
Lecture Notes CMSC 251

on inputI.
Tworst(n) = max

|I|=n
T (I).

Average-case time:is the average running time over all inputs of sizen? More generally, for each
input I, let p(I) denote the probability of seeing this input. The average-case running time is the
weight sum of running times, with the probability being the weight.

Tavg(n) =
∑
|I|=n

p(I)T (I).

We will almost always work with worst-case running time. This is because for many of the problems
we will work with, average-case running time is just too difficult to compute, and it is difficult to specify
a natural probability distribution on inputs that are really meaningful for all applications. It turns out
that for most of the algorithms we will consider, there will be only a constant factor difference between
worst-case and average-case times.

Running Time of the Brute Force Algorithm: Let us agree that the input size isn, and for the running
time we will count the number of time that any element ofP is accessed. Clearly we go through the
outer loopn times, and for each time through this loop, we go through the inner loopn times as well.
The condition in the if-statement makes four accesses toP . (Under C semantics, not all four need be
evaluated, but let’s ignore this since it will just complicate matters). The output statement makes two
accesses (toP [i].x andP [i].y) for each point that is output. In the worst case every point is maximal
(can you see how to generate such an example?) so these two access are made for each time through
the outer loop.

Thus we might express the worst-case running time as a pair of nested summations, one for thei-loop
and the other for thej-loop:

T (n) =
n∑

i=1

2 +

n∑
j=1

4

 .

These are not very hard summations to solve.
∑n

j=1 4 is just4n, and so

T (n) =
n∑

i=1

(4n + 2) = (4n + 2)n = 4n2 + 2n.

As mentioned before we will not care about the small constant factors. Also, we are most interested in
what happens asn gets large. Why? Because whenn is small, almost any algorithm is fast enough.
It is only for large values ofn that running time becomes an important issue. Whenn is large, then2

term will be much larger than then term, and so it will dominate the running time. We will sum this
analysis up by simply saying that the worst-case running time of the brute force algorithm isΘ(n2).
This is called theasymptotic growth rateof the function. Later we will discuss more formally what
this notation means.

Summations: (This is covered in Chapter 3 of CLR.) We saw that this analysis involved computing a sum-
mation. Summations should be familiar from CMSC 150, but let’s review a bit here. Given a finite
sequence of valuesa1, a2, . . . , an, their suma1+a2+ · · ·+an can be expressed insummation notation
as

n∑
i=1

ai.

If n = 0, then the value of the sum is the additive identity, 0. There are a number of simple algebraic
facts about sums. These are easy to verify by simply writing out the summation and applying simple

6

Preview from Notesale.co.uk

Page 6 of 93

Lecture Notes CMSC 251

high school algebra. Ifc is a constant (does not depend on the summation indexi) then

n∑
i=1

cai = c

n∑
i=1

ai and
n∑

i=1

(ai + bi) =
n∑

i=1

ai +
n∑

i=1

bi.

There are some particularly important summations, which you should probably commit to memory (or
at least remember their asymptotic growth rates). If you want some practice with induction, the first
two are easy to prove by induction.

Arithmetic Series: Forn ≥ 0,

n∑
i=1

i = 1 + 2 + · · ·+ n =
n(n + 1)

2
= Θ(n2).

Geometric Series: Let x 6= 1 be any constant (independent ofi), then forn ≥ 0,

n∑
i=0

xi = 1 + x + x2 + · · ·+ xn =
xn+1 − 1

x− 1
.

If 0 < x < 1 then this isΘ(1), and ifx > 1, then this isΘ(xn).

Harmonic Series: This arises often in probabilistic analyses of algorithms. Forn ≥ 0,

Hn =
n∑

i=1

1
i

= 1 +
1
2

+
1
3

+ · · ·+ 1
n
≈ lnn = Θ(lnn).

Lecture 3: Summations and Analyzing Programs with Loops

(Tuesday, Feb 3, 1998)
Read: Chapt. 3 in CLR.

Recap: Last time we presented an algorithm for the 2-dimensional maxima problem. Recall that the algo-
rithm consisted of two nested loops. It looked something like this:

Brute Force Maxima

Maxima(int n, Point P[1..n]) {
for i = 1 to n {

...
for j = 1 to n {

...
...

}
}

We were interested in measuring the worst-case running time of this algorithm as a function of the
input size,n. The stuff in the “. . . ” hasbeen omitted because it is unimportant for the analysis.

Last time we counted the number of times that the algorithm accessed a coordinate of any point. (This
was only one of many things that we could have chosen to count.) We showed that as a function ofn
in the worst case this quantity was

T (n) = 4n2 + 2n.

7

Preview from Notesale.co.uk

Page 7 of 93

Lecture Notes CMSC 251

Our sum is not quite of the right form, but we can split it into two sums:

M(i) =
2i∑

j=1

j +
2i∑

j=1

1.

The latter sum is clearly just2i. The former is an arithmetic series, and so we find can plug in2i for n,
andj for i in the formula above to yield the value:

M(i) =
2i(2i + 1)

2
+ 2i =

4i2 + 2i + 4i

2
= 2i2 + 3i.

