Lecture Notes CMSC 251

on input/.
Tworst(n) = ‘Iﬂgx T(I).
Average-case time:is the average running time over all inputs of siz2 More generally, for each
input I, let p(I) denote the probability of seeing this input. The average-case running time is the
weight sum of running times, with the probability being the weight.

Tuvg(n) = Y p(1)T(1).

[I|l=n

We will almost always work with worst-case running time. This is because for many of the problems
we will work with, average-case running time is just too difficult to compute, and it is difficult to specify
a natural probability distribution on inputs that are really meaningful for all applications. It turns out
that for most of the algorithms we will consider, there will be only a constant factor difference between
worst-case and average-case times.

Running Time of the Brute Force Algorithm: Let us agree that the input sizens and for the running
time we will count the number of time that any elementfdfs accessed. Clearly we go through the
outer loopn times, and for each time through this loop, we go through the inneridaapes as well.
The condition in the if-statement makes four accessé3. tlUnder C semantics, not all need be
evaluated, but let’s ignore this since it will just complicate matters). The ou ts@ t makes two
accesses (t&[i].z and P[i].y) for each point that is output. In the\é [@mry point is maximal
Ss

(can you see how to generate such an example7) so th re made for each time through
the outer loop
p@?)nested summations, oné lfmwghe

Thus we might express the worst-c Nae as a

and the other for thg-loop O
WY o)
%) eV \© a@

ese are not very hard su atlons to soEé‘_ 4 is just4n, and so

n

T(n) = (4n+2) = (4n+2)n = 4n> + 2n.
i=1

As mentioned before we will not care about the small constant factors. Also, we are most interested in
what happens as gets large. Why? Because whens small, almost any algorithm is fast enough.

It is only for large values of, that running time becomes an important issue. Whéslarge, then?

term will be much larger than the term, and so it will dominate the running time. We will sum this
analysis up by simply saying that the worst-case running time of the brute force algorithtn3s.

This is called theasymptotic growth ratef the function. Later we will discuss more formally what

this notation means.

Summations: (This is covered in Chapter 3 of CLR.) We saw that this analysis involved computing a sum-
mation. Summations should be familiar from CMSC 150, but let's review a bit here. Given a finite
sequence of values , as, . . ., a,, their suma; +as+- - - +a,, can be expressed summation notation

as
n
>
1=1

If n = 0, then the value of the sum is the additive identity, 0. There are a number of simple algebraic
facts about sums. These are easy to verify by simply writing out the summation and applying simple

Lecture Notes CMSC 251

high school algebra. If is a constant (does not depend on the summation ifjdéen
ZC(M:CZCM and ZaZer ZalJer
i=1 =1 =1

There are some patrticularly important summations, which you should probably commit to memory (or
at least remember their asymptotic growth rates). If you want some practice with induction, the first
two are easy to prove by induction.

Arithmetic Series: Forn > 0,
n ’ n)
E i=1424---+n=——-—=0(n").

Geometric Series: Let x # 1 be any constant (independent:pfthen forn > 0,

"t — 1

Zwi:1+x+m2+~-~+x”:
. z—1

If 0 <z < 1then thisisO(1), and ifz > 1, then this iSO (x

Harmonic Series: This arises often in probabilistic analyses of ?@hn@& u
H, = g ? 1 —|— ﬁ e— 1nn O(lnn).

Lecture 3: S and 6@\/{699 grams with Loops
(Tu@x/@eb 3, 1998)

Read: Chapt. 3in CLR.

Recap: Last time we presented an algorithm for the 2-dimensional maxima problem. Recall that the algo-
rithm consisted of two nested loops. It looked something like this:

Brute Force Maxima

Maxima(int n, Point P[1..n]) {
fori = 1 ton {

for j = 1 ton {

We were interested in measuring the worst-case running time of this algorithm as a function of the
input sizen. The stuffin the ¥..” hasbeen omitted because it is unimportant for the analysis.

Last time we counted the number of times that the algorithm accessed a coordinate of any point. (This
was only one of many things that we could have chosen to count.) We showed that as a funetion of
in the worst case this quantity was

T(n) = 4n* + 2n.

Lecture Notes CMSC 251

Our sum is not quite of the right form, but we can split it into two sums:
2 21
WA
j=1 j=1

The latter sum is clearly jugt. The former is an arithmetic series, and so we find can plag far n,
andj for ¢ in the formula above to yield the value:

2i(2i + 1 402 4 20 + 4
HRILY o AU g

M) === 2

Now, for the outermost sum and the running time of the entire algorithm we have

n

T(n) = (2% + 3i).

i=1

Splitting this up (by the linearity of addition) we have

=2 Z i +3 Z i. K
e
The latter sum is another ar|thmet|c series, which we can s éxe;e a aboye asl)/2.

