rather, you

are creating an operator function that can be passed an arbitrary number of

parameters.

Following example explains how a function call operator () can be overloaded.

#include <iostream>

using namespace std;

class Distance

{

 private:

 int feet; // 0 to infinite

 int inches; // 0 to 12

 public:

 // required constructors

 Distance(){

 feet = 0;

 inches = 0;

 }

 Distance(int f, int i){

 feet = f;

 inches = i;

 }

 // overload function call

 Distance operator()(int a, int b, int c)

 {

 Distance D;

 // just put random calculation

 D.feet = a + c + 10;

 D.inches = b + c + 100 ;

 return D;

 }

 // method to display distance

 void displayDistance()

 {

Preview from Notesale.co.uk

Page 228 of 322

C++

221

 if(index >= oc.a.size()) return false;

 if(oc.a[++index] == 0) return false;

 return true;

 }

 bool operator++(int) // Postfix version

 {

 return operator++();

 }

 // overload operator->

 Obj* operator->() const

 {

 if(!oc.a[index])

 {

 cout << "Zero value";

 return (Obj*)0;

 }

 return oc.a[index];

 }

};

int main() {

 const int sz = 10;

 Obj o[sz];

 ObjContainer oc;

 for(int i = 0; i < sz; i++)

 {

 oc.add(&o[i]);

 }

 SmartPointer sp(oc); // Create an iterator

 do {

 sp->f(); // smart pointer call

 sp->g();

 } while(sp++);

 return 0;

Preview from Notesale.co.uk

Page 233 of 322

C++

222

}

When the above code is compiled and executed, it produces the following result:

10

12

11

13

12

14

13

15

14

16

15

17

16

18

17

19

18

20

19

21

Preview from Notesale.co.uk

Page 234 of 322

C++

230

Designing Strategy

Abstraction separates code into interface and implementation. So while

designing your component, you must keep interface independent of the

implementation so that if you change underlying implementation then interface

would remain intact.

In this case whatever programs are using these interfaces, they would not be

impacted and would just need a recompilation with the latest implementation.

Preview from Notesale.co.uk

Page 242 of 322

C++

231

All C++ programs are composed of the following two fundamental elements:

 Program statements (code): This is the part of a program that

performs actions and they are called functions.

 Program data: The data is the information of the program which gets

affected by the program functions.

Encapsulation is an Object Oriented Programming concept that binds together

the data and functions that manipulate the data, and that keeps both safe from

outside interference and misuse. Data encapsulation led to the important OOP

concept of data hiding.

Data encapsulation is a mechanism of bundling the data, and the functions

that use them and data abstraction is a mechanism of exposing only the

interfaces and hiding the implementation details from the user.

C++ supports the properties of encapsulation and data hiding through the

creation of user-defined types, called classes. We already have studied that a

class can contain private, protected and public members. By default, all items

defined in a class are private. For example:

class Box

{

 public:

 double getVolume(void)

 {

 return length * breadth * height;

 }

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The variables length, breadth, and height are private. This means that they can

be accessed only by other members of the Box class, and not by any other part

of your program. This is one way encapsulation is achieved.

To make parts of a class public (i.e., accessible to other parts of your program),

you must declare them after the public keyword. All variables or functions

28. DATA ENCAPSULATION

Preview from Notesale.co.uk

Page 243 of 322

C++

234

An interface describes the behavior or capabilities of a C++ class without

committing to a particular implementation of that class.

The C++ interfaces are implemented using abstract classes and these abstract

classes should not be confused with data abstraction which is a concept of

keeping implementation details separate from associated data.

A class is made abstract by declaring at least one of its functions as pure

virtual function. A pure virtual function is specified by placing "= 0" in its

declaration as follows:

class Box

{

 public:

 // pure virtual function

 virtual double getVolume() = 0;

 private:

 double length; // Length of a box

 double breadth; // Breadth of a box

 double height; // Height of a box

};

The purpose of an abstract class (often referred to as an ABC) is to provide an

appropriate base class from which other classes can inherit. Abstract classes

cannot be used to instantiate objects and serves only as an interface.

Attempting to instantiate an object of an abstract class causes a compilation

error.

Thus, if a subclass of an ABC needs to be instantiated, it has to implement each

of the virtual functions, which means that it supports the interface declared by

the ABC. Failure to override a pure virtual function in a derived class, then

attempting to instantiate objects of that class, is a compilation error.

Classes that can be used to instantiate objects are called concrete classes.