Now, for the outermost sum and the running time of the entire algorithm we have

T (n) =
n∑

i=1

(2i2 + 3i).

Splitting this up (by the linearity of addition) we have

T (n) = 2
n∑

i=1

i2 + 3
n∑

i=1

i.

The latter sum is another arithmetic series, which we can solve by the formula above asn(n + 1)/2.
The former summation

∑n
i=1 i2 is not one that we have seen before. Later, we’ll show the following.

Quadratic Series: Forn ≥ 0.

n∑
i=1

i2 = 1 + 4 + 9 + · · ·+ n2 =
2n3 + 3n2 + n

6
.

Assuming this fact for now, we conclude that the total running time is:

T (n) = 2
2n3 + 3n2 + n

6
+ 3

n(n + 1)
2

,

which after some algebraic manipulations gives

T (n) =
4n3 + 15n2 + 11n

6
.

As before, we ignore all but the fastest growing term4n3/6, and ignore constant factors, so the total
running time isΘ(n3).

Solving Summations: In the example above, we saw an unfamiliar summation,
∑n

i=1 i2, which we claimed
could be solved in closed form as:

n∑
i=1

i2 =
2n3 + 3n2 + n

6
.

Solving a summation inclosed-formmeans that you can write an exact formula for the summation
without any embedded summations or asymptotic terms. In general, when you are presented with an
unfamiliar summation, how do you approach solving it, or if not solving it in closed form, at least
getting an asymptotic approximation. Here are a few ideas.

9

Preview from Notesale.co.uk

Page 9 of 93

Lecture Notes CMSC 251

Use crude bounds:One of the simples approaches, that usually works for arriving at asymptotic
bounds is to replace every term in the summation with a simple upper bound. For example,
in
∑n

i=1 i2 we could replace every term of the summation by the largest term. This would give

n∑
i=1

i2 ≤
n∑

i=1

n2 = n3.

Notice that this is asymptotically equal to the formula, since both areΘ(n3).
This technique works pretty well with relatively slow growing functions (e.g., anything growing
more slowly than than a polynomial, that is,ic for some constantc). It does not give good bounds
with faster growing functions, such as an exponential function like2i.

Approximate using integrals: Integration and summation are closely related. (Integration is in some
sense a continuous form of summation.) Here is a handy formula. Letf(x) be anymonotonically
increasing function(the function increases asx increases).∫ n

0

f(x)dx ≤
n∑

i=1

f(i) ≤
∫ n+1

1

f(x)dx.

210 3 ... n

f(x)f(2)

x
210 3 ... n n+1

f(2)

x

f(x)

Figure 2: Approximating sums by integrals.

Most running times are increasing functions of input size, so this formula is useful in analyzing
algorithm running times.
Using this formula, we can approximate the above quadratic sum. In this case,f(x) = x2.

n∑
i=1

i2 ≤
∫ n+1

1

x2dx =
x3

3

∣∣∣∣
n+1

x=1

=
(n + 1)3

3
− 1

3
=

n3 + 3n2 + 3n

3
.

Note that the constant factor on the leading term ofn3/3 is equal to the exact formula.
You might say, why is it easier to work with integrals than summations? The main reason is
that most people have more experience in calculus than in discrete math, and there are many
mathematics handbooks with lots of solved integrals.

Use constructive induction: This is a fairly good method to apply whenever you can guess the general
form of the summation, but perhaps you are not sure of the various constant factors. In this case,
the integration formula suggests a solution of the form:

n∑
i=1

i2 = an3 + bn2 + cn + d,

but we do not know whata, b, c, andd are. However, we believe that they are constants (i.e., they
are independent ofn).

10

Preview from Notesale.co.uk

Page 10 of 93

Lecture Notes CMSC 251

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running time
of the procedureMerge(A, p, q, r) . Let n = r − p + 1 denote the total length of both the left
and right subarrays. What is the running time of Merge as a function ofn? The algorithm contains four
loops (none nested in the other). It is easy to see that each loop can be executed at mostn times. (If
you are a bit more careful you can actually see that all the while-loops together can only be executedn
times in total, because each execution copies one new element to the arrayB, andB only has space for
n elements.) Thus the running time to Mergen items isΘ(n). Let us write this without the asymptotic
notation, simply asn. (We’ll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of arecurrence, that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given value ofn is defined in terms of values that are strictly smaller
thann. Finally, a recurrence has some basis values (e.g. forn = 1), which are defined explicitly.

