
a medium in which sound propagates, the electric and magnetic waves 

propagates undergoes oscillatory change. 

 

 

Simple Harmonic Motion:-   

It is the simplest type of oscillatory motion. 

A particle is said to be execute simple harmonic oscillation is the 

restoring force is directed towards the equilibrium position and its 

magnitude is directly proportional to the magnitude and displacement 

from the equilibrium position. 

 If F is the restoring force on the oscillator when its displacement 

from the equilibrium position is x, then   

    F  –x 

  Here, the negative sign implies that the direction of 

restoring force is opposite to that of displacement of body i.e towards 

equilibrium position. 

    F= -kx …………. (1) 

Where, k= proportionality constant called force constant. 

    Ma=-kx 

    M
   

   
=-kx 

    M
   

   
 kx=0 

    
   

   
+

 

 
x=0 

    
   

   
 ω

2
x=0 ………… (2) 
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Similarly, the solution of differential equation can be given as 

x=Acos      ) ………(6) 

Here A denotes amplitude of oscillatory system,       ) is called 

phase and   is called epoch/initial phase/phase constant/phase angel. 

Equation (5) and (6) represents displacement of SHM. 

Velocity in SHM:- 

     =Asin      ) 

    
  

  
=A cos      ) 

    v=A cos      ) ………… (7) 

The minimum value of v is 0(as minimum value of Asin      )=0 

& maximum value is A . The maximum value of v is called velocity 

amplitude. 

Acceleration in SHM:- 

    a= -A 2
sin      ) …………. (8) 

The minimum value of „a‟ is 0 & maximum value is A 2
. The 

maximum valueof „a‟ is called acceleration amplitude. 

Also, a=  2
x (from equation (5)) 

 a   –y 

It is also the condition for SHM. 

Time period in SHM:- 

The time required for one complete oscillation is called the time 

period (T).  It is related to the angular frequency( ) by. 

    T=
  

 
 ……………… (9) 
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Frequency in SHM:- 

The number of oscillation per time is called frequency or it is the 

reciprocal of time period. 

    ʋ=
 

 
=

 

  
 ……………(10) 

Potential energy in SHM:- 

The potential energy of oscillator at any instant of time is,  

   U=-∫    
 

 
 

      =-∫      
 

 
   

     =
 

 
   2 

   
  =

 

 
   2

sin
2      ) ………… (11) 

(By using equation (5)). 

Kinetic energy in SHM:- 

The kinetic energy of oscillator at any instant of time is, 

    K=
 

 
  

  

  
)
2
 

       =
 

 
 v

2 

    
K=

 

 
 A

2
ω

2
 cos

2      ) ……. (12) 

    (By using equation (7)) 

Both kinetic and potential energy oscillate with time when the kinetic 

energy is maximum, the potential energy is minimum and vice versa. 

Both kinetic and potential energy attain their maximum value twice in 

one complete oscillation. 

Total energy in SHM:- 
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                   Using the value of θ & t=0 in the equation (vii) we have 

  = -r ω1 

                     Where value of  V0 in …………… 

Calculation of Energy(instantaneous): 

K.E = 
 

 
mv

2 
 

  K.E = 
 

 
mv

2     [β
2
cos

2
(ω1t+ θ)+ ω1

2
sin

2
(ω1t+ θ)+ βω1sin

2
(ω1t+ θ)] 

Potential Enegy: 

                      P.E=
 

 
kx

2
 

                                               =
 

 
kr

2     cos
2
 (ω1t+ θ) 

Total Energy: 

      T.E=K.E+P.E 

=     [(
 

 
mv

2
+

 

 
kr

2
)cos

2
(ω1t+θ)+

 

 
mr

2
ω1

2
sin

2
(ω1t+θ)                                                      

                    
 

 
mv

2
 βω1sin2(ω1t+ θ)]         

Total average energy: 

   =
 

 
mr

2
 ω0

2      

                                  =E0 
     

                  Where, E0 =Total energy of free oscillation  

The average energy decipated during one cycle 

       =Rate of energy 
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                                         = 2    
  (  

     )

 
 

     2    
  (  

     )

 
 

| |          [    
 

  
   

        ]

 
 ⁄

 

   
 

 | |
 

For a particular    A   
 

| |
 

 

INTERFERENCE 

Coherent Superposition: 

The superposition is said to be coherent if two waves having constant 

phase or zero phase difference.   

