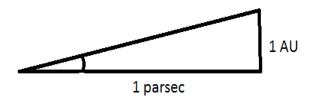
- 3. SI is a metric system. The multiples & sub-multiples of SI units can be expressed in the power of 10.
- 4. SI is a absolute system of units. Use of 'g' is not required.
- 5. Internationally accepted.

Rules for SI-

- 1. For units small letters.
- 2. Not followed by a full stop.
- 3. Symbols are not plural.
- 4. Full name of a unit is always small.

Common Prefixes in SI system


S	Multiple	Prefix	Symbol	S no.	Multiple	Prefix	Symbol
No.							
1	10 ⁻¹	deci	d	11	10 ¹	deca	da
2	10 ⁻²	centi	С	12	10 ²	hecto	h
3	10 ⁻³	milli	m	13	10 ³	kilo	k
4	10 ⁻⁶	micro	μ	14	10 ⁶	mega	M
5	10 ⁻⁹	nano	n	15	10 ⁹	giga	G
6	10 ⁻¹²	pico	р	16	10 ¹²	tera	Т
7	10 ⁻¹⁵	femto	f	17	10 ¹⁵	peta	Р
8	10 ⁻¹⁸	atto	а	18	10 ¹⁸	exa	E
9	10 ⁻²¹	zepto	Z	19	10 ²¹	zetta 🚺	Z
10	10 ⁻²⁴	yocto	У	20	1024	y (tt)	Y

Some other measuring units-

- 1. Angstrom- It is used to express wardingt of light.

 2. Light Year- It is the distance travelled by light in year.

 1 is two speed of light x and 3. Astronomics.
- 3. Astronomical unit-Mean distance of earth from sun.
- 4. Parsec (parallactic second)- It is defined as the distance at which an arc of length 1 AU subtends an angle of 1 second of arc.

- \checkmark 1 Å = 10⁻¹⁰ m
- ✓ 1 light year = $9.467 \times 10^{15} \, \text{m}$.
- ✓ 1astronomical unit = 1 AU = $1.496 \times 10^{11} \text{ m}$
- \checkmark 1 Parsec = 1.496 x 10¹¹ x 3600 x 180 x 1/ π = 3.08 x 10¹⁶ m
- $\sqrt{1 \text{ barn}} = 10^{-28} \,\text{m}^2$
- \checkmark 1 Acre = 4047 m²
- \checkmark 1 hectare = 10^4 m^2
- √ 1 tonne = 1000 kg

7	Period of sound wave	10-3
8	Wink of eye	10 ⁻¹
9	Time peiod between successive heart beats	10 ⁰
10	Travel time for light from moon to earth	10 ⁰
11	Travel time for light from sun to earth	10 ²
12	Time period of a satellite	104
13	Period of rotation of the earth	10 ⁵
14	Period of revolution of the earth	10 ⁷
15	Time travel of light from nearest star	10 ⁸
16	Average human life span	10 ⁹
17	Age of univerese	10 ¹⁷

Dimensions of a Physical quantity

All the derivedd quantities can be expressed in the terms of some combination of 7 fundamental or base quantities. These seven fundamental quantities are known as te seven dimensions of the world, which are denotes with square bracket.

Dimension	Denotation	Dimension	Denotation
Mass	[L]	Electric Current	[A]
length	[M]	Luminious intensity	[cd]
Time	[T]	Amount of substance	[mo]
Tempareture	[K]		

<u>Dimensional Equation</u>-The equation obtained by quating a the calculative with its dimensional formula is called the dimensional equation of given in Scal quantity.

S No.	Physical quantity	Relation with other quantities.	2imensional formula	SI unit
		Mechanical Qunantities		
1	Aus	right wheadth	$[M^0L^2T^0]$	m ²
2	Volume Density	Length x breadth x height	$[M^0L^3T^0]$	m³
3	Density	Mass / volume	$[M^1L^{-3}T^0]$	kg m ⁻³
4	speed	Distance/ time	$[M^0L^1T^{-1}]$	m s ⁻¹
5	Acceleration	Velocity / time	$[M^0L^1T^{-2}]$	m s ⁻²
6	Momentum	Mass x velocity	$[M^1L^1T^{-1}]$	kg ms ⁻¹
7	Force	Mass x accleration	$[M^1L^1T^{-2}]$	N
8	Work	Force x displacement	$[M^1L^2T^{-2}]$	J
9	Energy	Amount of work	$[M^1L^2T^{-2}]$	J
10	Power	Energy / Time	$[M^1L^2T^{-3}]$	W
11	Pressure	Froce / Area	$[M^1L^{-1}T^{-2}]$	Pa
12	Torque (moment of force)	Force x perepndicular distance	[M ¹ L ² T ⁻²]	Nm
13	'G'	Force x (distance) ² / mass ²	[M ⁻¹ L ³ T ⁻²]	Nm ² kg ⁻²
14	Impulse of a Force	Force x time	[M¹L¹T⁻]	N s
15	Stress	Force / Area	$[M^1L^{-1}T^{-2}]$	N m ⁻²
16	Strain	Change in dimension / Original dimension	[M ⁰ L ⁰ T ⁰]	_
17	Coefficient of Elasticity	Stress / Strain	[M ⁰ L ⁻¹ T ⁻²]	N m ⁻²
18	Surface Tension	Force / Length	$[M^1L^0T^{-2}]$	N m ⁻¹
19	Surface Energy	Work / Area	$[M^1L^0T^{-2}]$	J m ⁻²
20	Coefficient of	Force x distance	[M ¹ L ⁻¹ T ⁻¹]	Pa S