The former summatiod";., i? is not one that we h ter, we'll show the following.

Quadratic Series: Forn > 0. NO 9
ovieW 5 S OV
?ss ming this fact for nowa c@’%e that the total running time is:

|
2n3 2 1
iy = 2Bl t1)

which after some algebraic manipulations gives

4n3 4+ 15n2% + 11n

T(n) = .

As before, we ignore all but the fastest growing tetn¥ /6, and ignore constant factors, so the total
running time is9(n?).

Solving Summations: In the example above, we saw an unfamiliar summatfioi, , i?, which we claimed
could be solved in closed form as:

"N, 20 +3n2+n
e
=1
Solving a summation irclosed-formmeans that you can write an exact formula for the summation
without any embedded summations or asymptotic terms. In general, when you are presented with an
unfamiliar summation, how do you approach solving it, or if not solving it in closed form, at least
getting an asymptotic approximation. Here are a few ideas.

Lecture Notes CMSC 251

Use crude bounds: One of the simples approaches, that usually works for arriving at asymptotic
bounds is to replace every term in the summation with a simple upper bound. For example,
in "7, i? we could replace every term of the summation by the largest term. This would give

n n
E i2 < E n? =nd.
i=1 i=1

Notice that this is asymptotically equal to the formula, since bottedre’).

This technique works pretty well with relatively slow growing functions (e.g., anything growing
more slowly than than a polynomial, thati$for some constant). It does not give good bounds
with faster growing functions, such as an exponential function2ike

Approximate using integrals: Integration and summation are closely related. (Integration is in some
sense a continuous form of summation.) Here is a handy formulaf (k¢tbe anymonotonically
increasing functior{the function increases asincreases).

/ ")z < Z_; i< | " @)

2) - (x) i2) 46 f8 \)\4

X
(e\f rAC ’L 123.. n n+1
P I:Rrg%roximating sums by integrals.

Most running times are increasing functions of input size, so this formula is useful in analyzing
algorithm running times.
Using this formula, we can approximate the above quadratic sum. In thisfdases 2.

3

n n+1 T
Ziz < / 22dx = 3
i=1 1

Note that the constant factor on the leading term®f3 is equal to the exact formula.

You might say, why is it easier to work with integrals than summations? The main reason is
that most people have more experience in calculus than in discrete math, and there are many
mathematics handbooks with lots of solved integrals.

Use constructive induction: This is a fairly good method to apply whenever you can guess the general
form of the summation, but perhaps you are not sure of the various constant factors. In this case,
the integration formula suggests a solution of the form:

U411 0B 430 430
3 3 3 '

z=1

i? =an®+bn?+cen+d,
=1
but we do not know what, b, ¢, andd are. However, we believe that they are constants (i.e., they
are independent of).

10

Lecture Notes CMSC 251

Analysis: What remains is to analyze the running time of MergeSort. First let us consider the running time
of the proceduréMerge(A, p, g, 1) . Letn = r — p + 1 denote the total length of both the left
and right subarrays. What is the running time of Merge as a functiaf? gthe algorithm contains four
loops (none nested in the other). It is easy to see that each loop can be executedratimest (If
you are a bit more careful you can actually see that all the while-loops together can only be executed
times in total, because each execution copies one new element to thé&aemagB only has space for
n elements.) Thus the running time to Mergéems is©(n). Let us write this without the asymptotic
notation, simply as. (We'll see later why we do this.)

Now, how do we describe the running time of the entire MergeSort algorithm? We will do this through
the use of arecurrence that is, a function that is defined recursively in terms of itself. To avoid
circularity, the recurrence for a given valuerofs defined in terms of values that are strictly smaller
thann. Finally, a recurrence has some basis values (e.g ferl), which are defined explicitly.

Let's see how to apply this to MergeSort. [tr) denote the worst case running time of MergeSort on

an array of length. For concreteness we could count whatever we like: number of lines of pseudocode,
number of comparisons, number of array accesses, since these will only differ by a constant factor.
Since all of the real work is done in the Merge procedure, we will count the total time spent in the
Merge procedure.

First observe that if we call MergeSort with a list containing a single element, then the running time is a
constant. Since we are ignoring constant factors, we can justTiite= 1. When we gai rgeSort

with a list of lengthn, > 1, e.g.Merge(A, p, r) ,wherer—p+1 = n, the m j omputes

g = |(p+r)/2]. The subarray[p..q], which containg; — p + 1 el S. n verify (by some

tedious floor-ceiling arithmetic, or simpler by just tryin lé and an even example) that is
&gﬁe ements in it. How long does it take

of size[n/2]. Thus the remaining subarr 1
to sort the left subarray? We do no W becduge ?aor n > 1, we can express this
asT'([n/2]). Similarly, w e§stthe time that it ke t the right subarray|ag2]|).