In this case, the resultant intensity differs from the sum of intensities 

of individual waves due to interfering factor. 

i.e. 21 III   

Incoherent Superposition: 

The superposition is said to be incoherent if phase changes frequently 

or randomly.  

In this case, the resultant intensity is equal to the sum of the 

intensities of the individual waves. 

i.e. 21 III   

Two Beam Superposition: 

When two beam having same frequency, wavelength and different in 

amplitude and phase propagates in a medium, they undergo principle 

of superposition which is known as two beam superposition. 
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∑          

 

   

       

    ∑  
 

 

   

 

Now , 2KAI incoherent 

                     

  ∑   
  

    

              
  

 1NII incoherent   
icoherent

coherent

I

I
N   

Interference: 

 The phenomenon of modification in distribution of energy due 

to superposition of two or more number of waves is known as 

interference. 

To explain the interference, let us consider a monochromatic source 

of light having wavelength   and emitting light in all possible 

directions. 

According to Huygens‟s principle, as each point of a given wavefront 

will act as centre of disturbance they will emit secondary wave front 

on reaching slit S1 and S2.  

As a result of which, the secondary wave front emitted from slit S1 

and S2 undergo the Principle of superposition. 
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Component light waves are allowed to travel different optical path so 

that they will suffer a path difference and hence phase difference. 

[                 
  

 
                ] 

Methods for producing coherent sources/Types of interferences 

Coherent sources can be produced by two methods 

1) Division of wave front 

2) Division of amplitude 

Division of Wave front 

The process of coherent source or interference by dividing the wave 

front of a given source of light is known as division of wave front. 

This can be done by method of reflection or refraction. In this case a 

point source is used. 

 

 

Examples 

       1. YDSE 

2.Lylord‟s single mirror method 

      3.Fresnel‟s bi-prism 

4.Bilet splitting lens method 

DIVISION OF AMPLITUDE 

The process of obtaining a coherent source by splitting the amplitude 

of light waves is called division of amplitude which can be done by 

multiple reflections. 

In this case, extended source of light is used. 
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1.Newton‟s ring method 

2.Thin film method 

3. Michelson‟s interferometer 

Young’sDouble Slit Experiment: 

 

     

In 1801 Thomas Young demonstrated the phenomenon of interference 

in the laboratory with a suitable arrangement. It is based on the 

principle of division of wavefront of interference. The experiential 

arrangement consists of two narrow slits, S1 and S2 closely spaced, 

illuminated by a monochromatic source of light S. A screen is placed 

at a distance D from the slit to observe the interference pattern. 

In the figure, 

               d   Slit separation 

               D   Slit and screen separation 

                 Wavelength of light 

              Y distance of interfering point from the centre of slit 

             x Path difference coming from the light S1 and S2 

                     Optical path difference between the rays coming through 

S1 and S2 
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When YDSE is performed with white light instead of monochromatic 

light we observed, 

I. Fringe pattern remains unchanged 

II. Fringe width decreases gradually 

III. Central fringe is white and others are coloured fringes 

overlapping 

When YDSE is performed with red, blue and green light 

         

So          

  
 

 
 

   

   
 

  
  

  
 

 [   
  

 
] 

Wavelength of light in any given medium, decreases to1/µ times of 

wavelength in vacuum. 

    

   
   

 
 

[   
   

  
] 

So, it decreases 1/µ times. 
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From the expression for amplitude we have 

R = 







 .............

!7!5!3

sin 753 




 AA

     

 

    = 







 ................