Abstract Class Example

Consider the following example where parent class provides an interface to the

base class to implement a function called getArea():

#include <iostream>

29. INTERFACES

Preview from Notesale.co.uk

Page 246 of 322

C++

239

ios::app Append mode. All output to that file to be appended to

the end.

ios::ate Open a file for output and move the read/write control

to the end of the file.

ios::in Open a file for reading.

ios::out Open a file for writing.

ios::trunc If the file already exists, its contents will be truncated

before opening the file.

You can combine two or more of these values by ORing them together. For

example if you want to open a file in write mode and want to truncate it in case

that already exists, following will be the syntax:

ofstream outfile;

outfile.open("file.dat", ios::out | ios::trunc);

Similar way, you can open a file for reading and writing purpose as follows:

fstream afile;

afile.open("file.dat", ios::out | ios::in);

Closing a File

When a C++ program terminates it automatically flushes all the streams,

release all the allocated memory and close all the opened files. But it is always a

good practice that a programmer should close all the opened files before

program termination.

Following is the standard syntax for close() function, which is a member of

fstream, ifstream, and ofstream objects.

void close();

Writing to a File

While doing C++ programming, you write information to a file from your

program using the stream insertion operator (<<) just as you use that operator

to output information to the screen. The only difference is that you use

an ofstream or fstream object instead of the cout object.

Reading from a File

Preview from Notesale.co.uk

Page 251 of 322

C++

242

File Position Pointers

Both istream and ostream provide member functions for repositioning the file-

position pointer. These member functions are seekg ("seek get") for istream

and seekp ("seek put") for ostream.

The argument to seekg and seekp normally is a long integer. A second argument

can be specified to indicate the seek direction. The seek direction can

be ios::beg (the default) for positioning relative to the beginning of a

stream, ios::cur for positioning relative to the current position in a stream

or ios::end for positioning relative to the end of a stream.

The file-position pointer is an integer value that specifies the location in the file

as a number of bytes from the file's starting location. Some examples of

positioning the "get" file-position pointer are:

// position to the nth byte of fileObject (assumes ios::beg)

fileObject.seekg(n);

// position n bytes forward in fileObject

fileObject.seekg(n, ios::cur);

// position n bytes back from end of fileObject

fileObject.seekg(n, ios::end);

// position at end of fileObject

fileObject.seekg(0, ios::end);

Preview from Notesale.co.uk

Page 254 of 322

C++

258

Templates are the foundation of generic programming, which involves writing

code in a way that is independent of any particular type.

A template is a blueprint or formula for creating a generic class or a function.

The library containers like iterators and algorithms are examples of generic

programming and have been developed using template concept.

There is a single definition of each container, such as vector, but we can define

many different kinds of vectors for example, vector <int> or vector <string>.

You can use templates to define functions as well as classes, let us see how

they work:

Function Template

The general form of a template function definition is shown here:

template <class type> ret-type func-name(parameter list)

{

 // body of function

}

Here, type is a placeholder name for a data type used by the function. This

name can be used within the function definition.

The following is the example of a function template that returns the maximum of

two values:

#include <iostream>

#include <string>

using namespace std;

template <typename T>

inline T const& Max (T const& a, T const& b)

{

 return a < b ? b:a;

}

int main ()

{

34. TEMPLATES

Preview from Notesale.co.uk

Page 270 of 322

C++

262

 }

}

If we compile and run above code, this would produce the following result:

7

hello

Exception: Stack<>::pop(): empty stack

Preview from Notesale.co.uk

Page 274 of 322

C++

277

Passing Arguments to Threads

This example shows how to pass multiple arguments via a structure. You can

pass any data type in a thread callback because it points to void as explained in

the following example:

#include <iostream>

#include <cstdlib>

#include <pthread.h>

using namespace std;

#define NUM_THREADS 5

struct thread_data{

 int thread_id;

 char *message;

};

void *PrintHello(void *threadarg)

{

 struct thread_data *my_data;

 my_data = (struct thread_data *) threadarg;

 cout << "Thread ID : " << my_data->thread_id ;

 cout << " Message : " << my_data->message << endl;

 pthread_exit(NULL);

}

int main ()

{

 pthread_t threads[NUM_THREADS];

 struct thread_data td[NUM_THREADS];

 int rc;

Preview from Notesale.co.uk

Page 289 of 322

C++

286

Variable Name Description

CONTENT_TYPE The data type of the content, used when the client is

sending attached content to the server. For example

file upload etc.

CONTENT_LENGTH The length of the query information that is available

only for POST requests.

HTTP_COOKIE Returns the set cookies in the form of key & value

pair.

HTTP_USER_AGENT The User-Agent request-header field contains

information about the user agent originating the

request. It is a name of the web browser.

PATH_INFO The path for the CGI script.

QUERY_STRING The URL-encoded information that is sent with GET

method request.