Finally, to me_rgeebq\iort i akestime,z% c nts made above. In conclusion we have
\, \ e if n =1,
P (e T(”)ﬂagﬂ) +T(|n/2]) +n otherwise.

Lecture 7: Recurrences

(Tuesday, Feb 17, 1998)
Read: Chapt. 4 on recurrences. Skip Section 4.4.

Divide and Conquer and Recurrences:Last time we introduced divide-and-conquer as a basic technique
for designing efficient algorithms. Recall that the basic steps in divide-and-conquer solution are (1)
divide the problem into a small number of subproblems, (2) solve each subproblem recursively, and (3)
combine the solutions to the subproblems to a global solution. We also described MergeSort, a sorting
algorithm based on divide-and-conquer.

Because divide-and-conquer is an important design technique, and because it naturally gives rise to
recursive algorithms, it is important to develop mathematical techniques for solving recurrences, either
exactly or asymptotically. To do this, we introduced the notion cd@urrence that is, a recursively
defined function. Today we discuss a number of techniques for solving recurrences.

MergeSort Recurrence: Here is the recurrence we derived last time for MergeSort. Recallihatis the
time to run MergeSort on a list of size We argued that if the list is of length 1, then the total sorting
time is a constan®(1). If n > 1, then we must recursively sort two sublists, one of $izg2] and
the other of sizén/2|, and the nonrecursive part toéKn) time for splitting the list (constant time)

23

Lecture Notes CMSC 251

We have this messy summation to solve though. First observe that the wakmains constant
throughout the sum, and so we can pull it out front. Also note that we can3tyité and(3/4)".

(logg n)—1 3\ !
T _ log, 3 < .
(n)=n +n Z (4)

=0
Note that this is a geometric series. We may apply the formula for the geometric series, which gave in

an earlier lecture. For # 1:
m m+1 _ 1

> =T

, ooz —1
1=0

In this caser = 3/4 andm = log, n — 1. We get

logyn _
T(TL) _ 7,Llog43 + TL(3/4) 4 1

(3/4) -1
Applying our favorite log identity once more to the expression in the numerator (with3/4 and
b = 4) we get
n10g4 3
(3/4)10g4 no_ n10g4(3/4) — n(10g4 3—logy4) _ n(10g4 3-1) _

n
If we plug this back in, we have u\k

So the final result (at last!) is
T(n) = 4n — 3n'°843 =~ 4n — 30" € O(n).

Itis interesting to note the unusual exponeniogf, 3 ~ 0.79. We have seen that two nested loops typi-
cally leads ta®(n?) time, and three nested loops typically lead®i@?) time, so it seems remarkable
that we could generate a strange exponent(ik® as part of a running time. However, as we shall
see, this is often the case in divide-and-conquer recurrences.

Lecture 8: More on Recurrences

(Thursday, Feb 19, 1998)
Read: Chapt. 4 on recurrences, skip Section 4.4.

Recap: Last time we discussed recurrences, that is, functions that are defined recursively. We discussed
their importance in analyzing divide-and-conquer algorithms. We also discussed two methods for solv-
ing recurrences, namely guess-and-verify (by induction), and iteration. These are both very powerful
methods, but they are quite “mechanical”, and it is difficult to get a quick and intuitive sense of what
is going on in the recurrence. Today we will discuss two more techniques for solving recurrences. The
first provides a way of visualizing recurrences and the second, called the Master Theorem, is a method
of solving many recurrences that arise in divide-and-conquer applications.

27

Lecture Notes CMSC 251

Finally, in the recurrenc&'(n) = 47'(n/3) + n (which corresponds to Case 1), most of the work is
done at the leaf level of the recursion tree. This can be seen if you perform iteration on this recurrence,

the resulting summation is
logsn i
3 (5)

(You might try this to see if you get the same result.) Sii¢g > 1, as we go deeper into the levels
of the tree, that is deeper into the summation, the terms are growing successively larger. The largest
contribution will be from the leaf level.

Lecture 9: Medians and Selection

(Tuesday, Feb 24, 1998)

Read: Todays material is covered in Sections 10.2 and 10.3. You are not responsible for the randomized
analysis of Section 10.2. Our presentation of the partitioning algorithm and analysis are somewhat different
from the ones in the book.

Selection: In the last couple of lectures we have discussed recurrences and the divide-and-conquer method
of solving problems. Today we will give a rather surprising (and very tricky) algo\& hich shows

the power of these techniques.