!5!3
1

42 



x

A
= A, since α ‹‹ 1 

Thus the intensity at the central principal maxima is I0 

For α=
2

3
 , I1 =I0 2

2



Sin
= I0 

2

2

2

3

)
2

3
(








 


Sin

=
22

0I
 

For α=
2

5
 , I2 =I0 2

2



Sin
= I0 

2

2

2

5

)
2

5
(








 


Sin

=
62

0I
 and so on …… 

Intensity distribution curve: 

 The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 
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placed at its focal length. The rays of light which are allowed to 

incident normally on the lens are converged to a point “Po” 

forming central principal maxima having high intensity and the 

rays of light which are diffracted through an angle are “θ” are 

converge to a point “P1” forming  a minima having less intensity 

as compared to central principal maxima. Again those rays of 

light which are diffracted through an angle “θ” are undergoes a 

path difference and hence a phase difference producing 

diffraction. 

 

  

 

  
 

Let AB- be the transverse section of the plane transmission 

grating 
'WW - be a plane wave front coming from infinite distance 

e = width of the slit 

d = width of the opacity 

(e+d) = grating element of the grating 

N = be the no. of rulings present in the grating 

Now the path difference between the deviated light rays is 

 S2K = S1S2Sinθ = Sinde )(   

Preview from Notesale.co.uk

Page 70 of 179



 
 

Intensity distribution curve: 

 The graph plotted between phase difference and intensity 

of the fringes is known as intensity distribution curve. The 

nature of the graph is as follows: 

   

 

Characteristics of the spectral lines or grating spectra:  

1.The spectra of different order are situated on either side of 

central principal maximum 

2.Spectral lines are straight and sharp 

3.The spectra lines are more dispersed as we go to the higher 

orders. 
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i.e Third order spectra or multiple of 3 spectra will found to be 

missed or absent on the resulting diffraction pattern. 

Dispersion: 

The phenomenon of splitting of light wave into different order 

of spectra is known as dispersion. 

Dispersive power: 

 The variation of angle of diffraction with the wave length 

of light is known as dispersive power. It is expressed as 




d

d
 

Where d 21    = difference in angle of diffraction and 

21  d =difference in wave length of light 

Expression for dispersive power: 

We have  

  mSinde  )(  

    





m
d

d
mSinde

d

d
 )(  

  





 d

d
mSin

d

d
de  )(  

  m
d

d
de 




cos)(  

 




d

d
=

cos)( de

m


 

 




d

d
  α  m  

   α
)(

1

de 
 

    α
cos

1
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zone through the alternate transparent zones. So,the rays of light 

differ by a phase difference of π. 

   

Hence, the resultant amplitude is sum of the individual 

amplitude due to light coming from alternate half period zones. 

Thus for any point object situated at infinite produces a bright 

image at a particular distance which is same as that of image 

produced by a convex lens. Thus a zone plate is equivalent to 

that of a convex lens. 

Theory of zone plate: 

 Let us consider a transverse section of a zone plate placed 

perpendicular to the plane of the paper. Let „O‟ be a point object 

placed at a distance „ uOP  ‟ forms a real image „I‟ at a distance „

vPI  ‟ from the zone plate.  
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 nr 2 









vu

11
 n  

 nr 2 








f

1
 n   

n

r
f n

2

    (5) 

This is the required expression for primary focal length 

Again,    



1

f    fx  = constant 

Area of zone plate: 

The space enclosed between two consecutive zones is known as 

area of zone plate. 

Let An-1 and An be the area of (n-1)
 th

 and n
th 

zone  

 Then A= An - An-1 =  2

1

2

 nn rr  = 
 

vu

nuv

vu

uvn








 1
=

vu

uv




= constat 

Thus, the area of zone plate is independent of order of zone i.e 

the zones are equispaced.  