Let’s see how to apply this to MergeSort. LetT (n) denote the worst case running time of MergeSort on
an array of lengthn. For concreteness we could count whatever we like: number of lines of pseudocode,
number of comparisons, number of array accesses, since these will only differ by a constant factor.
Since all of the real work is done in the Merge procedure, we will count the total time spent in the
Merge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is a
constant. Since we are ignoring constant factors, we can just writeT (n) = 1. When we call MergeSort
with a list of lengthn > 1, e.g.Merge(A, p, r) , wherer−p+1 = n, the algorithm first computes
q = b(p + r)/2c. The subarrayA[p..q], which containsq − p + 1 elements. You can verify (by some
tedious floor-ceiling arithmetic, or simpler by just trying an odd example and an even example) that is
of sizedn/2e. Thus the remaining subarrayA[q+1..r] hasbn/2c elements in it. How long does it take
to sort the left subarray? We do not know this, but becausedn/2e < n for n > 1, we can express this
asT (dn/2e). Similarly, we can express the time that it takes to sort the right subarray asT (bn/2c).
Finally, to merge both sorted lists takesn time, by the comments made above. In conclusion we have

T (n) =
{

1 if n = 1,
T (dn/2e) + T (bn/2c) + n otherwise.

Lecture 7: Recurrences

(Tuesday, Feb 17, 1998)
Read: Chapt. 4 on recurrences. Skip Section 4.4.

Divide and Conquer and Recurrences:Last time we introduced divide-and-conquer as a basic technique
for designing efficient algorithms. Recall that the basic steps in divide-and-conquer solution are (1)
divide the problem into a small number of subproblems, (2) solve each subproblem recursively, and (3)
combine the solutions to the subproblems to a global solution. We also described MergeSort, a sorting
algorithm based on divide-and-conquer.

Because divide-and-conquer is an important design technique, and because it naturally gives rise to
recursive algorithms, it is important to develop mathematical techniques for solving recurrences, either
exactly or asymptotically. To do this, we introduced the notion of arecurrence, that is, a recursively
defined function. Today we discuss a number of techniques for solving recurrences.

MergeSort Recurrence: Here is the recurrence we derived last time for MergeSort. Recall thatT (n) is the
time to run MergeSort on a list of sizen. We argued that if the list is of length 1, then the total sorting
time is a constantΘ(1). If n > 1, then we must recursively sort two sublists, one of sizedn/2e and
the other of sizebn/2c, and the nonrecursive part tookΘ(n) time for splitting the list (constant time)

23

Preview from Notesale.co.uk

Page 23 of 93

Lecture Notes CMSC 251

We have this messy summation to solve though. First observe that the valuen remains constant
throughout the sum, and so we can pull it out front. Also note that we can write3i/4i and(3/4)i.

T (n) = nlog4 3 + n

(log4 n)−1∑
i=0

(
3
4

)i

.

Note that this is a geometric series. We may apply the formula for the geometric series, which gave in
an earlier lecture. Forx 6= 1:

m∑
i=0

xi =
xm+1 − 1

x− 1
.

In this casex = 3/4 andm = log4 n− 1. We get

T (n) = nlog4 3 + n
(3/4)log4 n − 1

(3/4)− 1
.

Applying our favorite log identity once more to the expression in the numerator (witha = 3/4 and
b = 4) we get

(3/4)log4 n = nlog4(3/4) = n(log4 3−log4 4) = n(log4 3−1) =
nlog4 3

n
.

If we plug this back in, we have

T (n) = nlog4 3 + n
nlog4 3

n − 1
(3/4)− 1

= nlog4 3 +
nlog4 3 − n

−1/4

= nlog4 3 − 4(nlog4 3 − n)
= nlog4 3 + 4(n− nlog4 3)
= 4n− 3nlog4 3.

So the final result (at last!) is

T (n) = 4n− 3nlog4 3 ≈ 4n− 3n0.79 ∈ Θ(n).

It is interesting to note the unusual exponent oflog4 3 ≈ 0.79. We have seen that two nested loops typi-
cally leads toΘ(n2) time, and three nested loops typically leads toΘ(n3) time, so it seems remarkable
that we could generate a strange exponent like0.79 as part of a running time. However, as we shall
see, this is often the case in divide-and-conquer recurrences.

Lecture 8: More on Recurrences

(Thursday, Feb 19, 1998)
Read: Chapt. 4 on recurrences, skip Section 4.4.

Recap: Last time we discussed recurrences, that is, functions that are defined recursively. We discussed
their importance in analyzing divide-and-conquer algorithms. We also discussed two methods for solv-
ing recurrences, namely guess-and-verify (by induction), and iteration. These are both very powerful
methods, but they are quite “mechanical”, and it is difficult to get a quick and intuitive sense of what
is going on in the recurrence. Today we will discuss two more techniques for solving recurrences. The
first provides a way of visualizing recurrences and the second, called the Master Theorem, is a method
of solving many recurrences that arise in divide-and-conquer applications.

27

Preview from Notesale.co.uk

Page 27 of 93

Lecture Notes CMSC 251

Finally, in the recurrenceT (n) = 4T (n/3) + n (which corresponds to Case 1), most of the work is
done at the leaf level of the recursion tree. This can be seen if you perform iteration on this recurrence,
the resulting summation is

n

log3 n∑
i=0

(
4
3

)i

.

(You might try this to see if you get the same result.) Since4/3 > 1, as we go deeper into the levels
of the tree, that is deeper into the summation, the terms are growing successively larger. The largest
contribution will be from the leaf level.

Lecture 9: Medians and Selection

(Tuesday, Feb 24, 1998)
Read: Todays material is covered in Sections 10.2 and 10.3. You are not responsible for the randomized
analysis of Section 10.2. Our presentation of the partitioning algorithm and analysis are somewhat different
from the ones in the book.