The problem that we will consider is very easy to state, but su gl@@]lf to solve optimally.
Suppose that you are given a setrohumbers. De |n Iement to be one plus the
number of elements that are smaller than,thi ce dupllcate elements make our life more
complex (by creating muItlpIe elem w e rank) | make the simplifying assumption

that all the elements are Q llbe e -ﬁ d this assumption later. Thus, the
rank of an elgmen i\t fi ion if th r@ he minimum is of rank 1 and the maximum

is of rankg’
? ﬁ. interestin s %am If nis odd then the median is defined to be the element
(n+1)/2. Whe ere are two natural choices, namely the elements of raizks
and(n/2) + 1. In statistics |t is common to return the average of these two elements. We will define
the median to be either of these elements.

Medians are useful as measures ofthetral tendencyf a set, especially when the distribution of val-

ues is highly skewed. For example, the median income in a community is likely to be more meaningful

measure of the central tendency than the average is, since if Bill Gates lives in your community then
his gigantic income may significantly bias the average, whereas it cannot have a significant influence
on the median. They are also useful, since in divide-and-conquer applications, it is often desirable to
partition a set about its median value, into two sets of roughly equal size. Today we will focus on the

following generalization, called theelection problem

Selection: Given a setA of n distinct numbers and an integer1 < k& < n, output the element oft
of rankk.

The selection problem can easily be solvedifn log) time, simply by sorting the numbers df,

and then returningl[k]. The question is whether it is possible to do better. In particular, is it possible
to solve this problem i®(n) time? We will see that the answer is yes, and the solution is far from
obvious.

The Sieve Technigue: The reason for introducing this algorithm is that it illustrates a very important special
case of divide-and-conquer, which | call tsieve techniquéle think of divide-and-conquer as break-
ing the problem into a small number of smaller subproblems, which are then solved recursively. The
sieve technique is a special case, where the number of subproblems is just 1.

31

Lecture Notes CMSC 251

Choosing the Pivot: There are two issues that we have left unresolved. The first is how to choose the pivot
element, and the second is how to partition the array. Both need to be sol@éd)itime. The second
problem is a rather easy programming exercise. Later, when we discuss QuickSort, we will discuss
partitioning in detail.

For the rest of the lecture, let's concentrate on how to choose the pivot. Recall that before we said that
we might think of the pivot as a random elementAf Actually this is not such a bad idea. Let's see
why.

The key is that we want the procedure to eliminate at least some constant fraction of the array after
each partitioning step. Let’s consider the top of the recurrence, when we are4jiven]. Suppose

that the pivotr turns out to be of rank in the array. The partitioning algorithm will split the array into
All.g —1] < z, Alq] = v andAfg + 1..n] > z. If k = ¢, then we are done. Otherwise, we need

to search one of the two subarrays. They are of sjzed andn — g, respectively. The subarray that
contains thekth smallest element will generally depend on whas, so in the worst casé;, will be

chosen so that we have to recurse on the larger of the two subarrays. Thusrif/2, then we may

have to recurse on the left subarray of sjze 1, and if¢ < n/2, then we may have to recurse on the
right subarray of size. — q. In either case, we are in troublegifis very small, or ifg is very large.

If we could select; so that it is roughly of middle rank, then we will be in good shape. For example,
if n/4 < q < 3n/4, then the larger subarray will never be larger tBari4. Earlier we said that we
might think of the pivot as a random element of the atdayActually this works pretty KQactlce.
The reason is that roughly half of the elements lie between rapksnd3n/ ﬁ random
element as the pivot will succeed about half the time to eliminat $ rse we might be
continuously unlucky, but a careful analysrs will sh e@e d'runnrng time B(still We
will return to this later.

Instead, we will describe a rather icaje hod fi % g a pivot element that achieves the
desired properties. Rec al |ven a ar gan ant to compute an elemant
whose rank is b 4 and3n/ . |II to describe this algorithm at a very high
Ievel a¥ls are rather j e is the description for Seileutt

erogps of 5: Partition A i ga' f5 elements, e.gi[1..5], A[6..10], A[11..15], etc. There will
be exactlym = [n/5] such groups (the last one might have fewer than 5 elements). This can
easily be done i®(n) time.

Group medians: Compute the median of each group of 5. There wilhbgroup medians. We do not
need an intelligent algorithm to do this, since each group has only a constant number of elements.
For example, we could just BubbleSort each group and take the middle element. Each will take
O(1) time, and repeating this:/5] times will give a total running time a®(»). Copy the group
medians to a new array.

Median of medians: Compute the median of the group medians. For this, we will have to call the
selection algorithm recursively oB, e.g. Select(B, 1, m, k) , wherem = [n/5], and
k= [(m+1)/2]. Letz be this median of medians. Returras the desired pivot.

The algorithm is illustrated in the figure below. To establish the correctness of this procedure, we need
to argue that: satisfies the desired rank properties.

Lemma: The element: is of rank at least./4 and at mos8n /4 in A.