Multiple foci of zone plate: 

 Now from the expression we have, 

nr 2 









vu

11
 n  

If the object is situated at infinity (∞), then the first image at 

distance , 

11 fv  =
n

rn

2

 

If we divide the  half period zones into half period elements 

having equal area, then the 1
st
 half period zone will divided into 

three half period zones,2
nd

 half period zone will divided into five 

half period elements and so on 

The second brightest image will at 
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path difference of λ/2, such zone plate is known as phase reverse 

zone plate. 

Huygens’s Principle: 

About the propagation of the wave, Huygens suggested a theory 

which is based on a principle known as Huygens‟s principle.  

It states that:- 

1) Each point on a given wave front will act as centre of 

disturbances and emits small wavelets called secondary wave 

front in all the possible direction. 

2) The forward tangent envelope to these wave lets gives the 

direction of new wave front. 

Explanation/construction of secondary wave front: 

 To explain Huygens‟s principles let us consider a source of 

light emits waves in all directions. Let AB be the wave front 

at t=0. As the time advances each point on the given wave 

front AB will act as   centre of disturbance and emit wave lets 

in all possible directions.  

 

 

    
 Taking a, b, c, d, e as centre and radii equal to „ct‟ (c- 

velocity of light &„t‟ time), we can construct a large number 

of spheres which represents a centre of  disturbance for the 

new wave. The length A1B1 represents the direction of new 

wave front. 
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1.It produces a path difference 

of  λ  /4 between  O and E wave   

2. The light emerging from a λ  

/4 plate maybe circularly 

elliptically or plane polarised. 

3. In this case nicol may give a 

non zero minimum. 

4. It is used for production of all 

type polarised light.                                                                                                

1.It produces a path difference 

of λ /2 between O and E ray. 

2. The light emerging from a λ 

/2 plates is plane polarised for 

all orientation of the plate. 

3. In this case nicol may give a 

zero minimum always. 

4. It is used in polarism for 

half shade device. 

 

Production and Analysis Polarised Light 

1. Production of plane polarised light: 

 

To produce plane polarised light a beam of ordinary light is sent 

through a Nicol prism in a direction almost parallel to the long 

edge of the prism. Inside the prism the beam is broken upto two 

components „O‟ and „E‟ ray. The „O‟ component is totally 

reflected at the Canada balsam and is absorbed. 

 

 

                              
The „E‟ component emerges out which is plane polarised with 

vibration parallel to the end faces of the Nicol. 

 

2. Production of circularly polarised light: 

The circularly polarised light can be produced by allowing 

plane-polarised light 

obtained from the Nicol to fall normally on a quarter wave plate 

such that the 
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direction of vibration in the incident plane polarised light makes 

an angle of 45⁰ with 

the optic axis of the crystal. 

 

    

                  
Inside the plate the incident waves of amplitude A is divided 

into 045cosAE    

045sinAO   with a phase difference  
2


 between them. 

Let 045cosA = 045sinA Asin 45⁰= a  of the axis of x  

Let  wtax sin(
2


) wtacos  and wtay sin  

Eliminating t from both the equation, we have 
222 ayx   which represents a circle. 

Hence the light emerging from     plate is circularly polarised. 

3. Production of elliptically polarised light: 

The elliptically polarised light can be produced by allowing plane 

polarised light normally in a quarter wave plate such that the direction 

of vibration in the incident plane polarised light makes an angle other 

than 0⁰,45⁰ and 90⁰ with the optical axis which is 30⁰. 

 In this case the incident wave is divided inside the plate into E and O 

components of unequal amplitude 030cosA  and 030sinA  respectively 

which emerge from the plate with a phase difference of
2


. 
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If we take 030cosA = a and 030sinA = b,then the emerging component 

can be written as, 

 wtax sin(
2


) wtacos  and wtby sin  

Now eliminating „t‟ from both the equation we have 

1
2

2

2

2


b

y

a

x
 which the equation of an ellipse. Hence the emerging 

light coming from 

    plate is elliptically polarised 

Analysis of different polarised light: 

The whole analysis of different type of polarised light can be 

represented in algorithm form with figure as follows: 
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In a dielectric medium Gauss‟ law is given by 

   . net
E

S

q
E dS



 

   

 - Permittivity of the medium. 