Selection: In the last couple of lectures we have discussed recurrences and the divide-and-conquer method
of solving problems. Today we will give a rather surprising (and very tricky) algorithm which shows
the power of these techniques.

The problem that we will consider is very easy to state, but surprisingly difficult to solve optimally.
Suppose that you are given a set ofn numbers. Define therank of an element to be one plus the
number of elements that are smaller than this element. Since duplicate elements make our life more
complex (by creating multiple elements of the same rank), we will make the simplifying assumption
that all the elements are distinct for now. It will be easy to get around this assumption later. Thus, the
rank of an element is its final position if the set is sorted. The minimum is of rank 1 and the maximum
is of rankn.

Of particular interest in statistics is themedian. If n is odd then the median is defined to be the element
of rank (n + 1)/2. Whenn is even there are two natural choices, namely the elements of ranksn/2
and(n/2) + 1. In statistics it is common to return the average of these two elements. We will define
the median to be either of these elements.

Medians are useful as measures of thecentral tendencyof a set, especially when the distribution of val-
ues is highly skewed. For example, the median income in a community is likely to be more meaningful
measure of the central tendency than the average is, since if Bill Gates lives in your community then
his gigantic income may significantly bias the average, whereas it cannot have a significant influence
on the median. They are also useful, since in divide-and-conquer applications, it is often desirable to
partition a set about its median value, into two sets of roughly equal size. Today we will focus on the
following generalization, called theselection problem.

Selection: Given a setA of n distinct numbers and an integerk, 1 ≤ k ≤ n, output the element ofA
of rankk.

The selection problem can easily be solved inΘ(n log n) time, simply by sorting the numbers ofA,
and then returningA[k]. The question is whether it is possible to do better. In particular, is it possible
to solve this problem inΘ(n) time? We will see that the answer is yes, and the solution is far from
obvious.

The Sieve Technique:The reason for introducing this algorithm is that it illustrates a very important special
case of divide-and-conquer, which I call thesieve technique. We think of divide-and-conquer as break-
ing the problem into a small number of smaller subproblems, which are then solved recursively. The
sieve technique is a special case, where the number of subproblems is just 1.

31

Preview from Notesale.co.uk

Page 31 of 93

Lecture Notes CMSC 251

Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot
element, and the second is how to partition the array. Both need to be solved inΘ(n) time. The second
problem is a rather easy programming exercise. Later, when we discuss QuickSort, we will discuss
partitioning in detail.

For the rest of the lecture, let’s concentrate on how to choose the pivot. Recall that before we said that
we might think of the pivot as a random element ofA. Actually this is not such a bad idea. Let’s see
why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after
each partitioning step. Let’s consider the top of the recurrence, when we are givenA[1..n]. Suppose
that the pivotx turns out to be of rankq in the array. The partitioning algorithm will split the array into
A[1..q − 1] < x, A[q] = x andA[q + 1..n] > x. If k = q, then we are done. Otherwise, we need
to search one of the two subarrays. They are of sizesq − 1 andn − q, respectively. The subarray that
contains thekth smallest element will generally depend on whatk is, so in the worst case,k will be
chosen so that we have to recurse on the larger of the two subarrays. Thus ifq > n/2, then we may
have to recurse on the left subarray of sizeq − 1, and ifq < n/2, then we may have to recurse on the
right subarray of sizen− q. In either case, we are in trouble ifq is very small, or ifq is very large.

If we could selectq so that it is roughly of middle rank, then we will be in good shape. For example,
if n/4 ≤ q ≤ 3n/4, then the larger subarray will never be larger than3n/4. Earlier we said that we
might think of the pivot as a random element of the arrayA. Actually this works pretty well in practice.
The reason is that roughly half of the elements lie between ranksn/4 and3n/4, so picking a random
element as the pivot will succeed about half the time to eliminate at leastn/4. Of course, we might be
continuously unlucky, but a careful analysis will show that the expected running time is stillΘ(n). We
will return to this later.

Instead, we will describe a rather complicated method for computing a pivot element that achieves the
desired properties. Recall that we are given an arrayA[1..n], and we want to compute an elementx
whose rank is (roughly) betweenn/4 and3n/4. We will have to describe this algorithm at a very high
level, since the details are rather involved. Here is the description for SelectPivot:

Groups of 5: PartitionA into groups of 5 elements, e.g.A[1..5], A[6..10], A[11..15], etc. There will
be exactlym = dn/5e such groups (the last one might have fewer than 5 elements). This can
easily be done inΘ(n) time.

Group medians: Compute the median of each group of 5. There will bem group medians. We do not
need an intelligent algorithm to do this, since each group has only a constant number of elements.
For example, we could just BubbleSort each group and take the middle element. Each will take
Θ(1) time, and repeating thisdn/5e times will give a total running time ofΘ(n). Copy the group
medians to a new arrayB.