Proof: We will show thatz is of rank at least/4. The other part of the proof is essentially sym-
metrical. To do this, we need to show that there are at leastelements that are less than or
equal tozx. This is a bit complicated, due to the floor and ceiling arithmetic, so to simplify things
we will assume that: is evenly divisible by 5. Consider the groups shown in the tabular form
above. Observe that at least half of the group medians are less than or equéBézause: is

34

Lecture Notes CMSC 251

Sincen/5 and3n/4 are both less than, we can apply the induction hypothesis, giving
n 3n 1 3
< — — = — 4 =
T(n) < 05+c4+n cn<5+4>+n

(e)

This last expression will bel ¢n, provided that we seleetsuch thate > (19¢/20) + 1
Solving forc we see that this is true provided that 20.

Combining the constraints that> 1, andc > 20, we see that by letting = 20, we are done.
A natural question is why did we pick groups of 5? If you look at the proof above, you will see that it

works for any value that is strictly greater than 4. (You might try it replacing the 5 with 3, 4, or 6 and
see what happens.)

Lecture 10: Long Integer Multiplication

(Thursday, Feb 26, 1998)
Read: Todays material on integer multiplication is not covered in CLR.

Office hours: The TA, Kyongil, will have extra office hours on Monday \efée tMom 1:00-2:00.

I'll have office hours from 2:00-4:00 on Monday.

Long Integer Multiplication: The following I|ttle a blt more about the surprising applica-
tions of divide-and-conquer. The ant_to r is how to perform arithmetic on
long integers, and muIt|p mular e rsmi arithmetic on long numbers stems
from cryptogxa n ques for 6 ased on number-theoretic techniques. For

onverted into a sequence of numbers, and encryption

exa v e strlng tob
%és ed as long i @‘ t encryptlon and decryption depends on being able to perform
etic on long numbt? containing hundreds of digits.
Addition and subtraction on large numbers is relatively easy. iff the number of digits, then these
algorithms run i@ (n) time. (Go back and analyze your solution to the problem on Homework 1). But
the standard algorithm for multiplication runs @(n?) time, which can be quite costly when lots of
long multiplications are needed.

This raises the question of whether there is a more efficient way to multiply two very large numbers. It
would seem surprising if there were, since for centuries people have used the same algorithm that we
all learn in grade school. In fact, we will see that it is possible.

Divide-and-Conquer Algorithm: We know the basic grade-school algorithm for multiplication. We nor-
mally think of this algorithm as applying on a digit-by-digit basis, but if we partitiom aligit number
into two “super digits” with roughlyn /2 each into longer sequences, the same multiplication rule still
applies.

To avoid complicating things with floors and ceilings, let’s just assume that the number ofrdigits
a power of 2. Letd and B be the two numbers to multiply. Let[0] denote the least significant digit
and letA[n — 1] denote the most significant digit of. Because of the way we write numbers, it is
more natural to think of the elements dfas being indexed in decreasing order from left to right as
Aln — 1..0] rather than the usual[0..n — 1].

Letm =n/2. Let

w = An—1.m] =
Bln —1..m)] z =

<
\
8
|

36

Lecture Notes CMSC 251

Many applications involve sorting small integers (e.g. sorting characters, exam scores, last four digits
of a social security number, etc.). We present three algorithms based on the theme of speeding up
sorting in special cases, Ipt making comparisons.

Counting Sort: Counting sort assumes that each input is an integer in the range frof The algorithm
sorts inO(n + k) time. If k is known to bed(n), then this implies that the resulting sorting algorithm
is O(n) time.
The basic idea is to determine, for each element in the input arrawniksin the final sorted array.
Recall that the rank of a item is the number of elements in the array that are less than or equal to it.
Notice that once you know the rank of every element, you sort by simply copying each element to the
appropriate location of the final sorted output array. The question is how to find the rank of an element
without comparing it to the other elements of the array? Counting sort uses the following three arrays.
As usualA[1..n] is the input array. Recall that although we usually think4oés just being a list of
numbers, it is actually a list of records, and the numeric value ikély®on which the list is being
sorted. In this algorithm we will be a little more careful to distinguish the entire redgfffrom the
key Alj].key.

We use three arrays:

B[l..n] : Array of records which holds the sorted output.
R[1..k] : Anarray of integersR[z] is the rank ofr in A, wherez € {. C

A[l..n] : Holds the initial input.A[j] is a record.A[j].key is the integer key value on Whv sort.