In terms of displacement vector Gauss‟ law is given by 

 

   .E net

S

D dS q
 

   

Notes: 

 The charges enclosed by the surface may be point charges or 

continuous charge distribution. 

 The net electric flux may be outward or inward depending upon 

the sign of charges. 

 Electric flux is independent of shape &  size of Gaussian 

surface. 

 The Gaussian surface can be chosen to have a suitable 

geometrical shape for evaluation of flux. 

 Limitation of Gauss‟ Law 

(a) Since flux is a scalar quantity Gauss‟ law enables us to find 

the magnitude of electric field only. 

(b) The applicability of the law is limited to situations with 

simple geometrical symmetry. 

 

Gauss’ Law in Differential form 
 

Gauss‟ law is given by 

    . net

S

q
E dS



 

  

For a charge distribution 
    argnet

V

q dV where volumech edensity    

Using Gauss divergence theorem 

    . .
S V

E dS E dV
   

    

 

So     
0

1
.

V V

dV E dV


 

    
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Or    
0

( . ) 0
V

E dV




 

      

 

    
0

. 0E




 

     

     

    
0

.E




 

    

This is the differential form of Gauss‟ law. 

Magnetic Intensity (H) and Magnetic Induction ( )B


 

The magnetic intensity ( )H


is related to the magnetic field induction 

( )B


by 

     
0

( )
( )

B
H






  

Unit: in SI system ( )H


is in amp/m and ( )B


in tesla. 

Magnetic Flux ( )m  
 

The magnetic flux over a given surface area S is given by 

     ( ) . cosm

S S

B dS B dS 
 

    

 where angle between magnetic field B and normal to the surface


    

Unit of flux: 1 weber in SI 

  1 maxwell in cgs(emu) 

 So 1T= 1 weber/m
2
 

  1 gauss= 1maxwell/cm
2
 

Gauss’ Law in magnetism 
Since isolated magnetic pole does not exist, by analogy with Gauss‟ 

law of electrostatics, Gauss‟ law of magnetism is given by 

    . 0
S

B dS
 

  

Using Gauss divergence theorem  

    . . 0
S V

B dS B dV
   

     

. 0B
 

    

This is the differential form of Gauss‟ law of magnetism. 

Ampere’s Circuital law 
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Statement:-The line integral of magnetic field along a closed loop is 

equal to                                             

0.
C

B dl I
 

  

Where I net current enclosed bythe loop  

C closed path enclosing the current (called ampere loop).  

In terms of magnetic intensity  

   .
C

H dl I
 

  

Ampere’s Law in Differential form 

Ampere‟s law is  

  0.
C

B dl I
 

 ----------------------------------(i) 

Using Stoke‟s theorem, we have 

  . ( ).
C S

B dl B ds
    

   --------------------------(ii) 

In terms of current density J 

0 0 .
S

I J ds   --------------------------------------(iii) 

Using (ii) and (iii) in equation (i) we have 

( ). . ( ).o o

S S S

B ds J ds J ds 
      

      

 oB J
  

   

This is Ampere‟s circuital law in differential form. 

Faraday’s Law of electromagnetic induction 

Preview from Notesale.co.uk

Page 123 of 179



Or ( ). 0
S

B
E ds

t


  
  

  

0
B

E
t


  

   


 

This is differential form of Faraday‟s law electromagnetic 

induction. 

Equation of Continuity 

The electric current through a closed surface S is 

  .
S

I J ds
 

   

Using Gauss divergence theorem  

  . .
S V

I J ds J dV
   

    ---------------- (i) 

Where S is boundary of volume V. 

Now arg
q

I rate of decrease of ch e fromthevolumethrough surface S
t


  


 

V V

I dV dV
t t




 
    

   ----------------------(ii) 

From (i) and (ii) 

.
V V

J dV dV
t

  
  

   

( . ) 0
V

J dV
t

  
   

  

. 0J
t

  
   


 

This is equation of continuity. 