Median of medians: Compute the median of the group medians. For this, we will have to call the
selection algorithm recursively onB, e.g. Select(B, 1, m, k) , wherem = dn/5e, and
k = b(m + 1)/2c. Let x be this median of medians. Returnx as the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need
to argue thatx satisfies the desired rank properties.

Lemma: The elementx is of rank at leastn/4 and at most3n/4 in A.

Proof: We will show thatx is of rank at leastn/4. The other part of the proof is essentially sym-
metrical. To do this, we need to show that there are at leastn/4 elements that are less than or
equal tox. This is a bit complicated, due to the floor and ceiling arithmetic, so to simplify things
we will assume thatn is evenly divisible by 5. Consider the groups shown in the tabular form
above. Observe that at least half of the group medians are less than or equal tox. (Becausex is

34

Preview from Notesale.co.uk

Page 34 of 93

Lecture Notes CMSC 251

Sincen/5 and3n/4 are both less thann, we can apply the induction hypothesis, giving

T (n) ≤ c
n

5
+ c

3n

4
+ n = cn

(
1
5

+
3
4

)
+ n

= cn
19
20

+ n = n

(
19c
20

+ 1
)

.

This last expression will be≤ cn, provided that we selectc such thatc ≥ (19c/20) + 1.
Solving forc we see that this is true provided thatc ≥ 20.

Combining the constraints thatc ≥ 1, andc ≥ 20, we see that by lettingc = 20, we are done.

A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it
works for any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and
see what happens.)

Lecture 10: Long Integer Multiplication

(Thursday, Feb 26, 1998)
Read: Todays material on integer multiplication is not covered in CLR.

Office hours: The TA, Kyongil, will have extra office hours on Monday before the midterm, from 1:00-2:00.
I’ll have office hours from 2:00-4:00 on Monday.

Long Integer Multiplication: The following little algorithm shows a bit more about the surprising applica-
tions of divide-and-conquer. The problem that we want to consider is how to perform arithmetic on
long integers, and multiplication in particular. The reason for doing arithmetic on long numbers stems
from cryptography. Most techniques for encryption are based on number-theoretic techniques. For
example, the character string to be encrypted is converted into a sequence of numbers, and encryption
keys are stored as long integers. Efficient encryption and decryption depends on being able to perform
arithmetic on long numbers, typically containing hundreds of digits.

Addition and subtraction on large numbers is relatively easy. Ifn is the number of digits, then these
algorithms run inΘ(n) time. (Go back and analyze your solution to the problem on Homework 1). But
the standard algorithm for multiplication runs inΘ(n2) time, which can be quite costly when lots of
long multiplications are needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It
would seem surprising if there were, since for centuries people have used the same algorithm that we
all learn in grade school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We nor-
mally think of this algorithm as applying on a digit-by-digit basis, but if we partition ann digit number
into two “super digits” with roughlyn/2 each into longer sequences, the same multiplication rule still
applies.

To avoid complicating things with floors and ceilings, let’s just assume that the number of digitsn is
a power of 2. LetA andB be the two numbers to multiply. LetA[0] denote the least significant digit
and letA[n − 1] denote the most significant digit ofA. Because of the way we write numbers, it is
more natural to think of the elements ofA as being indexed in decreasing order from left to right as
A[n− 1..0] rather than the usualA[0..n− 1].

Let m = n/2. Let

w = A[n− 1..m] x = A[m− 1..0] and
y = B[n− 1..m] z = B[m− 1..0].

36

Preview from Notesale.co.uk

Page 36 of 93

Lecture Notes CMSC 251

Many applications involve sorting small integers (e.g. sorting characters, exam scores, last four digits
of a social security number, etc.). We present three algorithms based on the theme of speeding up
sorting in special cases, bynotmaking comparisons.

Counting Sort: Counting sort assumes that each input is an integer in the range from 1 tok. The algorithm
sorts inΘ(n + k) time. If k is known to beΘ(n), then this implies that the resulting sorting algorithm
is Θ(n) time.

The basic idea is to determine, for each element in the input array, itsrank in the final sorted array.
Recall that the rank of a item is the number of elements in the array that are less than or equal to it.
Notice that once you know the rank of every element, you sort by simply copying each element to the
appropriate location of the final sorted output array. The question is how to find the rank of an element
without comparing it to the other elements of the array? Counting sort uses the following three arrays.
As usualA[1..n] is the input array. Recall that although we usually think ofA as just being a list of
numbers, it is actually a list of records, and the numeric value is thekeyon which the list is being
sorted. In this algorithm we will be a little more careful to distinguish the entire recordA[j] from the
keyA[j].key .

We use three arrays:

A[1..n] : Holds the initial input.A[j] is a record.A[j].key is the integer key value on which to sort.

B[1..n] : Array of records which holds the sorted output.

R[1..k] : An array of integers.R[x] is the rank ofx in A, wherex ∈ [1..k].

The algorithm is remarkably simple, but deceptively clever. The algorithm operates by first construct-
ing R. We do this in two steps. First we setR[x] to be the number of elements ofA[j] whose key
is equal tox. We can do this initializingR to zero, and then for eachj, from 1 ton, we increment
R[A[j].key] by 1. Thus, ifA[j].key = 5, then the 5th element ofR is incremented, indicating that we
have seen one more 5. To determine the number of elements that are less than or equal tox, we replace
R[x] with the sum of elements in the subarrayR[1..x]. This is done by just keeping a running total of
the elements ofR.