REMOTE_ADDR The IP address of the remote host making the

request. This can be useful for logging or for

authentication purpose.

REMOTE_HOST The fully qualified name of the host making the

request. If this information is not available then

REMOTE_ADDR can be used to get IR address.

REQUEST_METHOD The method used to make the request. The most

common methods are GET and POST.

SCRIPT_FILENAME The full path to the CGI script.

SCRIPT_NAME The name of the CGI script.

SERVER_NAME The server's hostname or IP Address.

SERVER_SOFTWARE The name and version of the software the server is

running.

Preview from Notesale.co.uk

Page 298 of 322

C++

287

Here is small CGI program to list out all the CGI variables.

#include <iostream>

#include <stdlib.h>

using namespace std;

const string ENV[24] = {

 "COMSPEC", "DOCUMENT_ROOT", "GATEWAY_INTERFACE",

 "HTTP_ACCEPT", "HTTP_ACCEPT_ENCODING",

 "HTTP_ACCEPT_LANGUAGE", "HTTP_CONNECTION",

 "HTTP_HOST", "HTTP_USER_AGENT", "PATH",

 "QUERY_STRING", "REMOTE_ADDR", "REMOTE_PORT",

 "REQUEST_METHOD", "REQUEST_URI", "SCRIPT_FILENAME",

 "SCRIPT_NAME", "SERVER_ADDR", "SERVER_ADMIN",

 "SERVER_NAME","SERVER_PORT","SERVER_PROTOCOL",

 "SERVER_SIGNATURE","SERVER_SOFTWARE" };

int main ()

{

 cout << "Content-type:text/html\r\n\r\n";

 cout << "<html>\n";

 cout << "<head>\n";

 cout << "<title>CGI Environment Variables</title>\n";

 cout << "</head>\n";

 cout << "<body>\n";

 cout << "<table border = \"0\" cellspacing = \"2\">";

 for (int i = 0; i < 24; i++)

 {

 cout << "<tr><td>" << ENV[i] << "</td><td>";

 // attempt to retrieve value of environment variable

 char *value = getenv(ENV[i].c_str());

Preview from Notesale.co.uk

Page 299 of 322

C++

296

 if(!fi->isEmpty() && fi != (*formData).end()) {

 cout << "Radio box selected: " << **fi << endl;

 }

 cout << "
\n";

 cout << "</body>\n";

 cout << "</html>\n";

 return 0;

}

Passing Text Area Data to CGI Program

TEXTAREA element is used when multiline text has to be passed to the CGI

Program.

Here is example HTML code for a form with a TEXTAREA box:

<form action="/cgi-bin/cpp_textarea.cgi"

 method="post"

 target="_blank">

<textarea name="textcontent" cols="40" rows="4">

Type your text here...

</textarea>

<input type="submit" value="Submit" />

</form>

The result of this code is the following form:

Submit

Below is C++ program, which will generate cpp_textarea.cgi script to handle

input given by web browser through text area.

#include <iostream>

#include <vector>

#include <string>

#include <stdio.h>

Preview from Notesale.co.uk

Page 308 of 322

C++

299

 cout << "Content-type:text/html\r\n\r\n";

 cout << "<html>\n";

 cout << "<head>\n";

 cout << "<title>Drop Down Box Data to CGI</title>\n";

 cout << "</head>\n";

 cout << "<body>\n";

 form_iterator fi = formData.getElement("dropdown");

 if(!fi->isEmpty() && fi != (*formData).end()) {

 cout << "Value Selected: " << **fi << endl;

 }

 cout << "
\n";

 cout << "</body>\n";

 cout << "</html>\n";

 return 0;

}

Using Cookies in CGI

HTTP protocol is a stateless protocol. But for a commercial website it is required

to maintain session information among different pages. For example one user

registration ends after completing many pages. But how to maintain user's

session information across all the web pages.

In many situations, using cookies is the most efficient method of remembering

and tracking preferences, purchases, commissions, and other information

required for better visitor experience or site statistics.

How It Works

Your server sends some data to the visitor's browser in the form of a cookie. The

browser may accept the cookie. If it does, it is stored as a plain text record on

the visitor's hard drive. Now, when the visitor arrives at another page on your

site, the cookie is available for retrieval. Once retrieved, your server

knows/remembers what was stored.

Cookies are a plain text data record of 5 variable-length fields:

 Expires: This showsthe date the cookie will expire. If this is blank, the

cookie will expire when the visitor quits the browser.

Preview from Notesale.co.uk

Page 311 of 322

C++

310

 The Localization library

 Exception Handling Classes

 Miscellaneous Support Library

Preview from Notesale.co.uk

Page 322 of 322