Displacement Current 
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Maxwell associated a current (known as displacement current) with 

the time varying electric field. 

 A parallel plate capacitor connected to a cell is considered. 

During charging field E


between varies. 

Let q  instantaneous charge on capacitor plates. 

 A area of each plate 

We know that the electric field between the capacitor plates is 

 
0

q
E

A
  

0

1dE dq

dt A dt
   

0

dE dq
A

dt dt
   

0d

dE
I A where

dt
  dI displacement current between the plates 

Id exists till   ⃗⃗⃗                    

In general, whenever there is a time-varying electric field, a 

displacement current exists,  

0 0. E
d

S

I E ds
t t


 

 
 

 
 

Where E  is electric flux. 

Modification of Ampere’s circuital law 

Taking displacement current into account Ampere‟s Circuital law is 

modified as 

 . o d

C

B dl I I 
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Relative magnitudes of E and B
 

 

Now taking magnitudes 

0

0

( )
B

k e b
E


   

0

0

0

0

,

B
k

E

E
c wherec velocity of light

B k





 

   

 

0 0

1
c

 
  

Now using 0 0 0B H  

0 0
0 0 0

0 00 0

1E
c Z

H


 

 
   

 

The quantity 0Z has the dimension of electrical resistance and it is 

called the impedance of vacuum. 

Phase relation between E and B
 

 

In an electromagnetic wave electric and magnetic field are in phase.  

Either electric field or magnetic field can be used to describe the 

electromagnetic wave. 

Electromagnetic Energy Density 

The electric energy per unit volume is 

21 1
. (1)

2 2
Eu E D E

 

    

The magnetic energy per unit volume is  

 21 1
. (2)

2 2
Bu B H H

 

    
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Therefore,           
    

  

 

    
  

  
 

      (ν)dν=
    

       

 which is called Rayleigh-Jeans law. 

In high frequency lim(ν    

i.e   , 
  

  
  ,     ⁄         ⁄  

Therefore,        

     

        ⁄   , which is 

called Wein‟s radiation formula. 
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Laws of Photoelectric effect 

 It is an instantaneous process. 

 It is directly proportional to intensity of incident light. 

 Photocurrent is independent of frequency of incident light. 
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E m c


 


 
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

 

 Experimental confirmation of matter wave was demonstrated by 

Davision-Germer experiment. 

 The wave nature of electron was demonstrated by division and 

Germer. 

Heisenberg‟s Uncertainty Principle: 

It states that it is impossible to measure simultaneously the position 

and the corresponding component of its linear momentum with 

unlimited accuracy. 

If Δx= uncertainty in x-component of the position of a particle 

Δpx= uncertainty in x-component of its linear momentum 

then,   
2

xx p    

Similarly for y and z-component 

2
yy p   ,

2
zz p    

Again uncertainty in energy and time is given by 

2
t E    

Application of the uncertainty principle; 

i. Ground state energy of harmonic oscillator 

The energy of the 1-D harmonic oscillator is given as 

2
2 21

2 2

P
E m x

m
     (1) 
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Let us assume that in the ground state, the linear momentum P and 

position x of the oscillator are of the order of their uncertainties. 

i.e P P and x x  

According to principle 

.
2

.

.

x

x

x p

x p

p x

  

  



 

2
p      (2) 

Using eq
n
(2) in eq

n
(1),we get 

2
2 2

2

1

2 2
E m x

mx
       (3) 

Since the energy E of the oscillator is minimum in the ground state, so 

0

0
x x

E

x 

 
 

 
 

0

2
2

03

0

0
x x

E
m x

x mx




  
    

 
 

2

0x
m

      (4) 

Where 0x corresponds to the ground state. 

Using eq
n
 (4) in eq

n
 (3), we get 

2
2

0

1

2
2

E m
m

m
m

 




  
 
 
 

   (5) 

Thus the minimum energy of 1-D harmonic oscillator cannot be zero. 

ii. Non-existence of electron in the nucleus 
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