

Now, in the above equation, we can see all the zeros in the first row of the matrix on the L.H.S.

Therefore, A^{-1} does not exist.

Question 16:

Find the inverse of each of the matrices, if it exists.

[1	3	-2]
-3	0	-5
2	5	0

Answer

	[1	3	-2
Let $A =$	-3	0	-5
	2	5	0

Let A =	-3 2	0 5	$\begin{bmatrix} -2 \\ -5 \\ 0 \end{bmatrix}$			lo co.uk
We knov	v that A	= IA				tesaler
[1	3	-2	1	0	0	NOLOS
∴ – 3	0	-5 =	= 0	rO	0	A
2	5	ie	N.	0		110.
Applying	RE	R2 + 3R1	and	2.2.5	21	R ₁ , we have:
[1	3	-2]	[1	0	0	
0	9	-11 =	3	1	0	A
0	-1	4	2	0	1	

Applying $R_1 \rightarrow R_1 + 3R_3$ and $R_2 \rightarrow R_2 + 8R_3$, we have:

[1	0	10	[−5	0	3
0	1	21 =	= -13	1	8 A
0	$^{-1}$	4	-2	0	1

69 www.tiwariacademy.com Free web support in Education

Answer: D

We know that if A is a square matrix of order m, and if there exists another square matrix B of the same order m, such that AB = BA = I, then B is said to be the inverse of A. In this case, it is clear that A is the inverse of B.

Thus, matrices A and B will be inverses of each other only if AB = BA = I.

www.tiwariacademy.com Free web support in Education