Now R[x] now contains the rank ofx. This means that ifx = A[j].key then the final position ofA[j]
should be at positionR[x] in the final sorted array. Thus, we setB[R[x]] = A[j]. Notice that this
copies the entire record, not just the key value. There is a subtlety here however. We need to be careful
if there are duplicates, since we do not want them to overwrite the same location ofB. To do this, we
decrementR[i] after copying.

Counting Sort

CountingSort(int n, int k, array A, array B) { // sort A[1..n] to B[1..n]
for x = 1 to k do R[x] = 0 // initialize R
for j = 1 to n do R[A[j].key]++ // R[x] = #(A[j] == x)
for x = 2 to k do R[x] += R[x-1] // R[x] = rank of x
for j = n downto 1 do { // move each element of A to B

x = A[j].key // x = key value
B[R[x]] = A[j] // R[x] is where to put it
R[x]-- // leave space for duplicates

}
}

There are four (unnested) loops, executedk times,n times,k − 1 times, andn times, respectively,
so the total running time isΘ(n + k) time. If k = O(n), then the total running time isΘ(n). The
figure below shows an example of the algorithm. You should trace through a few examples, to convince
yourself how it works.

56

Preview from Notesale.co.uk

Page 56 of 93

Lecture Notes CMSC 251

Lecture 25: Longest Common Subsequence

(April 28, 1998)
Read: Section 16.3 in CLR.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are
a number of important problems here. Among the most important has to do with efficiently searching
for a substring or generally a pattern in large piece of text. (This is what text editors and functions
like ”grep” do when you perform a search.) In many instances you do not want to find a piece of text
exactly, but rather something that is ”similar”. This arises for example in genetics research. Genetic
codes are stored as long DNA molecules. The DNA strands can be broken down into a long sequences
each of which is one of four basic types: C, G, T, A.

But exact matches rarely occur in biology because of small changes in DNA replication. Exact sub-
string search will only find exact matches. For this reason, it is of interest to compute similarities
between strings that do not match exactly. The method of string similarities should be insensitive to
random insertions and deletions of characters from some originating string. There are a number of
measures of similarity in strings. The first is theedit distance, that is, the minimum number of single
character insertions, deletions, or transpositions necessary to convert one string into another. The other,
which we will study today, is that of determining the length of the longest common subsequence.

Longest Common Subsequence:Let us think of character strings as sequences of characters. Given two
sequencesX = 〈x1, x2, . . . , xm〉 andZ = 〈z1, z2, . . . , zk〉, we say thatZ is a subsequenceof X if
there is a strictly increasing sequence ofk indices〈i1, i2, . . . , ik〉 (1 ≤ i1 < i2 < . . . < ik ≤ n) such
thatZ = 〈Xi1 , Xi2 , . . . , Xik

〉. For example, letX = 〈ABRACADABRA〉 and letZ = 〈AADAA〉,
thenZ is a subsequence ofX.

Given two stringsX andY , the longest common subsequenceof X andY is a longest sequenceZ
which is both a subsequence ofX andY .

For example, letX be as before and letY = 〈YABBADABBADOO〉. Then the longest common
subsequence isZ = 〈ABADABA〉.
The Longest Common Subsequence Problem (LCS) is the following. Given two sequencesX =
〈x1, . . . , xm〉 andY = 〈y1, . . . , yn〉 determine a longest common subsequence. Note that it is not
always unique. For example the LCS of〈ABC〉 and〈BAC〉 is either〈AC〉 or 〈BC〉.

Dynamic Programming Solution: The simple brute-force solution to the problem would be to try all pos-
sible subsequences from one string, and search for matches in the other string, but this is hopelessly
inefficient, since there are an exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the
problem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem
that considering all pairs ofprefixeswill suffice for us. Aprefixof a sequence is just an initial string of
values,Xi = 〈x1, x2, . . . , xi〉. X0 is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let
c[i, j] denote the length of the longest common subsequence ofXi andYj . Eventually we are interested
in c[m,n] since this will be the LCS of the two entire strings. The idea is to computec[i, j] assuming
that we already know the values ofc[i′, j′] for i′ ≤ i andj′ ≤ j (but not both equal). We begin with
some observations.

Basis: c[i, 0] = c[j, 0] = 0. If either sequence is empty, then the longest common subsequence is
empty.

76

Preview from Notesale.co.uk

Page 76 of 93

Lecture Notes CMSC 251

Last characters match: Supposexi = yj . Example: LetXi = 〈ABCA〉 and letYj = 〈DACA〉.
Since both end inA, we claim that the LCS must also end inA. (We will explain why later.)
Since theA is part of the LCS we may find the overall LCS by removingA from both sequences
and taking the LCS ofXi−1 = 〈ABC〉 andYj−1 = 〈DAC〉 which is〈AC〉 and then addingA
to the end, giving〈ACA〉 as the answer. (At first you might object: But how did you know that
these twoA’s matched with each other. The answer is that we don’t, but it will not make the LCS
any smaller if we do.)