The algorithm is remarkably simple, but deceptlvel gorlthm operates by first construct-
ing R. We do this in two steps. Flrst We & numb f elements df/j] whose key
|s equal toz. We can do thls |n|t|a nd tﬁ from 1 ton, we increment

jl.key] by 1. Thus |f 5 then th cremented indicating that we
have seen one ermme the n

nts that are less than orequaltplace
€v§’$é e ements |n ThIS is done by just keeping a running total of
%WR now contains tEank of. This means that it = A[j].key then the final position ofi[;]
should be at positior[z] in the final sorted array. Thus, we sB{R[z]] = A[j]. Notice that this
copies the entire record, not just the key value. There is a subtlety here however. We need to be careful
if there are duplicates, since we do not want them to overwrite the same locatinTof do this, we

decremenfR|[i] after copying.
Counting Sort

CountingSort(int n, int k, array A, array B) { // sort A[l..n] to B[l..n]

for x = 1 to k do R[x] =0 /I initialize R

for j = 1 to n do R[A[].key]++ /I RIX] = #(A[l] == x)

for x = 2 to k do R[x] += R[x-1] /I R[x] = rank of x

for j = n downto 1 do { /I move each element of A to B
x = A[j].key /I x = key value
B[RIX]] = A[j] /I R[xX] is where to put it
R[x]-- I/l leave space for duplicates

}

There are four (unnested) loops, execuketimes,n times, k — 1 times, andn times, respectively,

so the total running time i®(n + k) time. If & = O(n), then the total running time i®(n). The

figure below shows an example of the algorithm. You should trace through a few examples, to convince
yourself how it works.

56

Lecture Notes CMSC 251

Lecture 25: Longest Common Subsequence

(April 28, 1998)
Read: Section 16.3 in CLR.

Strings: One important area of algorithm design is the study of algorithms for character strings. There are
a number of important problems here. Among the most important has to do with efficiently searching
for a substring or generally a pattern in large piece of text. (This is what text editors and functions
like "grep” do when you perform a search.) In many instances you do not want to find a piece of text
exactly, but rather something that is "similar”. This arises for example in genetics research. Genetic
codes are stored as long DNA molecules. The DNA strands can be broken down into a long sequences
each of which is one of four basic types: C, G, T, A.

But exact matches rarely occur in biology because of small changes in DNA replication. Exact sub-
string search will only find exact matches. For this reason, it is of interest to compute similarities
between strings that do not match exactly. The method of string similarities should be insensitive to
random insertions and deletions of characters from some originating string. There are a number of
measures of similarity in strings. The first is thdit distancethat is, the minimum number of single
character insertions, deletions, or transpositions necessary to convert one string into another. The other,
which we will study today, is that of determining the length of the longest commorQ guence.

sequenceX = (r1,Z2,...,Tm) ANAZ = (z1,29,...,2k), WE subsequencef X if
there is a strictly increasing sequencekahdices(i m ; €% <ig < ... < i <m)such
thatZ = (X;,, X,,,..., X;,). For example é ACAD@BA} and letZ = (AADAA),

Longest Common Subsequencel.et us think of character strings as i en @ha ers. Given two
@ is

thenZ is a subsequence of.

Given two stringsX an Y‘t‘ng&}t-}o ut@&en%(andY is a longest sequencé
which is bo ‘ﬁ entesfandy’ (6
?’fé@' , TetX be asﬁ@@@— (YABBADABBADOO). Then the longest common
ub

quence i8 = (ABA .
The Longest Common Subsequence Problem (LCS) is the following. Given two sequénces
(x1,...,zm) @andY = (y1,...,y,) determine a longest common subsequence. Note that it is not
always unique. For example the LCS(efBC) and(BAC) is either(AC) or (BC').

Dynamic Programming Solution: The simple brute-force solution to the problem would be to try all pos-
sible subsequences from one string, and search for matches in the other string, but this is hopelessly
inefficient, since there are an exponential number of possible subsequences.

Instead, we will derive a dynamic programming solution. In typical DP fashion, we need to break the
problem into smaller pieces. There are many ways to do this for strings, but it turns out for this problem
that considering all pairs gfrefixeswill suffice for us. Aprefixof a sequence is just an initial string of
values,X; = (x1,x2,...,2;). Xo is the empty sequence.

The idea will be to compute the longest common subsequence for every possible pair of prefixes. Let
cli, j] denote the length of the longest common subsequenke afdY;. Eventually we are interested

in ¢[m, n] since this will be the LCS of the two entire strings. The idea is to comgutg] assuming

that we already know the values @f’, j'] for i’ < ¢ andj’ < j (but not both equal). We begin with
some observations.

Basis: c[i,0] = ¢[j,0] = 0. If either sequence is empty, then the longest common subsequence is
empty.

76

Lecture Notes CMSC 251

Impl

Last characters match: Supposer; = y;. Example: LetX; = (ABCA) and letY; = (DACA).
Since both end iM, we claim that the LCS must also end.ih (We will explain why later.)
Since theA is part of the LCS we may find the overall LCS by removitdrom both sequences
and taking the LCS oX,_; = (ABC) andY;_; = (DAC) which is(AC) and then addingl
to the end, giving AC A) as the answer. (At first you might object: But how did you know that
these twaA’s matched with each other. The answer is that we don't, but it will not make the LCS
any smaller if we do.)

