then S is an interval

Nested Intervals Property (2.5.2)

If $I_n = [a_n, b_n]$, $n \in N$, is a nested sequence of closed bounded intervals, then there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$.

Theorem 2.5.3

If $I_n = [a_n, b_n]$, $n \in N$, is a nested sequence of closed bounded intervals such that the lengths $b_n - a_n$ of I_n satisfy $\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$, then the number ξ contained in I_n for all $n \in N$ is unique

Theorem 2.5.4

The set R of real numbers is not countable

Theorem 2.5.5

The unit interval $[0, 1] := \{x \text{ in } R: 0 \le x \le 1\}$ is not countable

Sequence of Real Numbers (Definition 3.1.1)

A sequence of real numbers is a function defined on the set N = {1, 2, ... } of natural numbers whose range is contained in the set R of real numbers co.u

Definition 3.1.3

A sequence X = $(x_n) \in \mathbb{R}$ is said to **converge** to $x \in \mathbb{R}$, said to be a **limit** of (x_n) , if for every $\varepsilon > 0$ there exists a natural number recent that for all $n \ge K(\varepsilon)$, the terms x_n satisfy $|x_n - \mathbf{x}| < \varepsilon$

If a sequence has a lingt we hat the sequence is covergent; if it has no limit, we say that the sequence is divergent

Unique s of Limits (3.1.4)

A sequence in R can have at most one limit

Theorem 3.1.5

Let X = (x_n) be a sequence of real numbers, and let x in R. The following statements are equivalent:

(a) X converges to x

(b) For every $\varepsilon > 0$, there exists a natural number K such that for all $n \ge K$, the terms x_n satisfy $|x_n - \mathbf{x}| < \varepsilon$

(c) For every $\varepsilon > 0$, there exists a natural number K such that for all $n \ge K$, the terms x_n satisfy x - $\varepsilon < x_n < x + \varepsilon$

(d) For every ε - neighborhood $V_{\varepsilon}(x)$ of x, there exists a natural number K such that for all $n \ge K$, the terms x_n belong to $V_{\varepsilon}(x)$

m-tail (Definition 3.1.8)

If X = $(x_1, x_2, ..., x_n, ...)$ is a sequence of real numbers and if m is a given natural number, then the m-tail of X is the sequence $X_m := (x_{m+n}: n \in N) = (x_{m+1}, x_{m+2}, ...)$

Theorem 3.1.9

Let X = (x_n : n \in N) be a sequence of real numbers and let m \in N. Then the m-tail $X_m = (x_{m+n}: n \in \mathbb{N})$ of X converges if and only if X converges. In this case, $\lim X_m = \lim X$ (a) The **limit superior** of (x_n) is the infimum of the set V of v in R such that $v < x_n$ for at most a finite number of n in N

(b) The **limit inferior** of (x_n) is the supremum of the set of w in R such that $x_m < w$ for at most a finite number of m in N.

An alternative definition of lim sup(xn) (3.4.11 (c)):

If $u_m = \sup\{x_n : n \ge m\}$, then $x^* = \inf\{u_m : m \text{ in } N\} = \lim(u_m)$

Theorem 3.4.11

If (x_n) is a bounded sequence of real numbers, then the following statements for a real number x* are equivalent:

(a) $x^* = \lim \sup(x_n)$

(b) If $\varepsilon > 0$, there are at most a finite number of n in N such that $x^* + \varepsilon < x_n$, but an infinite number of n in N such that $x^* - \varepsilon < x_n$

(c) If $u_m = \sup\{x_n : n \ge m\}$, then $x^* = \inf\{u_m : m \text{ in } N\} = \lim(u_m)$

(d) If S is the set of subsequential limits of (x_n) , then $x^* = \sup S$

Theorem 3.4.12

A bounded sequence (x_n) is convergent if and only if $\lim \sup (x_n) = \lim \inf (x_n)$

Cauchy Sequence (Definition 3.5.1)

A sequence X = (x_n) of real numbers is said to be a **Cauchy Sequence** if for every $\varepsilon > 0$ there exists a natural number $H(\varepsilon)$ such that for all natural number $n, m \ge H(\varepsilon)$, the

terms x_n , x_m satisfy $|x_n - x_m| < \varepsilon$

Lemma 3.5.3

Lemma 3.5.4

If $X = (x_n)$ is a convergence of real numbers, then is a Cauchy sequence

ers is bounded

Cauchy Convergence Criterion (3.5.5)

Calchy sequence o P

A sequence of real numbers is convergent if and only if it is a Cauchy sequence

Contractive (definition 3.5.7)

We say that a sequence $X = (x_n)$ of real numbers is contractive if there exists a constant C, 0 < C < 1, such that $|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n|$ for all n in N. The number C is called the constant of the contractive sequence.

Theorem 3.5.8

Every contractive sequence is a Cauchy sequence, and therefore is convergent

Definition 3.6.1

Let (x_n) be a sequence of real numbers.

(i) We say that (x_n) tends to $\pm \infty$, and write $\lim(x_n) = +\infty$, if for every $\alpha \in \mathbb{R}$ there exists a natural number $K(\alpha)$ such that if $n \ge K(\alpha)$, then $x_n > \alpha$

(ii) We say that (x_n) tend to $-\infty$, and write $\lim_{n \to \infty} (x_n) = -\infty$, if for every $\beta \in \mathbb{R}$ there exists a natural number $K(\beta)$ such that $n \ge K(\beta)$, then $x_n < \beta$

We say that (x_n) is **properly divergent** in case we have either

 $\lim(x_n) = +\infty$ or $\lim(x_n) = -\infty$