Thus, ifxi = yj thenc[i, j] = c[i− 1, j − 1] + 1.

Last characters do not match: Suppose thatxi 6= yj . In this casexi andyj cannot both be in the
LCS (since they would have to be the last character of the LCS). Thus eitherxi is not part of the
LCS, oryj is notpart of the LCS (and possiblybothare not part of the LCS).

In the first case the LCS ofXi andYj is the LCS ofXi−1 andYj , which isc[i − 1, j]. In the
second case the LCS is the LCS ofXi andYj−1 which isc[i, j − 1]. We do not know which is
the case, so we try both and take the one that gives us the longer LCS.

Thus, ifxi 6= yj thenc[i, j] = max(c[i− 1, j], c[i, j − 1]).

We left undone the business of showing that if both strings end in the same character, then the LCS
must also end in this same character. To see this, suppose by contradiction that both characters end in
A, and further suppose that the LCS ended in a different characterB. BecauseA is the last character
of both strings, it follows that this particular instance of the characterA cannot be used anywhere else
in the LCS. Thus, we can add it to the end of the LCS, creating a longer common subsequence. But
this would contradict the definition of the LCS as being longest.

Combining these observations we have the following rule:

c[i, j] =

0 if i = 0 or j = 0,
c[i− 1, j − 1] + 1 if i, j > 0 andxi = yj ,
max(c[i, j − 1], c[i− 1, j]) if i, j > 0 andxi 6= yj .

Implementing the Rule: The task now is to simply implement this rule. As with other DP solutions, we
concentrate on computing the maximum length. We will store some helpful pointers in a parallel array,
b[0..m, 0..n].

Longest Common Subsequence

LCS(char x[1..m], char y[1..n]) {
int c[0..m, 0..n]
for i = 0 to m do {

c[i,0] = 0 b[i,0] = SKIPX // initialize column 0
}
for j = 0 to n do {

c[0,j] = 0 b[0,j] = SKIPY // initialize row 0
}
for i = 1 to m do {

for j = 1 to n do {
if (x[i] == y[j]) {

c[i,j] = c[i-1,j-1]+1 // take X[i] and Y[j] for LCS
b[i,j] = ADDXY

}
else if (c[i-1,j] >= c[i,j-1]) { // X[i] not in LCS

c[i,j] = c[i-1,j]
b[i,j] = SKIPX

}
else { // Y[j] not in LCS

77

Preview from Notesale.co.uk

Page 77 of 93

Lecture Notes CMSC 251

Harder
NP−Hard

NP

NP−Complete

P Easy

Figure 36: Relationship between P, NP, and NP-complete.

problemA in polynomial time. You want to prove thatB cannot be solved in polynomial time. How
would you do this?

We want to show that
(A /∈ P)⇒ (B /∈ P).

To do this, we could prove the contrapositive,

(B ∈ P)⇒ (A ∈ P).

In other words, to show thatB is not solvable in polynomial time, we will suppose that there is an
algorithm that solvesB in polynomial time, and then derive a contradiction by showing thatA can be
solved in polynomial time.

How do we do this? Suppose that we have a subroutine that can solve any instance of problemB in
polynomial time. Then all we need to do is to show that we can use this subroutine to solve problemA
in polynomial time. Thus we have “reduced” problemA to problemB.

It is important to note here that this supposed subroutine is really afantasy. We know (or strongly
believe) thatA cannot be solved in polynomial time, thus we are essentially proving that the subroutine
cannot exist, implying thatB cannot be solved in polynomial time.

Let us consider an example to make this clearer. It is a fact that the problem of determining whether an
undirected graph has a Hamiltonian cycle (UHC) is an NP-complete problem. Thus, there is no known
polynomial time algorithm, and in fact experts widely believe that no such polynomial time algorithm
exists.

Suppose your boss of yours tells you that he wants you to find a polynomial solution to a different
problem, namely the problem of finding a Hamiltonian cycle in adirected graph(DHC). You think
about this for a few minutes, and you convince yourself that this is not a reasonable request. After all,
would allowing directions on the edges make this problem any easier? Suppose you and your boss both
agree that the UHC problem (for undirected graphs) is NP-complete, and so it would be unreasonable
for him to expect you to solve this problem. But he tells you that the directed version is easier. After
all, by adding directions to the edges you eliminate the ambiguity of which direction to travel along
each edge. Shouldn’t that make the problem easier? The problem is, how do you convince your boss
that he is making an unreasonable request (assuming your boss is willing to listen to logic).

You explain to your boss: “Suppose I could find an efficient (i.e., polynomial time) solution to the
DHC problem, then I’ll show you that it would then be possible to solve UHC in polynomial time.” In
particular, you will use the efficient algorithm for DHC (which you still haven’t written) as a subroutine
to solve UHC. Since you both agree that UHC is not efficiently solvable, this means that this efficient
subroutine for DHC must not exist. Therefore your boss agrees that he has given you an unreasonable
task.