Thus, ifz; = y; thenc[i, j] = c[i — 1,5 — 1] + 1.

Last characters do not match: Suppose that; # y;. In this caser; andy; cannot both be in the
LCS (since they would have to be the last character of the LCS). Thus ejtienot part of the
LCS, ory; is notpart of the LCS (and possiblyothare not part of the LCS).

In the first case the LCS oX; andY; is the LCS ofX,_; andY;, which isc[i — 1,j]. In the
second case the LCS is the LCSXSI andY;_, which isc[i, j — 1]. We do not know which is
the case, so we try both and take the one that gives us the longer LCS.

Thus, ifz; # y; thenc[i, j] = max(c[i — 1, 7], c[i, 5 — 1]).

We left undone the business of showing that if both strings end in the same character, then the LCS
must also end in this same character. To see this, suppose by contradiction that both characters end in
A, and further suppose that the LCS ended in a different charBctBecause is the Iamaracter

of both strings, it follows that this particular instance of the charadteannot b ed a ere else

in the LCS. Thus, we can add it to the end of the LCS, creatin ngér ﬁn\bn subsequence. But
this would contradict the definition of the LCS as belng lo \aé

Combining these observations we have t“
e
cli, il = (Q 1]+1 jf 1,%> 0 andz; = y;,

\,\e max(c[i,j — 7 if 4,7 > 0andz; # y;.

|n he Rule: The tal g) simply implement this rule. As with other DP solutions, we
concentrate on computin the maximum length. We will store some helpful pointers in a parallel array,

b[0..m, 0..n)].
Longest Common Subsequence

LCS(char x[1..m], char y[1..n]) {
int c[0..m, 0..n]
for i = 0 to m do {

cli,0] = 0 b[i,0] = SKIPX /I initialize column O
}
for j = 0 to n do {
cfoj =0 b[0,] = SKIPY /I initialize row 0O
}
for i = 1 to m do {
forj=1tondo{
it ([==yl {
clij] = c[i-1,-1]+1 /Il take X[i] and Y[j] for LCS
b[i,jj = ADDXY
}
else if (c[i-1,j] >= c[ij-1]) { /I X[i] not in LCS
cij] = cfi-1,]
bli,j] = SKIPX
}
else { Il Y[j] not in LCS

77

Lecture Notes CMSC 251

NP-Complete NP-Hard
Harder

NP

P Easy

Figure 36: Relationship between P, NP, and NP-complete.

problemA in polynomial time. You want to prove th@& cannot be solved in polynomial time. How
would you do this?

We want to show that
(A¢P)= (B¢P).

To do this, we could prove the contrapositive,
(BeP)= (AeP).

In other words, to show thaB is not solvable in polynomial ti WI ose that there is an
algorithm that solve®3 in polynomial time, and then% tlon by showing thatin be

solved in polynomial time. NS
How do we do this? Supi &ﬁ\av ubroutl fg%solve any instance of g#dblem
) u

polynomial time. Then all isto Se this subroutine to solve problem
in polynomla N ave reduce roblemB

Sy ote h ha %posed subroutine is rediyptasy We know (or strongly
lidvi hatA cannot be e nomial time, thus we are essentially proving that the subroutine
cannot exist, implying thaBB cannot be solved in polynomial time.

Let us consider an example to make this clearer. It is a fact that the problem of determining whether an
undirected graph has a Hamiltonian cycle (UHC) is an NP-complete problem. Thus, there is no known
polynomial time algorithm, and in fact experts widely believe that no such polynomial time algorithm
exists.

Suppose your boss of yours tells you that he wants you to find a polynomial solution to a different
problem, namely the problem of finding a Hamiltonian cycle idirected graph(DHC). You think

about this for a few minutes, and you convince yourself that this is not a reasonable request. After all,
would allowing directions on the edges make this problem any easier? Suppose you and your boss both
agree that the UHC problem (for undirected graphs) is NP-complete, and so it would be unreasonable
for him to expect you to solve this problem. But he tells you that the directed version is easier. After
all, by adding directions to the edges you eliminate the ambiguity of which direction to travel along
each edge. Shouldn’t that make the problem easier? The problem is, how do you convince your boss
that he is making an unreasonable request (assuming your boss is willing to listen to logic).

You explain to your boss: “Suppose | could find an efficient (i.e., polynomial time) solution to the
DHC problem, then I'll show you that it would then be possible to solve UHC in polynomial time.” In
particular, you will use the efficient algorithm for DHC (which you still haven’t written) as a subroutine

to solve UHC. Since you both agree that UHC is not efficiently solvable, this means that this efficient
subroutine for DHC must not exist. Therefore your boss agrees that he has given you an unreasonable
task.