85

Preview from Notesale.co.uk

Page 85 of 93

Lecture Notes CMSC 251

NP: is defined to be the class of all decision problems that can beverified in polynomial time. This
means that if the answer to the problem is “yes” then it is possible give some piece of information
that would allow someone to verify that this is the correct answer in polynomial time. (If the
answer is “no” then no such evidence need be given.)

Reductions: Last time we introduced the notion of a reduction. Given two problemsA andB, we say that
A is polynomially reducibleto B, if, given a polynomial time subroutine forB, we can use it to solve
A in polynomial time. (Note: This definition differs somewhat from the definition in the text, but it is
good enough for our purposes.) When this is so we will express this as

A ≤P B.

The operative word in the definition is “if”. We will usually apply the concept of reductions to problems
for which we strongly believe that there is no polynomial time solution.

Some important facts about reductions are:

Lemma: If A ≤P B andB ∈ P thenA ∈ P.

Lemma: If A ≤P B andA /∈ P thenB /∈ P.

Lemma: (Transitivity) If A ≤P B andB ≤P C thenA ≤P C.

The first lemma is obvious from the definition. To see the second lemma, observe thatB cannot be in
P, since otherwiseA would be in P by the first lemma, giving a contradiction. The third lemma takes a
bit of thought. It says that if you can use a subroutine forB to solveA in polynomial time, and you can
use a subroutine forC to solveB in polynomial time, then you can use the subroutine forC to solve
A in polynomial time. (This is done by replacing each call toB with its appropriate subroutine calls to
C).

NP-completeness:Last time we gave the informal definition that the NP-complete problems are the “hard-
est” problems in NP. Here is a more formal definition in terms of reducibility.

Definition: A decision problemB ∈ NP isNP-completeif

A ≤P B for all A ∈ NP.

In other words, if you could solveB in polynomial time, then every other problemA in NP would
be solvable in polynomial time.

We can use transitivity to simplify this.

Lemma: B is NP-complete if

(1) B ∈ NP and

(2) A ≤P B for some NP-complete problemA.

Thus, if you can solveB in polynomial time, then you could solveA in polynomial time. SinceA is
NP-complete, you could solve every problem in NP in polynomial time.

Example: 3-Coloring and Clique Cover: Let us consider an example to make this clearer. Consider the
following two graph problems.

3-coloring (3COL): Given a graphG, can each of its vertices be labeled with one of 3 different “col-
ors”, such that no two adjacent vertices have the same label.

Clique Cover (CC): Given a graphG and an integerk, can the vertices ofG be partitioned intok
subsets,V1, V2, . . . , Vk, such that

⋃
i Vi = V , and that eachVi is a clique ofG.

87

Preview from Notesale.co.uk

Page 87 of 93

Lecture Notes CMSC 251

graphG has a Hamiltonian cycle. Then this cycle starts at some first vertexu then visits all the other
vertices until coming to some final vertexv, and then comes back tou. There must be an edge{u, v}
in the graph. Let’s delete this edge so that the Hamiltonian cycle is now a Hamiltonian path, and then
invoke the HP subroutine on the resulting graph. How do we know which edge to delete? We don’t so
we could try them all. Then if the HP algorithm says “yes” for any deleted edge we would say “yes”
as well.

However, there is a problem here as well. It was our intention that the Hamiltonian path start atu
and end atv. But when we call the HP subroutine, we have no way to enforce this condition. If HP
says “yes”, we do not know that the HP started withu and ended withv. We cannot look inside the
subroutine or modify the subroutine. (Remember, it doesn’t really exist.) We can only call it and check
its answer.

Correct ReductionSecond Attempt

Both HC and HP exist There is both HC and HP

First Attempt

v

u

No HC and no HPNo HC, but after deletingNo HC but

there is HP

u

v y

x

There is HC, and after

deleting {u,v} there is HP

{u,v} there is HP

x

v

u
u

v y

Figure 40: Hamiltonian cycle to Hamiltonian path attempts.

So is there a way to force the HP subroutine to start the path atu and end it atv? The answer is yes,
but we will need to modify the graph to make this happen. In addition to deleting the edge fromu to
v, we will add an extra vertexx attached only tou and an extra vertexy attached only tov. Because
these vertices have degree one, if a Hamiltonian path exists, it must start atx and end aty.

This last reduction is the one that works. Here is how it works. Given a graphG for which we want to
determine whether it has a Hamiltonian cycle, we go through all the edges one by one. For each edge
{u, v} (hoping that it will be the last edge on a Hamiltonian cycle) we create a new graph by deleting
this edge and adding vertexx ontou and vertexy ontov. Let the resulting graph be calledG′. Then
we invoke our Hamiltonian Path subroutine to see whetherG′ has a Hamiltonian path. If it does, then
it must start atx to u, and end withv to y (or vice versa). Then we know that the original graph had
a Hamiltonian cycle (starting atu and ending aty). If this fails for all edges, then we report that the
original graph has no Hamiltonian cycle.

90

Preview from Notesale.co.uk

Page 90 of 93