85

Lecture Notes CMSC 251

NP: is defined to be the class of all decision problems that cavebéedin polynomial time. This
means that if the answer to the problem is “yes” then it is possible give some piece of information
that would allow someone to verify that this is the correct answer in polynomial time. (If the
answer is “no” then no such evidence need be given.)

Reductions: Last time we introduced the notion of a reduction. Given two probldnasnd B, we say that
A is polynomially reducibléo B, if, given a polynomial time subroutine fd8, we can use it to solve
A in polynomial time. (Note: This definition differs somewhat from the definition in the text, but it is
good enough for our purposes.) When this is so we will express this as

A<p B.

The operative word in the definition is “if”. We will usually apply the concept of reductions to problems
for which we strongly believe that there is no polynomial time solution.

Some important facts about reductions are:

Lemma: If A <p BandB € P thend ¢ P.
Lemma: If A <p BandA ¢ PthenB ¢ P.
Lemma: (Transitivity) If A <p BandB <p C'thenA <p C.

The first lemma is obvious from the definition. To see the second Iemma opsgrvad be in
P, since otherwisd would be in P by the first lemma, giving a co ct| n, third lemma takes a
bit of thought. It says that if you can use a subroutlneBcIo yhomial time, and you can

use a subroutine faf' to solve B in polynomla ti use the subroutinedaio solve
A |n polynomlal time. (Thisis don c caﬁw@%ppropnate subroutine calls to

NP- completeness S‘e the mform %\mo the NP-complete problems are the “hard-
| ition in terms of reducibility.

est(PHere is a mcgp
ition: A decision pr isNP-completef

A <p Bforall A e NP.

In other words, if you could solv® in polynomial time, then every other problefnin NP would
be solvable in polynomial time.

We can use transitivity to simplify this.

Lemma: B is NP-complete if

(1) Be NPand
(2) A <p B for some NP-complete problerh.

Thus, if you can solve3 in polynomial time, then you could solvé in polynomial time. Sinced is
NP-complete, you could solve every problem in NP in polynomial time.

Example: 3-Coloring and Clique Cover: Let us consider an example to make this clearer. Consider the
following two graph problems.

3-coloring (3COL): Given a graph, can each of its vertices be labeled with one of 3 different “col-
ors”, such that no two adjacent vertices have the same label.

Cligue Cover (CC): Given a graphz and an integek, can the vertices off be partitioned intac
subsets}i, Vs, ..., Vi, such that J, V; = V, and that eacly; is a clique ofG.

87

Lecture Notes CMSC 251

graphG has a Hamiltonian cycle. Then this cycle starts at some first varthen visits all the other
vertices until coming to some final vertexand then comes back to There must be an edde, v}

in the graph. Let'’s delete this edge so that the Hamiltonian cycle is now a Hamiltonian path, and then
invoke the HP subroutine on the resulting graph. How do we know which edge to delete? We don’t so
we could try them all. Then if the HP algorithm says “yes” for any deleted edge we would say “yes”
as well.

However, there is a problem here as well. It was our intention that the Hamiltonian path start at
and end ab. But when we call the HP subroutine, we have no way to enforce this condition. If HP
says “yes”, we do not know that the HP started witand ended withv. We cannot look inside the
subroutine or modify the subroutine. (Remember, it doesn't really exist.) We can only call it and check
its answer.

First Attempt Second Attempt Correct Reduction

©

BothHCandHPexist (=) ThereisHC, andafter %bo HC and HP

deleting {u, v“

(e

(%) NoHC but (2) NoHC, but after deleting (Z) NoHC and no HP
thereisHP {u.v} thereisHP

Figure 40: Hamiltonian cycle to Hamiltonian path attempts.

So is there a way to force the HP subroutine to start the paihaad end it ab? The answer is yes,
but we will need to modify the graph to make this happen. In addition to deleting the edge: fimm
v, we will add an extra vertex attached only ta: and an extra vertex attached only ta. Because
these vertices have degree one, if a Hamiltonian path exists, it must staahdtend ay.

This last reduction is the one that works. Here is how it works. Given a grafoin which we want to
determine whether it has a Hamiltonian cycle, we go through all the edges one by one. For each edge
{u, v} (hoping that it will be the last edge on a Hamiltonian cycle) we create a new graph by deleting
this edge and adding vertexontow and vertexy ontov. Let the resulting graph be call€ef. Then

we invoke our Hamiltonian Path subroutine to see whetdnas a Hamiltonian path. If it does, then

it must start atr to «, and end withv to i (or vice versa). Then we know that the original graph had

a Hamiltonian cycle (starting at and ending ay). If this fails for all edges, then we report that the
original graph has no Hamiltonian cycle.

90

